system-on-chip solutions & architectures · socsa slides: introduction © institute for...

19
SOCSA Slides: Introduction © Institute for Integrated Systems Technische Universität München www.lis.ei.tum.de System-on-Chip Solutions & Architectures A. Herkersdorf M. Vonbun © Institute for Integrated Systems Technische Universität München www.lis.ei.tum.de Introduction System-on-Chip Solutions & Architectures A. Herkersdorf

Upload: others

Post on 19-Sep-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

SOCSA Slides: Introduction

© Institute for Integrated Systems

Technische Universität München www.lis.ei.tum.de

System-on-Chip Solutions & Architectures

A. Herkersdorf M. Vonbun

© Institute for Integrated Systems

Technische Universität München www.lis.ei.tum.de

Introduction

System-on-Chip

Solutions & Architectures A. Herkersdorf

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 3

Organisational matters

Lectures (A. Herkersdorf) Mon – Fri, 9:30 am – 12:30 pm

Tutorials (M. Vonbun) Mon – Fri, 1:30 pm – 3:00 pm

Homework: (30% of total grade) 4 exercise sheets (Tu, Th, Mo, We) to be returned in next but one

lecture

Exam: (70% of total grade) Date and room to be announced by GIST office,

written exam (75 min.), calculators & 1 US Letter / A4 sheet allowed (no computers, PDA, phones)

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 4

Reading material / Literature

Course handouts and lecture notes Recommended as primary reference during course Sufficient for exam preparation

Text books Digital Integrated Circuits, A Design Perspective, J. Rabaey,

Prentice Hall

Computer Networks, A. Tannenbaum, Prentice Hall

Computer Architecture: A Quantitative Approach, J. Hennessy, Morgan Kaufmann Publishers

Useful Web links Cisco Internetworking Handbook

http://docwiki.cisco.com/wiki/Internetworking_Technology_Handbook Techlearner: A Guide to Semiconductors

http://www.techlearner.com/Semiconductors.htm http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_1.htm

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 5

What is this course about?

System perspective of (digital) IC technology Foundation of CMOS scaling Key elements of IC technology (memory, µP, FPGA,

interconnect, I/O, packages) SoC (System-on-chip) design and modeling methodology

Impact of IC evolution on data networking and communications equipment evolution

… towards higher speed / capacity … towards more sophisticated and tighter integrated

functions … criticality of cost and power consumption

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 6

Foundation of CMOS Scaling 1947:

First transistor

John Bardeen and Walter Brattain (Bell Laboratories )

1958:

First integrated circuit (IC)

Jack Kilby (TI), Robert Noyce (Fairchild)

2002:

PowerPC 970, 0.13µm, 1.8 GHz, 52 M transistors (IBM [1])

simplified CMOS transistor model

Oxt

minL

w

ddV

DrainSource

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 7

Key Elements of IC Technology Memories:

- SRAM, DRAM, FLASH, RAMBUS, MRAM

- rd/wr latencies, access BW

(8 Mbit SRAM chip [1])

Processors:

- RISC, CISC, superscalar, VLIW

- performance: µP – cache - memory

(Intel Pentium I [2])

Interconnects:

- wireability and its performance impact

- on-chip buses Network-on-chip (NoC)

(IBM CMOS7S Cu 0.13µm [1])

Packages:

- I/O bottleneck

- high-speed I/O

- power limits

(Flip-chip CBGA [1])

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 8

Course Outline

Module (Fundamentals) Module (Case Studies)

Introduction Microprocessors, Comm. Controllers

CMOS Basics Network Processor

Memory LAN/SAN Switch

Interconnect / Timing SONET/SDH Framer

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 9

DR

AM

pric

es (M

icro

cen

t per b

it sto

red

)

107

106

105

104

103

102

10

1

10-1

10-2

Microprocessors 8008 8086

80286 80386

80486 Pentium

Pentium II Pentium III

Pentium 4 Core 2 Duo

Core i7

4k 16k

64k

256k 1M

4M

16M

64M 256M

1G

4G

16G

32G

DRAM-Chips

1972 1976 1980 1984 1988 1992 1996 2000 2012 2004 2008

2

0.5

0.2

0.1

0.05

0.02

0.01

1

Tra

nsis

tor g

ate

len

gth

L (u

m)

5

20

10

50

Moore’s Law CMOS Scaling Good news

Year

Source: ITRS Roadmap 99, 09

2016 2020

1011

1010

109

108

107

106

105

104

103

1013

1012

Ch

ipcap

acit

y (

tran

sis

tors

per

ch

ip)

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 10

Microprocessors

1972 1976 1980 1984 1988 1992 1996 2000 2012 2004 2008

2

0.5

0.2

0.1

0.05

0.02

0.01

1

Tra

nsis

tor g

ate

len

gth

L (u

m)

