synthetic helical liquid in a quantum wire george i. japaridze

31
SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE George I. Japaridze Ilia state University and Andronikashvili Institute of Physics

Upload: ashton-reeves

Post on 02-Jan-2016

31 views

Category:

Documents


1 download

DESCRIPTION

SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE George I. Japaridze. Ilia state University and Andronikashvili Institute of Physics. SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE. What is a helical liquid (HL)? Unconventional State of matter with spin-momentum locking. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

SYNTHETIC HELICAL LIQUID IN A QUANTUM WIREGeorge I. Japaridze

Ilia state University and Andronikashvili Institute of

Physics

Page 2: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze
Page 3: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

What is a helical liquid (HL)?

Unconventional State of matter with spin-momentum locking

S

p

S

p

SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE

Page 4: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

What is a helical liquid (HL)?

Unconventional State of matter with spin-momentum locking

SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE

Page 5: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Helical modes: where do they occur?

topological insulators(edges):

quasi- ‐1d Super Condsuperconductors:

Semiconducingnanowires: -magnetic

field

carbon nanotubes:

Pankratov, Pakhomov & Volkov, SSC 61, 93 (1987) Hasan and Kane, RMP 82, 3045 (2010)

Pott er and Lee, PRL 105, 227003 (2010)

Streda and Seba, PRL 90, 256601 (2003)

Braunecker, Japaridze, Klinovaja, DL, PRB 82, 045127 (2010)

Klinovaja, Schmidt, Braunecker, DL, PRL 106 156809 (2011), and PRB 84, 085452 (2011)

Page 6: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Insulators with Strong Spin-OrbitInteraction:Spin-Hall Effect: Edge states

L. Fu, C. L. Kane and E. J. Mele PRL 98, 106803 (2007).

J. E. Moore and L. Balents, PRB 75, 121306(R) (2007).

S.-C. Zhang, Nature Physics 1, 6 (2008).

Page 7: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Exotic quantum states Majorana Fermions in 1d

Alicea, PRB 81, 125318 (2010) Oreg, Refael, and von Oppen, PRL 105, 177002 (2010) Lutchyn, Sau, and Das Sarma, PRL 105, 077001 (2010) Kitaev, Phys.- Usp. 44, 313 (2001)‐ Alicea, Oreg, Refael, v.Oppen, Fisher, Nature Phys.7,412 (2011) Gangadharaiah, Braunecker, Simon, DL, PRL 107, 036801 (2011)

Page 8: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Semiconducting Nanowires

Various materials:ZnO, InAs, InP, GaAs, AlAs, Ge, Si, SiGe, GaN, GaP, CdS,

Operate both in theconduction band (CB) and valence band (VB)

Charge: similarSpin: very different

ELECTRONS HOLESParticularly characteristic

for semiconductors

Holes turn out to be advantageous in many aspects!

Page 9: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Ge/Si Core/Shell Nanowires

Xiang et al., Nature (2006); Hu et al., Nat. Nano (2007); Hu et al., preprint (2011)

Nanowiregrown along [110]

Large Ge/Si valence band offset of ~ 0.5 eV, narrow interfaces→ replace with hard wall at core radius Rc ≡ R

Lauhon et al., Nature (2002), Lu et al., PNAS USA(2005)

Ex

Page 10: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

v

Lorenz transformation

v=0H

•c

E

E

Page 11: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

• The 1D lattice Hamiltonian:

H l a t = − t,

(c†

n,σn,σcn+1,σ +h.c.)

+αR ,

[(c† n

n,↑cn+1,↓ − c† cn+1,↑) +h.c.]n,↓

+, f

Uρn,

n

↑ n,↓ρ +V ρ ρn n+1 + J S · S ...n n+1

V. Gritsev, G. Japaridze, M. Pletyukhov, and D. Baeriswyl , Phys. Rev. Lett. 94, 137207 (2005).

S. Gangadharaiah, J . Sun, and O. A. Starykh, Phys. Rev. B 78, 054436 (2008).

Page 12: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze
Page 13: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Part I: Magnetic field induced quasi-helical liquid state

in a disordered 1D electron system

with strong spin-orbit interaction

Anders Ström, Bernd Braunecker and G.J. PRB 87, 075151 (2013).

