systems and structures health management … › workshops › 2013 › m10_health_reichard.pdfjeff...

21
1 Systems and Structures Health Management Technical Group Dr. Karl Reichard Systems and Structures Health Management Technical Group Applied Research Laboratory Phone: (814) 863-7681 Email: [email protected] Steve Conlon Jeff Banks Joe Rose Scott Pflumm Marty Trethewey Mitch Lebold Jason Hines Chris Rogan Steve Hambric Joe Cusumano Jeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone: (814) 863-5754 Email: [email protected]

Upload: others

Post on 23-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

1

Systems and Structures Health Management Technical Group

Dr. Karl Reichard

Systems and Structures Health Management Technical Group

Applied Research Laboratory Phone: (814) 863-7681 Email: [email protected]

Steve Conlon Jeff Banks Joe Rose Scott Pflumm

Marty Trethewey Mitch Lebold Jason Hines Chris Rogan

Steve Hambric Joe Cusumano Jeff Mayer Bernie Tittman

Dr. Cliff Lissenden Engineering Science & Mechanics

Phone: (814) 863-5754 Email: [email protected]

Page 2: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

2

Mission Develop new methodologies and technologies to manage the life cycle of systems and structures. This includes the full range of •  Material state awareness, •  Health and usage monitoring, •  Condition based maintenance, •  Autonomic and conventional operations and logistics, •  Prognostics and useful life prediction calculation. The underlying goal of the group is to maximize safety, minimize life cycle cost and increase capability. Key areas of investigation include •  Sensor systems, •  Signal processing, •  Pattern recognition, •  Reasoning techniques, •  Material and system modeling and simulation, and •  Modeling of damage progression to failure.

Systems and Structures Health Management Technical Group

Page 3: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

3

Technical Group Presentations

•  Structural Health Monitoring of Joints in Composites, Aaron Lesky, Kyle Salitrik, Cliff J Lissenden, Josesph L Rose, Farhad Mohammadi

•  SBCT Embedded Data Collection and Analysis System (SEDCAS), Jeffery Banks, Mark Brought, Eddie Crow

•  Development of an Optical Fiber Pressure Sensor for Nuclear Power Plant Monitoring Applications, Mark Turner, Karl Reichard –  Included in Annual Review

•  Vibration-Based Sensor Design To Detect Lubrication Levels Contained Within Differential Gear Housings, Stephen Wells, Karl Reichard –  Student poster, also included in Annual Review

•  Nonlinear Ultrasonics, Cliff Lissenden –  Included in Annual Review

Systems and Structures Health Management Technical Group

Page 4: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

SBCT Embedded Data Collection and Analysis

System (SEDCAS)        

Jeff Banks Project Lead

[email protected] (814) 863-3859

Mark Brought Project Lead

[email protected] (814) 865-2687

Ed Crow Project Support

[email protected] (814) 863-9887

Page 5: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

SEDCAS  Goals  &  Tasks  Goals:    •  On-­‐pla4orm  monitoring  and  data  

collec=on  and  off-­‐pla4orm  analysis  to  inform  maintenance  and  repair  needs  

•  This  is  an  end  to  end  pilot  implementa=on  of  CBM+  system  and  its  capabili=es  

•  Supports  ILSC  goals  and  objec=ves  

                 

 

Tasks:  •  Conduct  a  degrader  analysis  •  Build  a  vehicle  fleet  data  collec=on  

system  •  Test  within  the  56th  SBCT  PAARNG    •  Provide  on-­‐pla4orm  and  off-­‐pla4orm  

data  analysis  techniques  •  Show  how  vehicle  data  is  turned  into  

automated  and  ac=onable  

maintenance  and  logis=cs  informa=on.  

Denotes  SEDCAS  Focus  

Page 6: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Stryker  Degrader  Analysis  •  The  top  degrader  components  and  subsystems  for  the  Stryker  pla4orm  

were  selected  based  on  analysis  of  three  data  sources  including:      –  Results  of  the  maintainer  interviews    –  Analysis  of  the  parts  replacement  data  from  the  DMIS  database  and  the  

AMSAA  sample  data  collec=on  effort    –  OEM  ques=onnaire.      

•  The  primary  emphasis  of  the  analysis  was  to  correlate  the  three  data  sources.    The  star=ng  point  was  the  maintainer  interview  informa=on,  which  was  compared  to  the  part  replacement  data  to  corroborate  the  interview  results.  

