t60 and t35

87
T60 Transformer T60 Transformer Management Relay Management Relay

Upload: isaavedracastro

Post on 27-Oct-2014

384 views

Category:

Documents


26 download

DESCRIPTION

manuales de reles

TRANSCRIPT

Page 1: T60 and T35

T60 Transformer Management T60 Transformer Management RelayRelay

Page 2: T60 and T35

Relé digital multifuncional para protección de transformador:

Paquete configurable de multiprotección de transformador.Hasta 4 juegos de CTs y/o PTs (T60)Hasta 6 juegos de CTs y/o PTs (T35)Programmable FlexLogic (Lógica programable)Mensajería GOOSE y Direct I/O. Fácil acceso a través del HMI (Human Machine Interface)Fácil monitoreo y control a través de un programa de PC.Variedad de comunicaciones

Page 3: T60 and T35

• PROTECCIONES:PROTECCIONES: Protección diferencial de porcentaje (87T) Protección diferencial instantánea (87/50) Restricción de falla a tierra(87G) Sobreexitación – Volts/Hz (24) Fase/Neutro/Tierra TOCs (51P, 51N, 51G) Fase/Neutro/Tierra IOCs (50P, 50N, 50G) Sobrecorriente direccional de fase y neutro (67P, 67N) Bajo y sobre voltaje de fase (27P, 59P) Bajo y sobre voltaje auxiliares (27X, 59X) Sobrevoltaje de neutro (59N) FlexElements – Comparadores universales

Page 4: T60 and T35

• CONTROLES:CONTROLES: Seis grupos de ajuste Sobre y baja frecuencia Elementos digitales Contadores digitales Interruptor de selección

• ENTRADAS/SALIDASENTRADAS/SALIDAS Contactos de entrada y salida Entradas y salidas virtuales Entradas y salidas directas Entradas y salidas remotas (GOOSE)

Page 5: T60 and T35

• MEDICIÓN Y MONITOREO:MEDICIÓN Y MONITOREO:

Corrientes (Fasores y RMS) – Fases, Tierra, Neutro, Componentes simétricas y demanda.

Voltajes (Fasores y RMS) – Fases, Tierra, Neutro y Componentes simétricas.

Potencia - Activa, Reactiva, Aparente, Factor de potencia. Energía y energía de demanda. Corrientes diferenciales y de restricción por fase. Corrientes diferenciales y de restricción de tierra. Corrientes diferenciales de 2ndo y 5to armónico por fase. Corrientes de 2ndo y 5to armónico y THD. Oscilografías. Registrador de eventos Lógica de datos (Data Logger)

Page 6: T60 and T35

Compensación externa de ángulo por fase (Forma antigua)

Típicamente 30° de desfase

Y

Delta

Page 7: T60 and T35

Compensación externa de ángulo por fase (Forma antigua)

Típicamente 30° de desfase

Y

Y

Page 8: T60 and T35
Page 9: T60 and T35

I1 I2

D/Y 30

I1 SEC I2 SEC

I1 SEC

I2 SEC

Conexión en Y

Conexión en Y

UR T60

Corrientes del primario del transformador – Fase A

I1

I2

-30°

I1 SEC

-30°

I2 SEC

Corriente en el secundario del CT, Cuando está conectado al relé – Fase

A

Page 10: T60 and T35

PASO 1. Entradas de CTs

PASO 2. Configuración de fuente

PASO 3. Número de devanados

PASO 4. Devanados del transformador

Page 11: T60 and T35

GE Consumer & IndustrialMultilin

PASO 4. Configuración de devanados del transformador

Fuente (SRC) para corrientes de devanados para Paso 3

Capacidad de devanados (MVA) de datos de placa del

transformador

Devanado de fase a fase de tensión nominal según datos de placa del transformador

Tipo de conexión de los devanados

Bobinado de Tierra dentro de la zona de protección 87T.

Ángulo, por el cual las corrientes del devanado 2 atrasan a as corrientes del

devanado 1. With Respect To (WRT) ángulo de 0° del

devanado 1.

Bobinado de resistencia en serie.

El ángulo del devanado 1 deberá ser ingresada como 0° para cualquier

configuración de transformador.

Page 12: T60 and T35

• Configuración del relé Configuración del relé electromecánicoelectromecánico::

• Compensación de magnitud:– Cálculo de Tap del relé para entrada

del CT(Introducir imprecisión debido a a la aproximación de la lectura del CT con la configuración del tap del relé)

• Cambio de compensación de fase:

– Delta externa conectando los CTs en Y y Y externa conectando los CTs en Delta. (Aumenta la probabilida de cometer errores de conexión)

• Configuración del relé Configuración del relé digital:digital:• Configuración de magnitud

automática:– Un software calcula los factores de

compensación de magnitud para todas las corrientes de los devanados, y las escala internamente.