5

20

10

50

Moore’s Law CMOS Scaling Challenges

Year 2016 2020

1011

1010

109

108

107

106

105

104

103

1013

1012

Ch

ipcap

acit

y (

tran

sis

tors

per

ch

ip)

Number of cores Frequency

Performance

8008 8086

80286 80386

80486 Pentium

Pentium II Pentium III

Pentium 4 Core 2 Duo

Core i7

hot plate

nuclear

reactor

rocket

nozzle

Power Dissipation

Po

wer

den

sit

y (

W/c

m2)

10

100

1

0.1

1000

Source: ITRS Roadmap 99, 09

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 11

4k 16k

64k

256k 1M

4M

16M

64M 256M

1G

4G

16G

32G

DRAM-Chips

1972 1976 1980 1984 1988 1992 1996 2000 2012 2004 2008

2

0.5

0.2

0.1

0.05

0.02

0.01

1

Tra

nsis

tor g

ate

len

gth

L (u

m)

5

20

10

50

Moore’s Law CMOS Scaling

Year

Source: ITRS Roadmap 99, 09

2016 2020

1011

1010

109

108

107

106

105

104

103

1013

1012

Ch

ipcap

acit

y (

tran

sis

tors

per

ch

ip)

Economic Challenge

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 12

Projection: CMOS in 2007

Technology: 0.07 µm Voltage: 0.9 V Die Area: 2.3x2.3 cm = 530 mm2

DRAM: 3 Gbit/cm2 eDRAM: 0.9 Gbit/cm2

SRAM (cache): 110 Mbit/cm2

Custom logic: 25 Mgates/cm2 54 W/cm2 3.3 GHz Std. cell: 10 Mgates/cm2 27 W/cm2 1.6 GHz eFPGA: 0.4 Mgates/cm2 4.5 W/cm2 0.25 GHz

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf

1972 1976 1980 1984 1988 1992 1996 2000 2012 2004 2008

2

0.5

0.2

0.1

0.05

0.02

0.01

1

5

20

10

50

2016 2020

1011

1010

109

108

107

106

105

104

103

1013

1012

8008 8086

80286 80386

80486 Pentium

Pentium II Pentium III

Pentium 4 Core 2 Duo

Core i7

If Moore‘s Law …

… could have been applied to other technologies of our daily life over the past 30 years, then …

the energy of a 1.5 V AA-Mignon cell would be around 2 MWh today, Corresponds to the half year energy consumption

of a 4 persons house hold

the flight time between Munich and Singapore be less than 2 seconds, and …

the tuition fee for 1 semester in Harvard be SGD 1.50

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 14

Designer Productivity Growth

1975: Polygons reflecting mask structure

1980: Transistor circuit design

1985: Boolean algebra, standard cells

A A’

In

Out

GND V DD

Layout

Transistor

Gate

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 15

Designer Productivity Growth

1975: Polygons reflecting mask structure

1980: Transistor circuit design

1985: Boolean algebra, standard cells

1990: RTL design entry, logic synthesis

1995: High-level programming language like design entry, behavioral synthesis

Productivity growth due progress in EDA tools

enabling to move up the abstraction hierarchy

A A’

In

Out

GND V DD

Layout

Transistor

Gate

Reg 1

+

Reg 2 Reg 3

Reg 4

Comp

Register Transfer Block

Behavior

Begin

WAIT UNTIL (CLK’EVENT AND

CLK = ‘1’);

LCDltch <= tmp;

tmp := LCD;

END PROCESS;

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 16

The Need for SoC Design Paradigm

Chip capacities of multi 10 to 100 M gates enable new dimensions of function integration

Challenge:

How to cope with this complexity and develop operational systems within …

reasonable time (time-to-market) and

costs (engineering and manufacturing)

µ-processor

Next level of abstraction: Functional IP macros / cores

eRAM

DRAM cntrl.

specific

network i/o

applic.

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 17

The Need for SoC Design Paradigm

specific

Bus

Next level of abstraction: Functional IP macros / cores

eRAM µ-processor

eRAM M cntrl.

µ-processor

plus a standard on-chip interconnect structure

(NoC)

Chip capacities of multi 10 to 100 M gates enable new dimensions of function integration

Challenge:

How to cope with this complexity and develop operational systems within …

reasonable time (time-to-market) and

costs (engineering and manufacturing)

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 18

SoC: Another way to look at it

MCU

SRAM SRAM

ROM

ROM DSP

Analog

ASIC

i/f i/f

~ 10

cm

~ 0.8 cm

What in the past was on a board, today fits on a chip

Source: Berkeley BWRC, TI cellular phone baseband SoC [4]

MCU ROM

DSP

SRAM

ASIC

An’lg

i/f

DC

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 19

System on Package (SoP)

Multi-Chip Modules (MCM) Different processes/

technologies

Chip-on-Chip (CoC) Extension into third dimension

Sources: esa DSP MCM [5], Valtronic hearing aid CoC [6]

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 20

Computational Density

Log COMPUTATIONAL DENSITY = performance / area

103 . . . 104

Lo

g

P O

W E

R

C

ON

SU

MP

TIO

N

10

5 .

