t. osada ( tokyo city univ. ) and g. wilk ( andrzej so ł tan inst. )

18
Dissipative effects on relativistic hydrodynamics in the presence of long range interactions based on arXiv:0710.1905[nucl-th] T.O and G. Wilk PRC77 044903, (2008). T. Osada Tokyo City Univ. and G. Wilk Andrzej Sołtan Inst. mini-Workshop at Dept. of Phys. TCU. June 24, 2009

Upload: lucas-marsh

Post on 30-Dec-2015

47 views

Category:

Documents


0 download

DESCRIPTION

Dissipative effects on relativistic hydrodynamics in the presence of long range interactions based on arXiv:0710.1905[nucl-th] T.O and G. Wilk PRC77 044903, (2008). T. Osada ( Tokyo City Univ. ) and G. Wilk ( Andrzej So ł tan Inst. ). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

Dissipative effects on relativistic hydrodynamics

in the presence of long range interactions

based on arXiv:0710.1905[nucl-th]

T.O and G. Wilk PRC77 044903, (2008).

T. Osada ( Tokyo City Univ. ) and G. Wilk ( Andrzej Sołtan Inst. )

mini-Workshop at Dept. of Phys. TCU. June 24, 2009

Page 2: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9RHIC Experiments

Lengthof thering 3.8km

accelerated Au upto

0.99999

and collide head-on

v c

The detector of PHENIX  Collab.

Page 3: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

日経サイエンス 2006年08月号

初期宇宙における高温・高密度状態の再現・解明に向けて高エネルギー原子核衝突実験⇔極限状態での物質の形態

Page 4: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Non- extensivity for system with correlations

hydL

lcorrelation and/or fluctuation scale;of composing particles

quarks, gluonsor

hadronsproduced byhigh-energy

nucleus-nucleuscollisions

hydro scale; definable local equilibrium or stationary

T

1

correlation

fluctuationq ~ l /Lhyd entropy S state

Lhyd ≥ l ≥ ↦ 0

q = 1 extensiveBoltzmann-Gibbs

equilibrium

0 ≤ Lhyd < l

q >1Nonextensive

stationary( ) ( ) ( )S A B S A S B

Page 5: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Assumptions in Boltzmann-Gibbs statistics

some assumptions leading to the Boltzmann-Gibbs (BG) statistics may be too tight

* absence of memory effects, * negligible local correlation * absence of long-range interaction + Boltzmann H-theorem (based on the extensive entropy)

extensivity:

entropy, measure of information about the particle distribution in the states available to the system, is extensive in the sense that the total entropy of two independent subsystems is the sum of their entropies.

B ln ,

( ) ( ) ( )

i ii

S k p p

S A B S A S B

2

Page 6: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Non-extensive entropy

・ In 1988 Tsallis proposed a generalization of the entropy of the BG entropy C. Tsallis, J.Stat.Phys.52(1988) 749.

1

l1

1n

q

qi

i

p

qp

( ) ( ) (1 ) ( ) )( ) (q qq q qS A B S A S B q S A S B

Tsallis’s non-extensive entropy

B lnqqq i i

iS k p p

3

Page 7: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Why Nonextensive hydrodynamics?

* ‘standard’ thermodynamics exponential particle spectra, experiments definitely power-law tail @ high pT.

↦ usual hydro + (other dynamical origins…) or non-hydrodynamic approach

↦ Nonextensive hydro + (other dynamical origins…)

↑ including (momentum) correlation

* Nonextensive (perfect) hydro ⇌ (usual q=1) dissipative hydrolink via nonextensive/dissipative correspondence

4

Page 8: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Relativistic non-extensive kinetic theory

non-extensive version of Boltzmann equation:

A. Lavagno, Phys.Lett.A301(2002) 13.

33 31 11

0 0 01 11 1

1

1

( , ) ( , ),

( , | ,[ , ]

[ , ]

)1( , )

( , | , )2q q q

q q q

qq q

q

p f x p C x p

W p p p pd pd p h fd pC x p

W p p p pp p h fp

f

f

1 1binary collisions: p p p p

1 1

1 1 1 Boltzmann Stosszahlansatz - (for =1)

[ , ] [ ( , ), ( , )]

[ , ] ( , ) ( , )q q

q q

h ff h f x p f x p

h ff f x p f x p

★  correlation function  same space-time x but different p

1 1 1 1

transition rate between two particle state,

assuming the detailed-balance: ( , | , ) ( , | , )W p p p p W p p p p

5

Page 9: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Non-extensive H theorem

1 1

1/ (1 )

[ , ] exp [ln ln ]

exp ( ) 1 (1 )

q q

q

q

q

q qh

X q X

ff ff

J. A. S. Lima, R. Silva and A.R. Plastino,Phys.Rev.Lett86(2001),2983

3

B 3 0

by A.Lavagno,Phys.Lett.A301(2002)13.