• Cambio de compensación de fase:

– Un software detecta el cambio de fase configurado en el menú de devanados del transformador, y compara estos con el actual cambio de fases entre las corrientes que están conectadas a los terminales del relé. Todos los CTs pueden ser conectados en Y en el transformador.

Page 13: T60 and T35

• T60 Compensación de fase: The first Delta or Zig-Zag winding from the transformer setup becomes

phase reference winding. When non of the above winding connections are present, la referencia es el primer devanado en Y.

– Para secuencia ABC, la compensación del ángulo de fase es como se muestra a continuación:

comp[w] = [w ref.] - [w]

Ejemplo: Tipo de transformador D/Y30

DELTA: comp[w] = 0° - 0° = 0° - reference

WYE: comp[w] = 0° - (-30°) = 30° = 330 lag

– Para secuencia ACB, La compensación del ángulo de fase es como se muestra a continuación:

comp[w] = [w] - [w ref.]

Ejemplo: Tipo de transformador D/Y30

DELTA: comp[w] = 0° - 0° = 0° - reference

WYE: comp[w] = -30° - 0° = 30° lag

UR T60UR T60 : : COMPENSACIÓN DE FASECOMPENSACIÓN DE FASE

Page 14: T60 and T35

UR T60UR T60 : : COMPENSACIÓN DE FASESCOMPENSACIÓN DE FASES

Transformer: D/Y30

DELTACorrientes en el primario

IA(0 deg.)- IA(-180 deg.)

IB(-120 deg.)

IC(-240 deg.)

- IC(-60 deg.)

-IB(-300 deg.)

IA'

IC'

IB'

ic'(-90)

ib'(-330)ia'(-210)

-210 deg.

Y y DELTACorrientes secundarias

Vistas en el relé

ABC rotation:WYE

Corrientes en el primario

Ic(-270)

Ia(-30 )Ib(-150)

WYE y DELTACorrientes secundarias compensadas

ia'(-180) IA'

ic'(-60)

ib'(-300)

IB'

IC'

Page 15: T60 and T35

UR T60UR T60 : : COMPENSACIÓN DE FASESCOMPENSACIÓN DE FASES

IA 0°

IB -120°

IC -240°

I a = (IA' – IC ‘) -30°

r

H1

H2

H3

X1

X2

X3

IA '

IB '

IC '

I b = (IB ' – IC ‘) -150°

I c = (IC ' – IB ‘) -270°

IA

IB

IC

IA'

IB'

IC'

I a

I b

I c

Delta lags Wyeby 30 deg.

ABC Rotación : Ángulo de compensación = - 30 - 0 = 30 lag

Page 16: T60 and T35

UR T60UR T60 : : PHASE COMPENSATIONSPHASE COMPENSATIONS

IA 0°

IB-240°

IC -120°

I a = ( IA' – IC ‘) -330°

r

H1

H2

H3

X1

X2

X3

IA '

IC '

IB '

I b = (IB ' - IA‘) -210°

I c = (IC ' – IB ‘) -90°

IA

IB

IC

Delta lags Wye by 30 deg. for ACB rotation

IA'

I B '

IC '

I a

I c

-IC '

-I A '

-IB'

ACB Rotación : Ángulo de compensación = 0 – (- 330) = 330 = 30 lag

I b

Page 17: T60 and T35

URUR T60 T60 : : COMPENSACIÓN DE MAGNITUDCOMPENSACIÓN DE MAGNITUD

A partir del firmware 3.40, una nueva opción de configuración ha sido implementada “Reference Winding Selection”. El usuario puede seleccionar un devanado del menú de selección, para tomar a uno de estos como referencia, el cual automáticamente selecciona los CT’s de este devanado (CT setup) como una unidad para la protección diferencial de porcentaje.

Page 18: T60 and T35

UR T60UR T60 : : COMPENSACIÓN DE MAGNITUDCOMPENSACIÓN DE MAGNITUD

1. Calcular la corriente promedio para cada devanado:

Ipromedio (w1)= MVA/(kV(w1)* 3)

Ipromedio (w2)= MVA/(kV(w2)* 3)

2. Calcular el CT margin para cada devanado:

L margin(w1) = CT primary(w1)/ Ipromedio (w1)

L margin(w2) = CT primary(w2)/ Ipromedio (w2)

3. Encontrar el menor margen de CT:

CT de referencia: = min [L margin(w1), L margin(w2)]

4. Encontrar la magnitud de coeficientes, por los cuales las corrientes de los devanados correspondientes son multiplicadas:

M(W)= [CT prim(W).V nom(W)] / [CT prim(Wref).V nom(W ref)]

• 87T Magnitud de referencia en “Automatic”:

Page 19: T60 and T35

REFERENCE: – kV(Wx), UNIT: CT(Wx)

• Encontrar la magnitud de los coeficientes de escalamiento por los cuales las corrientes de los devanados correspondientes son multiplicados.