. . 10

6

ASIP DSP CPU

FPGA

ASIC

Custom IC Lo

g

F L

E X

I B

I L

I T

Y

Instr

ucti

on

Dep

th

Flexibility vs. Performance / Power dissipation dilemma

Source: A. DeHon [7]; A. Cuomo, T. Noll [8]

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 21

Computational Density

Log COMPUTATIONAL DENSITY = performance / area

103 . . . 104

ASIP DSP CPU

FPGA

ASIC

Custom IC Lo

g

F L

E X

I B

I L

I T

Y

Instr

ucti

on

Dep

th

Flexibility vs. Performance / Power dissipation dilemma

Source: A. DeHon [7];

A. Cuomo, T. Noll [8]

Log Power Efficiency = performance / W

105 . . . 106

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 22

Functional Diversity

Source: DeHon, PhD Thesis [7]

Computational Density Computations performed per

unit area and time Implementation technique

descriptor [CD] = ops / N [Lmin

2 tiles] CPU: 40 – 80 FPGA: 400 ASIC: 4’000 Custom: > 10’000

approx. values

Instruction Depth View 1: Number of

instructions resident and rapidly accessible by a compute unit

View 2: Empiric metric for the variance of instructions executed on a compute unit

Application descriptor [ID] = instr.

CPU: ~256 – 16 K FPGA: 1 ASIC: 10-3 - 10-6

Custom IC: ~ 0

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf

Custom Logic

Parallel in space and time

Time 0

Time 1

Time 2

+

-

C D

y

SoC Implementation Styles

+

A B

SoC - Introduction - 23

Pipelined RISC CPU

Parallel in space, sequential in time

IF ID OF EX WB M

IF ID OF EX WB M

IF ID OF EX WB M

t1 = A + B

t2 = C + D

Y = t1 - t2

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 24

Telephony Milestones

March 10, 1876:

Alexander G. Bell first transmitting speech electrically

(1910: AT&T phone [9])

1930:

AT&T transatlantic switchboard

(New York – London via radio, Capacity: 1 call at a time, Price: $75 / 3 min. [10])

1980:

Siemens EWSD switching center

(Today, 2002: 240’000 ports,

100’000 Erlang, 16 M BHCA [11])

2003:

Mobile phone, PDA, video camera & player, WEB browser

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 25

Inter-Networking Milestones

Ethernet LAN:

Privately-owned networks within building or on campus (1976: Metcalf’s sketch of first ethernet)

1974: TCP/IP

Introduction of the Internet Protocol suite by V. Cerf and B. Kahn. However, … (Honored with national medal

of technology, 1997)

1989: WWW.

… it took 20 years to make it ubiquitous

T. Berners-Lee, CERN physicist inventing http

… the future: GRID computing

Distributed compute server infrastructure

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 26

Real-world Case Studies

Sonet/SDH Transmission LAN/SAN

Switch

Internet Router

Control Procesors Sonet/SDH

Transmission

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 27

Communication Controllers

Separation between Data Path and Control functions in Network Equipment

Control functions

System operation, administration and maintenance (OAM)

• Bring-up, bit error rate supervision,

• Topology, connectivity administration

• Security (encryption, authentication)

• Protection switching, failure recovery Data Path

Control

CPU Mem

System & Mem. i/f’s

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 28

Design challenges High, scalable processor

performance embedded, stand-alone

High-bandwidth on-chip / intra-chip memory and system interfaces

Key system requirements High, scalable processor

performance

Different, high-bandwidth memory and system interfaces

Standard development tool chains and (RT)OS’s

1:1

Communication Controllers

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 29

Internet Router / Gateways

IP (Internet Protocol)

Layer 3 protocol of the Internet for inter-networking

TCP (Transmission Control Protocol)

Dominant Layer 4 Transport protocol of the Internet (2000: 95 % of Internet flows)

IP Router in the past

Packet forwarding only

“Moderate” link rates (155 Mb/s)