Page 7: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

SEDCAS:  Opera=onal  View  

SBCT  Unit  Management  Portal  User  Interfaces    

 Stryker  and  HEMTT  Pla6orms  

Three  Data  Transmission  Methods  to  the  Data  Warehouse:      1.  GOTS:  CAISI  2.  COTS:  Cellular  

Network  3.  GOTS:  VSAT  

(Poten=al  Connec=on)  

Data  warehouse  server  will  host  interface  and  data  with  

web  access  

InformaCon  Warehouse    

Automated  Wireless  Data  Transmission  from  PAANG  to  the  Data  Warehouse  

Data  Repository  

FIPS  140-­‐2  wireless  from  each  vehicles  to  access  bridge.  

Usage  Data,  Fault  Codes,  and  Parametric  Data  from  each  

Vehicle    

Unit  LocaCon  

 MSD  v3  with  FIPS  140-­‐2  on  each  vehicle  

+  

+  

+  Vehicle  Data  

Received  by  CAISI  Access  Point/Bridge  

GOTS  Technologies  

ABCD  Data  Server  

On-­‐Pla6orm  Sensors  and  Data  GOTS  Technologies  

Exis=ng  OEM  Data:  • Usage  Data  •  Fault  Codes  •  Sensor  Data  

 

+  

Fuel  Sensor  (CAN)  

+  

Electrical  Power    ‘Smart’  Sensor  (CAN)  

Page 8: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Digital  Sensors  and  Adaptors  Electrical  Power  Monitoring  Sensor  •  Measures  and  reports  electric  current,  

voltage  and  temperature  for  the  alternator  and  bacery  strings  (24  volt)  on  vehicles.  

   

•  Integrated  fault  predic=ve  algorithms  enable  health  monitoring  for  alternator  and  baceries.    

•  Outputs  message  on  SAE  J1939  bus  (PGN65300  –  PGN65317)  with  a    one  second  update  rate.  

Universal  Fuel  to  CAN  Adaptor  •  The  fuel  gauge  intermicently  sources  current,  

once  every  12  seconds.    The  sensor  sinks  current  propor=onal  to  the  fuel  level  on  the  sensing  element.    

   •  The  UFC  adaptor  design  accommodates  other  

fuel  sender  /  gauge  styles  widely  used  across  other  military  pla4orms  such  as  current  loop,  Pulse  Width  Modulated  signal  (PWM)  and  poten=al  (voltage)  type.    

   •  The  adaptor  outputs  message  on  SAE  J1939,  

(PGN65276  and  SPN  96)  at  a  one  second  update  rate  with  field  upgradeable  firmware.  

Page 9: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Differen=al  Oil  Level  Sensor  •  We  gathered  vibra=on  

and  vehicle  speed  data  from  both  a  Stryker  differen=al  and  a  HEMTT  differen=al.  

•  Conducted  data  analysis  to  evaluate  the  correla=on  between  the  vibra=on  measured  by  the  transducer  and  the  differen=al  lubrica=on  level.  

•  Based  on  the  analysis,  we  were  able  to  create  an  algorithm  that  uses  vibra=on  data  from  the  differen=al  to  determine  the  lubrica=on  level    

Page 10: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Vehicle  Iden=fica=on  and  Tracking  

•  In  order  to  minimize  data  input  errors  on  forms:  –  At-­‐Pla4orm  Diagnos=c  Systems  (IETM,  etc.)  and  Off-­‐Pla4orm  Enterprise  Systems  (GCSS-­‐Army,  etc..)  

•  Development  and  integra=on  of  an  Electronic  Data  Plate    –  Technology  for  extrac=ng  required  form  fields  via  devices  on  the  vehicle  data  bus.  

–  Easily  programed  by  the  MSD  to  store  and  when  needed  broadcast  these  parameters.    

Page 11: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

MSD  v3  Integra=on  

The  MSD  v3  laptop  computer  was  configured  as  a  digital  source  collec=on  device  with  the  implementa=on  of  the  Noregon  DLA+  bus  adaptor  and  the  Noregon  JPRO  Military  solware  that  enables  the  ability  to  collect  data  from  the  J1939  and  J1708  data  buses.    The  MSD  v3  provides  the  802.11  wireless  and  the  Windows  7  opera=ng  system  provides  the  FIPS  140-­‐2  wireless  communica=ons.  

Added  this  J1939  bus  to  each  Stryker  vehicle  to  support  the  digital  sensors.  