M(W)= [CT prim(W).V nom(W)] / [CT prim(Wref).V nom(W ref)]

UR T60UR T60 : : COMPENSACIÓN DE MAGNITUDCOMPENSACIÓN DE MAGNITUD

• 87T magnitude reference set to “Winding X”:

Page 20: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : CORRIENTES DIFERENCIAL Y DE RESTRICCIÓNCORRIENTES DIFERENCIAL Y DE RESTRICCIÓN

Corrientes compensadas:

I1COMP = C1*M1(w1)*(I1SEC/CT1RATIO)

I2COMP = C2*M2(w2)*(I2SEC/CT2RATIO) where,

C1, C2 - phase shift coefficients ( C = 1 for the phase reference winding)

M1, M2 - magnitude coefficients ( M = 1 for the magnitude reference winding)

DIFFERENTIAL SIGNAL: IDIFF. = I1COMP + I2COMP

RESTRAINING SIGNAL:

IRESTR. = max ( |I1COMP| , | I2COMP|)

Page 21: T60 and T35

UR T60UR T60 : : CORRIENTES DIFERENCIAL Y DE RESTRICCIÓNCORRIENTES DIFERENCIAL Y DE RESTRICCIÓN

• Dos curvas usadas para dar solución a:Dos curvas usadas para dar solución a:– Pequeños errores durante la operación lineal de

los CTs (S1) and– Grandes errrores de CTs (saturation) debido a

altas corrientes (S2)

S1

S2

diffe

ren

tia

l

restrainingA

B1 B2

Page 22: T60 and T35

UR T60UR T60 : : DIFERENCIAL – CARACTERÍSTICAS DE DIFERENCIAL – CARACTERÍSTICAS DE RESTRICCIÓNRESTRICCIÓN

• Dos puntos de corte utilizados para especificar:Dos puntos de corte utilizados para especificar:– El límite de seguridad de operación lineal del CT (B1)

–El mínimo nivel de corriente que puede causar grandes alteraciones en la señal diferencialndebido a la saturación del CT (B2).

diffe

ren

tia

l

restrainingA

B1

S2

S1

B2

Page 23: T60 and T35

UR T60UR T60 : : DIFERENCIAL – CARACTERÍSTICAS DE DIFERENCIAL – CARACTERÍSTICAS DE RESTRICCIÓNRESTRICCIÓN

T60 BIASED DIFFERENTIAL( LOGIC DIAGRAM )

Id > PKP

YES

Ir < B1

NO

B1 < Ir < B2 YES

NO

Ir > B2

Id/Ir, % >S2 YES TRIP

Id/Ir,% >S1&S2

Id/Ir%>S1YES

YES

NO

NO

NO

NO

NO TRIP

YES

Id, pu

Ir, pu

Min. PKP

B 1 B 2

S 1

S 2

Page 24: T60 and T35

UR T60UR T60 : : DIFERENCIAL – CARACTERÍSTICAS DE DIFERENCIAL – CARACTERÍSTICAS DE RESTRICCIÓNRESTRICCIÓN

Monitoreo en tiempo real de la relacióndifferential/restraint

Page 25: T60 and T35

UR T60UR T60 : : CORRIENTES DIFERENCIAL Y DE RESTRICCIÓNCORRIENTES DIFERENCIAL Y DE RESTRICCIÓN

Señal diferencial:

• Eliminar la componente de secuencia cero de la señal diferencial:

– Opcional para devanados conectados en Delta

– permite hacer frente en la zona de puesta a tierra de transformadores y cables en zonas con importantes corrientes de secuencia cero de carga

• Eliminación de la componente DC en descomposición

• Algoritmo cíclico completo de Fourier para medir tanto el fasor de corriente diferencial como los armónicos segundo y quinto.

Señal de restricción:

• Eliminación de la componente DC en descomposición.

• Algoritmo cíclico completo de Fourier para medir las magnitudes.

• “Maximum of” Principio que se utiliza para derivar la señal de restricción de las corrientes en los terminales.

Page 26: T60 and T35

Ejemplo:230 kV

CT1 (500: 5) CT2 (1000: 5) 69 kV

I2 = Load = 800 Amp

100 MVA

D/Yg30

i2' = 4 Ai1' = 2. 4 A

PHASECOMPENSATION

PHASECOMPENSATION

MAGNITUDECOMPENSATION

2.4 * 1.67= 4 A

MAGNITUDECOMPENSATION

4 * 1 = 4 A

Id = 0

I1 =240 A

i1' (comp.) i2' (comp.)