( ) ( , )ln ( , )(

))

,2

(qq q q

qq qf

d p ps x k f x p f

ppx p x

q-generalized Boltzmann Stosszahlansatz

3

B 3 0( ) ( , )ln ( , ) ( , )(2 )

qq q q q q

d p ps x k f x p f x p f x p

p

3B

3 0

3B

3 0

( ) [ln ](2 )

[ln ] ( , ) 0 for all space-time point(2 )

qq q q q

q q q

k d ps x f p f

p

k d pf C x p

p

revised by Osada and Wilk therm. dyn. rel. OK

q-generalized entropy current

6

Page 10: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

q- equilibrium

3

3 0

1( ) ( , )

(2 )

q

q q

d pT x p p f x p

p

q- energy-momentum tensor:

3

0[ ] ( , ) ( , ) 0, if ( , ) ( ) ( )q

d pF x p C x p x p a x b x p

p

B3( ) [ln ] 0

(2 )q q q

ks x F f

q- equilibrium distribution function:

11

B

( )( , ) 1 (1 )

( )

q

q

p u xf x p q

k T x

collision invariant:

B

( )setting ( ) 0, ( )

( )

u xa x b x

k T x

setting ( ) 0, ( ) const.a x b x

7

Page 11: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

q- hydrodynamical model

1+1 ( - ) relativistic -hydrodynamics:q

1( ) 0

1( ) 0

q q q q qq q q

q q q q qq q q

vP v

v P PP v

1( ) cosh( ), sinh( ) , ( ) tanh( )q q q q qu x v x

2 22

1 1 metric =(1,- ), , ln

2t z

g t zt z

; ;( ) 0q q q q q qT P u u P g

8

Page 12: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Standard hydrodynamics vs. q- hydrodynamics

Tsallis hydrodynamics,locally conserve q- entropy current:

3

B 3 0( ) ( , )ln ( , ) ( , )(2 )

qq q q q q

d p ps x k f x p f x p f x p

p

( ) ( ) (1 ) ( ) )( ) (q qq q qS A B S A S B q S A S B

including correlations

3

B 3 0( ) ( , )ln ( , ) ( , )(2 )d p p

s x k f x p f x p f x pp

( ) ( ) ( )S A B S A S B

standard hydrodynamics, locally conserve (BG) entropy current:

without correlations between cells

9

hydL hydL hydLhydL

Page 13: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Single particle spectra by q-hydro model 10

Page 14: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Single particle spectra by q-hydro model 11

Page 15: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

; [ ( ) ( ) ] 0q q q q q q q qT T u u P T

Perfect q-hydrodynamics ⇌ (q=1) dissipative hydrodynamics

2

2

1[ 2 ]; ,

3

[1 ] ,[1 ]

q q q q q

q q q q qq

w w P u u

W WW w u w u u

w

; ;[ ( ) ( ( ) ) ] 0q T u u P T WT u W u

( )

( ) ( ) ( ) ( ) 3q

q q q q

if exist T and u x satisfying

P T P T and T T

dissipative hydrodynamics

(perfect) nonextensive hydrodynamics

Nonextensive/dissipative correspondence 12

Page 16: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Entropy production

;;

usu T

T

13q > 1 ↦ near equilibrium; stationary stateq = 1 ↦ true equilibrium

Page 17: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Bulk and shear viscosities

1

full;2 2

1 3 ( 2)/ (1/ 4 ) 3( 1)

w Zsu X

s s T

perfect q-hydrodynamics + nonextensive/dissipative correspondence

14

Page 18: T. Osada ( Tokyo City Univ. ) and  G. Wilk ( Andrzej So ł tan Inst. )

min

i-W

ork

sho

p @

Dep

t. P

hys

. TC

U, J

un

e 24

, 200

9

Summary

Nonextensive (Tsallis’s ) hydrodynamical model is formulated by based on the relativistic nonextensive

kinetic theory. perfect q- hydrodynamics may be connected with the

dissipative ‘standard’( i.e., q =1) hydrodynamics.

What’s the next ? 2+1 q-hydro model with QGP EoS.

↦ elliptic flow (pT-dependence) and the HBT puzzle q-energy momentum tensor in Einstein equation ↦ effects on the cosmological constant

15