Page 12: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Automated  Informa=on  Warehouse  

Page 13: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Global  Fleet  Readiness  View  

Page 14: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Vehicle  Loca=ons  and  High  Level  Readiness  View  

Page 15: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Vehicle  Health  and  Fuel  Informa=on  

Page 16: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Individual  Vehicle  Fuel  Level  History  

Page 17: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Individual  Vehicle  Distance  Traveled  History  Data  

Page 18: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Individual  Vehicle  Engine  Coolant  Temperature  History  

Page 19: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Prototype  Interface  •  This  is  a  prototype  interface  

that  we  have  developed  for  fault  detec=on  and  isola=on  to  enable  the  correct  maintenance  ac=vity  for  the  correct  component.    

Page 20: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Summary  Conclusions  and  Recommenda=ons:  

Component:  Diesel  Engine        Dominant  Failure  Mode:  Low  Engine  Oil  Level    •  A  general  low  engine  oil  condi=on  is  detectable  with  the  exis=ng  embedded  diagnos=cs  using  the  oil  

temperature  switch  and  oil  pressure  switch  and  their  accompanying  fault  codes.      •  A  more  direct  diagnos=c  capability  as  well  as  a  predic=ve  capability  would  require  the  addi=on  of  an  

oil  level  sensor.  

Components:  Differen=als  and  the  Transfer  Case    Dominant  Failure  Mode:  Low  Lubrica=on  Oil  Level    •  A  low  lubrica=on  oil  condi=on  for  the  differen=als  and  the  transfer  case  is  not  detectable  with  the  

exis=ng  embedded  diagnos=cs  and  there  are  no  exis=ng  sensors  installed  on  the  vehicle  for  monitoring  the  health  of  the  differen=als  or  transfer  case.      

•  A  diagnos=c  capability  as  well  as  a  predic=ve  capability  would  require  the  addi=on  of  a  single  vibraCon  sensor  (accelerometer)  applied  to  each  differen=al  and  transfer  case.  

Components:  Alternator,  Baceries  and  Voltage  Regulator      Dominant  Failure  Mode:  Charging  Issues    •  This  failure  mode  cannot  be  completely  detected  by  the  exis=ng  vehicle  embedded  capability.      •  The  alternator  and  voltage  regulator  would  require  the  addi=on  of  a  current  sensor  with  a  current  and  

voltage  trending  algorithm  for  a  diagnos=c  capability  and  a  predic=ve  capability  for  the  alternator  could  be  implemented  with  current  signature  analysis  techniques.      

•  For  the  baceries,  it  is  recommended  that  the  exis=ng  U.S.  Army  at-­‐pla6orm  ba\ery  diagnosCc  tools  be  fully  u=lized  by  the  maintainers  before  an  embedded  solu=on  is  implemented  on  the  pla4orms.      

Page 21: Systems and Structures Health Management … › workshops › 2013 › M10_Health_Reichard.pdfJeff Mayer Bernie Tittman Dr. Cliff Lissenden Engineering Science & Mechanics Phone:

Summary  Conclusions  and  Recommenda=ons:  

Components:  Height  Control  Manifold  in  the  HMS      Dominant  Failure  Mode:  Nitrogen  Gas  Leaks.    •  The  exis=ng  embedded  diagnos=cs  has  a  par=al  capability  to  detect  this  failure  

mode.      •  In  order  to  provide  a  comprehensive  leak  detec=on  capability  as  well  as  a  

predic=ve  indica=on  it  is  recommended  that  a  pressure  sensor  be  installed  on  both  the  low  and  high  pressure  sides  of  the  system  in  addi=on  to  or  as  a  replacement  for  the  exis=ng  pressure  switches.  

Components:  Hydraulic  System    Dominant  Failure  Mode:  Loss  of  Hydraulic  Fluid.      •  The  loss  of  fluid  is  a  direct  consequence  of  hydraulic  fluid  leaks  that  can  be  

generally  detected  with  the  exis=ng  reservoir  level  switch  but  the  specific  source  of  the  leaking  fluid  failure  mode  cannot  be  determined  (i.e.  isolated)  with  the  exis=ng  vehicle  sensors.      

•  The  implementa=on  of  an  embedded  fault  isola=on  or  predic=ve  capability  for  hydraulic  fluid  leaks  is  not  recommended  for  this  applica=on  due  to  low  effec=veness  of  the  current  technology.