T60

UR T60UR T60 : : 87T EJEMPLO DE CÁLCULO87T EJEMPLO DE CÁLCULO

Page 27: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : 87T CALCULATION EXAMPLE87T CALCULATION EXAMPLE

• Unit definition for biased and unbiased differential protections:(Automatic selection)The unit used by the T60 percent and instantaneous differential

protections, is ”the primary rated CT, representing the magnitude reference winding”

From the Example: XFMR: D/Yg30, 100MVA, 230/69kV230kV side: CT1(500:5), I rated(230kV) = 251 Amps69kV side: CT2(1000:5), I rated(69kV) = 836.7 Amps

Margin(230kV) = 500/251 = 1.99 Margin(69kV) = 1000/836.7 = 1.195 (CT2 most likely to saturate first)REFERENCE: > Winding 2UNIT: CT2 (1000:5)

Magnitude M1 = 1.67 => (i’(w1)/500) * 1.67 = i1’’(comp.)

coefficients: M2 = 1 => (i’(w2)/1000) * 1 = i2”(comp.)

Page 28: T60 and T35

…..o para 800 Amps de carga para el devanado 2 ,

I2SEC = 800/(CT2RATIO = 200) = 4 Amps

I1SEC = 240/(CT1RATIO = 100) = 2.4 Amps

Corrientes compensadas:

I1COMP = (240/500)*(M1 = 1.668) = 0.8 pu

I2COMP = (800/1000)*(M2 = 1) = 0.8 pu (reference)

• Corriente diferencial: Id = 0.8 pu - 0.8 pu = 0 pu

• Corriente de restricción: Ir = max(0.8, 0.8) = 0.8 puId, pu

Ir, pu

Min. PKP

B 1 B 2

S 1

S 2

UR T60UR T60 : : 87T CALCULATION EXAMPLE87T CALCULATION EXAMPLE

Page 29: T60 and T35

Configuración en por unidad para las características Diferencial - restricción

Min PKP: = 0.3 pu = 0.3 * 1000 = 300 A Corriente diferencialBreak 1: = 2 pu = 2*1000 = 2000 A Corriente de restricciónBreak 2: = 8 pu = 8*1000 = 8000 A Corriente de restricciónSlope 1: = 25% = (Id/Ir)*100 = (0.25)*100Slope 2: = 95% = (Id/Ir)*100 = (0.95)*100

Id, pu

Ir, pu

Min. PKP

Break 1 Break 2

Slope 1

Slope 2

UR T60UR T60 : : 87T EJEMPLO DE CÁLCULO87T EJEMPLO DE CÁLCULO

Page 30: T60 and T35

GE Consumer & IndustrialMultilin

(Devanado 1 seleccionado como referencia)El voltaje de fase a fase del devanado 1 es el voltaje de referencia,

and the primary rated CT, is the unit for magnitude scaling computations

…..or for 800 Amps load at Winding 2 , I2SEC = 800/(CT2RATIO = 200) = 4 Amps I1SEC = 240/(CT1RATIO = 100) = 2.4 Amps

Magnitude coefficients:M1 = 1 =>(500*230)/(500*230) = 1M2 = (1000*69)/(500*230) = 0.6

Compensated currents: I1COMP = (240/500)*(M1 = 1) = 0.48 pu (reference)I2COMP = (800/1000)*(M2 = 0.6) = 0.48 pu

• differential current: Id = 0.48 pu - 0.48 pu = 0 pu• restraining current: Ir = max(0.48, 0.48) = 0.48 pu

Id, pu

Ir, pu

Min. PKP

B 1 B 2

S 1

S 2

UR T60UR T60 : : 87T SETTINGS CALCULATION EXAMPLE87T SETTINGS CALCULATION EXAMPLE

Page 31: T60 and T35

GE Consumer & IndustrialMultilin

Minimum PKP:Minimum PKP:• errors from winding CTsWorst case: + 10% CT1 error of In(w1) = 25.1 A, therefore In(w1) =276.1 Amps - 10% CT error of In(w2) = 83.67 A, or In(w2) = 753 Amps 753 Amp/1000 = 0.75 pu CT2(1000:5) - reference (276.1 Amp* 1.668)/500 = 0.92 pu Differential current = 0.92pu - 0.75pu = 0.17 pu (Min Pick Up setting)•The tap changer adds another 10% error

100MVA, D/Y30

230kV

69kVCT1 (500:5) CT2 (1000:5)

Load = 800 A240 A

In(w1) = 251 AmpsIn(w2) = 836.7 Amps

UR T60UR T60 : : 87T SETTINGS CALCULATION EXAMPLE87T SETTINGS CALCULATION EXAMPLE

Page 32: T60 and T35

GE Consumer & IndustrialMultilin

Slope 1 :Slope 1 :-differential current Id = 0.17 pu-Restraint current Ir = 0.92 puSlope 1 setting: (Id/Ir)*100 = 18% + 5%(safety margin) = 23 % Breakpoint 1:The setting should correspond to the maximum of the linear operation of the CT, counting up to 80% remanent flux in the core of the CT. CT1(500:5), C400 has Vsat = 125V, and Zb = 5 - total burdenCT2(1000:5), C400 has Vsat = 240V, and Zb =4 - standard burdenTherefore:Imax(CT1) = Vsat/Zb = 25 Amps secondary currentImax(CT2) = 60 Amps