Page 14: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

04.pptx

Helical mode: spin coupled to momentum

Rashba spin-orbit field along z-axis

HR px z

e.g. InAs nanowire λSO ~ 100 nm, Fasth et al., PRL 98, 266801 (2007)

Page 15: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Helical Hole States

Rc = 5.0 nmRs = 6.5 nm No RSOI!

Kloeffel, Trif, DL, arXiv:1107.4870

E-fieldalong x:

Ex = 6 V/µm strongRashba SOI (~ 1-10 meV)

Page 16: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Helical Hole States

Rc = 5.0 nmRs = 6.5 nm

Bx opens a gap 0.8 T:~

0.25 meV0.3 T: ~ 0.10 meV

E-field along x: Ex = 6 V/µm strong Rashba SOI (~ 1-10 meV)

Kloeffel, Trif, DL, arXiv:1107.4870

Page 17: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

2kF2kF

Effect of Interaction : strongrenormalization of Zeeman gap!

see also, Stoudenmire, Alicea, Starykh, Fisher, PRB 84, 014503 (2011)

Braunecker, Japaridze, Klinovaja, Loss, PRB 82, 045127 (2010)

2kF

local spin basis transformation: spin-dependent shift in k-space

Helical States from Rotating Zeeman Field

Page 18: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Band structuresSpins look anti-

parallell for opposite velocities.

Helical?

Corrupted by the magnetic field HS!

Let’s calculate the spin overlaps!

Page 19: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Band structuresSpin Overlaps

Limits:

Page 20: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Spin Overlaps

Band structures

Detail for aa overlap. 0.3 meV (ca 1 T) yields overlap squared of about 0.01.

Page 21: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Overlaps:

Limits:

Disorder: Anderson Localization in 1D !!

(absent in the Helical Liquid State!!)

Page 22: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

DisorderRG

Scaling equations!

For full Luttinger liquid with spin: For spinless or helical Luttinger liquid:

Above gap

Below gap

Page 23: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

DisorderLocalisation length

Can have loc. from ab disorder, if gap is smaller than ca 6ehjhjhjee5 eV, almost 1 K.

Below the gap, we only need to consider disordered aa backscattering.

Page 24: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

01.pptx

Page 25: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Part II: SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE

Mariana Malard, Henrik Johannesson and GJ

PRB 89, 201403(R)  (2014).

Page 26: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

)(k

k

+_

F

+_

0qkF 0qkF 0qkF 0qkF

)(2 0qkQ F

insulating phase

branch 2

Band picture

Page 27: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

)(k

k

+_

)(2 0qkQ F

F

+_

0qkF 0qkF 0qkF 0qkF

branch 2

conducting helical

electron liquid S

p

S

p

Band picture

Page 28: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

HL in a quantum wire using electrical fields only and standard nanoscale semiconductor technology!

quantum wire

Semiconductor

heterostructure

top nanogat

es

Our proposal

modulation of the spin-orbit

Rashba interaction+ spin-orbit

Dresselhaus + e-e interactions

Page 29: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

The MODEL

hopping and chemical potential

uniform Rashba and Dresselhaus

interactions

+

modulated Rashba

interaction

+

e-e interacti

on

+

Page 30: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

Effective theory

sine-Gordon potential

relevant for

K < ½

helical Dirac hamiltonian

branch-mixing

potential

gap

Page 31: SYNTHETIC  HELICAL LIQUID  IN A QUANTUM WIRE George I. Japaridze

For future success in building of German-

Georgian Science Bridge

Thank you for your attention!