Initially full CPU/SW based

IP Router today and future

HW accelerated

NP based due to increasing link rates and new functions

Time

L2 / VLAN

History

L2 / VLAN

Layer 3: IP Routing

Current Trend

L2 / VLAN

Layer 3: IP Routing

Future

L2 / VLAN

Layer 3: IP Routing

Today

AS

IC

Netw

ork

Pro

ce

sso

r

Market Trends

Layer 4: DiffServ Security Filtering

Layer 4: DiffServ Security Filtering

Deep Packet Processing

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 30

Internet Router / Gateways

Unique design challenges High processor

performance

Generic HW coprocessors and accelerators

High-capacity and –BW on-/off-chip memories

High-capacity on-chip processor busses / interconnects

Key system requirements Flexibility

Wide spectrum of functions / new applications depending on topology location

Performance

10’s M packets / s

1000 instr. / packet

Converged data, voice, multi-media services

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 31

LAN/SAN Switches

Ethernet / IEEE 802.3 Ubiquitous shared/switched-

medium, packet-based Layer 2 local area network standard

10/100 Mb/s, 1 Gb/s, 10 Gb/s Evolution towards VPN (security)

and support for real-time streams

Shared-medium Single connection (@ full

media speed) Collisions Fairness, QoS ?!

Bytes 7 1 2 x 6 2 46 – 1500 4

Data Addr’s CRC P’ble S L

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 32

LAN/SAN Switches

Ethernet / IEEE 802.3 Ubiquitous shared/switched-

medium, packet-based Layer 2 local area network standard

10/100 Mb/s, 1 Gb/s, 10 Gb/s Evolution towards VPN (security)

and support for real-time streams

Shared-medium Single connection (@ full

media speed) Collisions Fairness, QoS ?!

Switched-medium Multiple, simultaneous

connections Output contention -> queuing

Bytes 7 1 2 x 6 2 46 – 1500 4

Data Addr’s CRC P’ble S L

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 33

LAN / SAN Switches

Unique design challenges High function integration,

parallel data paths

High-speed PHY i/f’s

Fair, multi-priority services

DiffServ, QoS, VoIP

High pin count, complex interconnect wiring, large on-chip memory

Key system requirements Low-cost, high speed

(10/100 Mbit/s to 10 Gbit/s) in-house and campus area networks

Emerging mix of data, real-time voice and multi-media services

Large number of ports, lossless operation

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 34

SONET/SDH Transmission

Globally accepted standard for digital information transmission over physical media (copper, fiber)

SONET (ANSI), SDH (ITU)

Built-in OAM

Uniform multiplexing hierarchy

SONET/SDH Framer

PHY

IP T1 ATM IP T1 ATM

OSI Layer 1

TDM (circuit

switched)

Payload OAM

OAM

1

1

9

N x 90

T = 125µs

OC-N = N x 90 x 9 x 8 bit

125 µs

STM-K = K x OC-3 = OC-3K

N = [1, 3, 12, 48, 192, 768]; K = [1, 4, 16, 64, 256]

SONET/SDH Ring

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 35

SONET/SDH Transmission

Unique design challenges Exploitation of parallel

data path structures and algorithms

Deterministic FSM design with guaranteed latencies

High-speed parallel and serial (mixed-signal) PHY interfaces

Key system requirements High-speed (51/155

Mbit/s to 10/40 Gbit/s)

Synchronous TDM concept for congestion-free reliable transport of voice and data

Automated system operation, administration and control

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 36

References [1] IBM press release, „New 64-bit PowerPC microprocessor“, Oct. 14, 2002,

http://www-3.ibm.com/chips/news/2002/1014_powerpc.html

[2] IBM Microelectronics Photo Catalog, http://www-3.ibm.com/chips/photolibrary/photo10.nsf/home?ReadForm

[3] Molecular Expressions, Chip Shots, Microscopy of Integrated Circuits, http://micro.magnet.fsu.edu/chipshots/pentium/index.html

[4] Design Technology for Low Power Radio Systems, Reth Davis, BWRC, Berkeley, http://bwrc.eecs.berkeley.edu

[5] DSP multi chip module, esa, http://www.estec.esa.nl/tech/spacewire/products/#modules

[6] Chip-On-Chip, Valtronic SA, http://www.valtronic.ch

[7] Reconfigurable Architectures for General Purpose Computing, Andre DeHon, PhD Thesis, MIT, 1996

[8] A. Cuomo, Semiconductor Challenges, DATE03 Keynote, March 03, http://www.date-conference.com/conference/2003/keynotes/andrea/andrea.pdf

SOCSA Slides: Introduction

© Institute for

Integrated Systems

A. Herkersdorf SoC - Introduction - 37

References

[9] Telephone History Photo Gallery, http://www.schoelles.com/Telephone/telphoto.htm

[10] History of the AT&T network: milestones, http://www.att.com/spotlight/nethistory/milestones.html

[11] Siemens Chronik, Gegenwart, http://w4.siemens.de/archiv/de/chronik/epoche_1945_gegenwart.html