Imax,pu(CT1) will be Imax(CT1)*M1/CT tap = 8.34 puImax, pu(CT2) = Imax(CT2)*M2/CT tap = 12 puThe 80% CT remanent flux will lower the smaller per unit value to 1.668 pu, which will be used for Breakpoint 1 setting

UR T60UR T60 : : 87T SETTINGS CALCULATION EXAMPLE87T SETTINGS CALCULATION EXAMPLE

Page 33: T60 and T35

GE Consumer & IndustrialMultilin

Breakpoint 2: Breakpoint 2: The per unit setting, should correspond to the smallest fault current (no DC The per unit setting, should correspond to the smallest fault current (no DC offset) that can cause a CT to saturate. The Breakpoint 2 can be set to 8.34 offset) that can cause a CT to saturate. The Breakpoint 2 can be set to 8.34 pu.pu.

Slope 2:Slope 2:The setting for Slope 2 should be high enough to override the differential The setting for Slope 2 should be high enough to override the differential current, caused by CT saturation. current, caused by CT saturation. The worst case for example would be if say CT1 doesn’t saturate on The worst case for example would be if say CT1 doesn’t saturate on through fault current, and CT2 saturates heavily producing very small through fault current, and CT2 saturates heavily producing very small currentcurrentIn such cases the Slope 2 should be set as high as 95-98%.In such cases the Slope 2 should be set as high as 95-98%.

UR T60UR T60 : : 87T SETTINGS CALCULATION EXAMPLE87T SETTINGS CALCULATION EXAMPLE

Page 34: T60 and T35

GE Consumer & IndustrialMultilin

Ext2_PhA_Sat

0

10

20

30

40

50

60

70

80

90

1

86

171

256

341

426

511

596

681

766

851

936

1021

1106

1191

1276

1361

Sample #:

Id/Ir, %

Series1

Saturación de CT(1000:5) durante fallas de Fase A a Tierra en un transformador de 100MVA, 230/69kV, D/Y30.

Máxima relación Id/Ir = 0.57 *100% = 57%

Full DC offsetTDC = 67 msLight CT saturation on fault current with full DC offset

UR T60 : 87T PERFORMANCE ON CT SATURATION87T PERFORMANCE ON CT SATURATION

Id, pu

Ir, pu

Min. PKP

B 1 B 2

S 1

S 2

Id/Ir =0. 57Id/Ir = 0

Page 35: T60 and T35

GE Consumer & IndustrialMultilin

Ext9_Sat

0

10

20

30

40

50

60

154

107

160

213

266

319

372

425

478

531

584

637

690

743

796

849

902

955

1008

1061

Sample #:

Id/Ir, %Series1

External B to C fault on Y side of the D/Y30, transformer.100MVA, 230/69kVMaximum Id/Ir,% = 50%

No DC offset!Severe CT saturation on symmetrical fault current

UR T60 : 87T PERFORMANCE ON CT SATURATION87T PERFORMANCE ON CT SATURATION

Id, pu

Ir, pu

Min. PKP

B 1 B 2

S 1

S 2

Id/Ir =0. 5Id/Ir = 0

Page 36: T60 and T35

UR T60 : TEST DE SATURACIÓN DE CTTEST DE SATURACIÓN DE CT

Ext6_Sat_phB

0102030405060708090

100

172

143

214

285

356

427

498

569

640

711

782

853

924

995

1066

1137

Sample #:

Id/Ir, %

Series1

External B to C fault on Y side of the D/Y30, transformer.100MVA, 230/69kVMaximum Id/Ir,% = 87%

Full DC offsetTDC = 83 msSevere CT saturation on fault current with DC offset

Id, pu

Ir, pu

Min. PKP

B 1 B 2

S 1

S 2 Id/Ir =0. 87

Id/Ir = 0

Page 37: T60 and T35

GE Consumer & IndustrialMultilin

Adaptive 2-nd harmonicTraditional 2-nd harmonic

Adaptive 2-nd harmonicTraditional 2-nd harmonic

Per-Phase2-out-of-3 (Cross-Phase)

Average

Per-Phase2-out-of-3 (Cross-Phase)

Average

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 38: T60 and T35

GE Consumer & IndustrialMultilin

• Adapt. 2nd

• Trad. 2nd

• Per phase• 2-out-of-3• Average

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 39: T60 and T35

GE Consumer & IndustrialMultilin

Adaptive 2-nd harmonic

Traditional 2-nd harmonic

2-nd harmonic mode:

Percent Differential Harmonic Inhibiting

Per - Phase

2-out-of-3

Average

Inrush Inhibit Mode:

selectedharmonic

mode

selectedinhibitmode

FlexLogicoperands

Inhibit PercentDifferentialOperation

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 40: T60 and T35

GE Consumer & IndustrialMultilin

• Adaptive 2-nd harmonicAdaptive 2-nd harmonic– uses both the magnitude and phase relation

between the second harmonic and the fundamental frequency (60Hz) components

• Traditional 2-nd harmonic– Uses only the magnitude of the 2-nd harmonic,

without considering the phase angle with the fundamental component

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 41: T60 and T35

GE Consumer & IndustrialMultilin

• Per-phasePer-phase

–The 2-nd harmonic from an individual phase, blocks the operation of the differential protection for only that phase, if above the 2-nd harmonic setting

• 2-out-of-3

– The detection of 2-nd harmonic on any two phases that is higher than the setting, blocks the differential protection on all three phases.

• Average

–The averaged amount of 2-nd harmonic from the three phases, blocks the differential protection for all of them, if above the setting.

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 42: T60 and T35

GE Consumer & IndustrialMultilin

0 1 2 3 4 5 6 7 8 9 10 11 Time (cycles)

0

500

1000

1500

-400

i [A] (a)

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

Time (cycles)

I2 / I 1(b)

Sample magnetizing inrush current

Sample magnetizing inrush current

Second harmonic ratio

Second harmonic ratio

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 43: T60 and T35

GE Consumer & IndustrialMultilin

Fundamentalphasor

2nd harmonicphasor

121

2

1

221 arg2arg II

I

I

eI

II

tj

121

2

1

221 arg2arg II

I

I

eI

II

tj

Solution:Solution:

Differential current

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 44: T60 and T35

GE Consumer & IndustrialMultilin

• Operating foundations of the Adaptive 2Operating foundations of the Adaptive 2ndnd harmonic harmonic inhibit:inhibit:

– if the second harmonic drops magnitude-wise below 20%, the phase angle of the complex second harmonic ratio is close to either +90 or -90 degrees during inrush conditions

– the phase angle may not display the 90-degree symmetry if the second harmonic ratio is above some 20%

– if the second harmonic ratio falls bellow 20% making an angle of ± 90° with the fundamental current, the algorithm applies adaptive lenses, and time for which the 87T protection is inhibited.

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 45: T60 and T35

GE Consumer & IndustrialMultilin

-0.2 -0.1 0 0.1 0.2 0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

I2 / I

1 (real)

I 2 / I 1 (

ima

gin

ary

)

Isochrone contours, cycles

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1

11

1

1

1

11

2

2

22

2

2

2

23

3 3 3

3

33

34

4 4

4

44

4

5

55

55

5

5

-0.2 -0.1 0 0.1 0.2 0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

I2 / I

1 (real)

I 2 / I 1 (

ima

gin

ary

)

Isochrone contours, cycles

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1

11

1

1

1

11

2

2

22

2

2

2

23

3 3 3

3

33

34

4 4

4

44

4

5

55

5

5

5

5

Effective restraint characteristic: time (cycles) the restraint is kept vs. complex second harmonic ratio

Effective restraint characteristic: time (cycles) the restraint is kept vs. complex second harmonic ratio

UR T60UR T60: : 87T – 287T – 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 46: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : 87T – ADAPTIVE 287T – ADAPTIVE 2NDND HARMONIC INHIBIT HARMONIC INHIBIT

Page 47: T60 and T35

GE Consumer & IndustrialMultilin

74.76ms = 4. 5 cycles

UR T60UR T60: : 87T – ADAPTIVE 287T – ADAPTIVE 2NDND HARMONIC INHIBIT EXAMPLES HARMONIC INHIBIT EXAMPLES

Inrush current on transformer energization – phase C

Page 48: T60 and T35

GE Consumer & IndustrialMultilin

Transformer D/Y30, 13.8/115 kV energized from Wye side

UR T60UR T60: : 87T – ADAPTIVE 287T – ADAPTIVE 2NDND HARMONIC INHIBIT EXAMPLES HARMONIC INHIBIT EXAMPLES

Page 49: T60 and T35

GE Consumer & IndustrialMultilin

2-nd hrmc=9.9%

2.11 cycles(60Hz)

Inrush current on transformer energization – phase A

UR T60UR T60: : 87T – ADAPTIVE 287T – ADAPTIVE 2NDND HARMONIC INHIBIT EXAMPLES HARMONIC INHIBIT EXAMPLES

Page 50: T60 and T35

GE Consumer & IndustrialMultilin

UR T60&T35UR T60&T35 : : OVERALL BENEFITSOVERALL BENEFITS

• Up to four restraints(T60) and up to six supported by UR T35

• Improved transformer auto-configuration• Improved dual-slope differential characteristic • Improved second harmonic restraint• Benefits of the UR platform (back-up

protection,metering and oscillography, event recorder, data logger, FlexLogicTM, fast peer-to-peer communication)

Page 51: T60 and T35

GE Consumer & IndustrialMultilin

UR T60:UR T60: INSTANTANEOUS DIFFERENTIAL PROTECTION INSTANTANEOUS DIFFERENTIAL PROTECTION

T60 Instantaneous Differential ProtectionT60 Instantaneous Differential Protection

Page 52: T60 and T35

GE Consumer & IndustrialMultilin

UR T60:UR T60: INSTANTANEOUS DIFFERENTIAL PROTECTION INSTANTANEOUS DIFFERENTIAL PROTECTION

Page 53: T60 and T35

GE Consumer & IndustrialMultilin

UR T60:UR T60: INSTANTANEOUS DIFFERENTIAL PROTECTION INSTANTANEOUS DIFFERENTIAL PROTECTION

The setting must be higher than the maximum differential current the relay may detect on through fault accounting for CT saturation The setting must be higher than the maximum inrush current during energization The setting must be lower, than the maximum internal fault current

87T/50 PICKUP SETTING:

Page 54: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

Restricted Ground Fault (RGF) protectionRestricted Ground Fault (RGF) protection

Page 55: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

Page 56: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

Low impedance ground differential protection Adjustable pickup and slope settings to cope with unbalances during load and through fault currents Configurable time delay – not needed after the RGF enhancements

Page 57: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

Igd, pu

I = max( IR1, IR2, IR0 ), pu

Min. PKP

S lope

Zero sequence based restraint:IR0 =| IG - IN | =| IG – (IA + IB + IC) |

Negative sequence based restraint:IR2 =| I2 | for first 2 cycles on transformer energizationIR2 =3*| I2 | - in normal conditions

Positive sequence based restraint:IR1 =3*(|I1| - |I0|), if |I1| > 1.5 pu,and |I1| > |I0|else IR1 = |I1| / 8

Ground differential current:Igd =| IG + IN | =| IG +IA + IB + IC) |

Ground restraint current: Igr = max (IR1, IR2, IR0)

Page 58: T60 and T35

UR T60UR T60: : RGF PROTECTION – SETTINGS CALCULATIONRGF PROTECTION – SETTINGS CALCULATION

Ejemplo:Igd, pu

I = max( IR1, IR2, IR0 ), pu

Min. PKP

S lope

• Ig = 80A – Detección de mínima corriente de falla a tierra.• Min PKP = 80A/1500 = 0.053 pu

rr

3I0

Ig

Ig

T60

If CT(1500:1)

CTg (600:1)

Page 59: T60 and T35

GE Consumer & IndustrialMultilin

% CT saturation vs. % slope

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8 9 10 11

Actual (Igd/Igr)% ratio % saturation of phase CT

UR T60UR T60: : RGF PROTECTION – SETTINGS CALCULATIONRGF PROTECTION – SETTINGS CALCULATION

• The slope setting for the RGF protection must be above the maximum expected ground differential/restraint ratio on through faults due to the CT saturation. A setting in the range from 40% to 70% is recommended. The graph bellow, shows the percent of CT saturation of the phase CT, and the actual ground differential/restraint ratio. For example, 80% CT saturation during external phase to ground fault results into 66.7% ratio. Therefore, a setting of 70% would be sufficient.

80% phase CT saturation

66.7% actual Igd/Igr ratio

Page 60: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

SETTINGS:• SECURITYExternal single line to ground fault example and 80% ground CT saturation:Phase currentsIA = 10 pu IR0 = abs(3*(2/3) – (-10)) = 12 pu Igd = 8puIB = 0 pu IR2 = 3*(1/3) = 10 pu Igr = 12 puIC = 0 pu IR1 = 0.0 pu Igd/Igr,% = 66.7%IG = 2 pu

• SENSITIVITYInternal low-current single line to ground fault example:Phase currentsIA = 1.1 pu 0° I0 = 0.033 pu IR0 = abs(3*0.033 –(0.05) = 0.05 IB = 1 pu -120° I2 = 0.033 pu IR2 = 3*(0.033) = 0.1 puIC = 1 pu -240° I1 = 1.033 pu IR1 = 1.033/8 = 0.1292 puIG = 0.05 pu 0°

Igd = abs(3*0.033+0.05) = 0.15pu, Igr = 0.1292puIgd/Igr, % = 0.15/0.1292 = 116%

Page 61: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

• CT SATURATION

IA

IB

IC

IG

Igd

Igr

Igr currents starts decaying and will reach50% of its initial magnitude after 15.5 cycles

Page 62: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

• TRANSFORMER ENERGIZATION

Page 63: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : RESTRICTED GROUND FAULT PROTECTIONRESTRICTED GROUND FAULT PROTECTION

Excel simulation tool for RGF protection tests

Page 64: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : OVEREXCITATION(V/Hz) PROTECTIONOVEREXCITATION(V/Hz) PROTECTION

Overexcitation (V/Hz) protectionOverexcitation (V/Hz) protection

Page 65: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : OVEREXCITATION(V/Hz) PROTECTIONOVEREXCITATION(V/Hz) PROTECTION

SETTIN G

FLEXLOGIC OPERA N DS

SETTIN G

SETTIN G

VOLTS /H Z 1FU N CTION :

SETTIN GS

VOLTS / H Z 1TD M U LT IP LIER:

VOLTS / H Z 1CU RVE:

VOLTS / H Z 1P ICK U P :

VOLTS P ER H ERTZ 1 P K P

VOLTS P ER H ERTZ 1 DP O

VOLTS P ER H ERTZ 1 OP

VOLTS /H Z 1 B LOCK :

D isabled = 0

Off = 0

Enabled = 1

VOLTS /H Z 1S OU RCE:

VOLT / H z828003A 3.CDR

FREEZE

t

V /H z

VOLTS / H Z 1T-RES ET:

RU N

Page 66: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : OVEREXCITATION(V/Hz) PROTECTIONOVEREXCITATION(V/Hz) PROTECTION

SETTINGS:

66.4 V / 60 Hz = 1 PU, The per unit setting should cope with the recommended for the transformer 1.1 x Vnom continuous voltage, and set just above that voltage for alarm and trip.

Page 67: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : OVEREXCITATION(V/Hz) PROTECTIONOVEREXCITATION(V/Hz) PROTECTION

V/Hz improvements:• thermal curve customization through the FlexCurve setup utility• improved cooling reset time

Page 68: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : THERMAL PROTECTIONTHERMAL PROTECTION

Transformer thermal protectionTransformer thermal protection

Page 69: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : TRANSFORMER THERMAL DETECTION - INPUTSTRANSFORMER THERMAL DETECTION - INPUTS

SETTINGS:

The transformer nameplate data must be entered in the transformer general setup menu.

Page 70: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : TRANSFORMER THERMAL DETECTION – INPUTSTRANSFORMER THERMAL DETECTION – INPUTS

Page 71: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60: : TRANSFORMER THERMAL ELEMENTSTRANSFORMER THERMAL ELEMENTS

• Hottest Spot Temperature

• Aging factor

• Loss of Life

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Top Oil temp Hot spot temp Load Current

Page 72: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

T60 Benefits of Source configuration and some useful applications

T60 Benefits of Source configuration and some useful applications

Page 73: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

Fig. 1 Source and protection configuration for the

application of Fig 1

F1

M1F5 M5

Page 74: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

Earth fault protection configuration for the application of Fig.2.

Source and protection configuration application of Fig.2

F1

F5

M1

M4

H

X

Fig. 2

Page 75: T60 and T35

GE Consumer & IndustrialMultilin

UR T35UR T35: : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

Page 76: T60 and T35

GE Consumer & IndustrialMultilin

UR T35UR T35: : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

F1

F5

M1

M5

U1

U5

AC INPUTS

Page 77: T60 and T35

GE Consumer & IndustrialMultilin

UR T35UR T35: : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

Page 78: T60 and T35

GE Consumer & IndustrialMultilin

UR T35UR T35: : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

F1

F5

M1

M5

U1

U5

AC INPUTS

Page 79: T60 and T35

GE Consumer & IndustrialMultilin

UR T35UR T35: : SOURCES CONFIGURATIONS AND BENEFITSSOURCES CONFIGURATIONS AND BENEFITS

Page 80: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

Some useful Percent Differential testsSome useful Percent Differential tests

Page 81: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

Excel simulation tool for transformer differential protection tests

Website:http://www.geindustrial.com/cwc/products?pnlid=6&famid=31&catid=213&id=t60&typeId=9&lang=en_US

Page 82: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

D/y30 transformer

Fault

IA(f)=0.577 pu @ 0 deg.

Ib(f)=0

Ia(f)=1 pu @ 0 deg.

Ic(f)=0

IB(f)=0 pu

IC(f) =0.577 pu @ -180 deg.

A

B

C

A

B

C

Example 1 :

Diagram 1

Page 83: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

Test results of Example 1:

Page 84: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

…example 1 results - continue

Page 85: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

Yd30 transformer

F

IA(f)=0.5 pu @ -270 deg.

Ib(f)=0.866 pu @ -90 deg.

Ia(f)=0

Ic(f)=0.866 pu @ -270 deg.

IB(f)=1 pu @ -90 deg.

IC(f) =0.5 pu @ -270 deg.

A

B

C

A

B

C

Diagram 2

Example 2 :

Page 86: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS

Test results for Example 2:

Page 87: T60 and T35

GE Consumer & IndustrialMultilin

UR T60UR T60 : : SOME USEFUL TESTSSOME USEFUL TESTS….Example 2 results - continue