ta384 thermal analysis investigation of a polylactic acid biodegradable plastic

Upload: sylvie-silvik

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    1/9

    ThermalAnalysisInvestigationofaPoly(LacticAcid)BiodegradablePlastic

    ABSTRACT

    With thepush in recentyears for industrytodevelopandmanufactureproductsona

    more environmentally friendly basis, a variety of new biodegradable polymer systems have

    beendevelopedtofitthatmold. Poly(lacticacid)(PLA) isabiodegradablealiphaticpolyester

    which is produced from lactides and lactic acid monomers that are derived from the

    fermentationofcornstarchandsugar feedstocks.Thepolymerizationof lacticacid intoPLA

    producesabiodegradablethermoplasticpolyesterthathashighmechanicalstrength,similarto

    PETE, with good biocompatibility. PLA has most commonly been used in biomedical

    applications for drug delivery systems as well as sutures and stents, but the number of

    applications

    for

    PLA

    is

    constantly

    growing.

    Understanding

    the

    properties

    of

    PLA

    becomes

    essentialtothefuturedevelopmentofnewapplications. Thisstudywillexamineavarietyof

    thethermalandmechanicalpropertiesofaPLAdrinkingcupusingthermalanalysistechniques

    suchasDSC,MDSC,RapidHeat/CoolDSC(RHC)andDMA.

    INTRODUCTION

    AgenericdrinkingcupmadeofPLAwasusedasthesolememberofthis investigation

    andwasselectedsimplybecauseofthephysicalappearanceofthecup. Thetophalfofthecup

    hadanopticallyclear,uniformappearancewhilethebottomhalfofthecuphadamuchmore

    irregularlookthatgavetheappearanceofmaterialroughnesswithoutanyphysicaltexture. It

    wasassumed that the tophalfof thecupwasmoreamorphouswhile thebottomhalfmore

    crystalline. Inordertodeterminetheamorphousandcrystallinecomponentsinthetopofthe

    cupversusthebottomofthecup,theinvestigationstartedwithstandardDSCmeasurements,

    which is probably the simplest technique. More advanced DSC methods as well as DMA

    measurements were incorporated into the investigation to refine and verify the results

    obtainedonthePLAcup.

    RESULTS&DISCUSSION

    AstandardDSCheatcoolheatmethodwasinitiallyrunonasampletakenfromthetop

    halfofthecup,whichwasassumedtobemoreamorphous. ThedataisshownbelowinFigure

    1. Thecupsamplewasheatedat20deg/minandcooledatacontrolled rateof10deg/min

    between25

    and

    170C.

    All

    of

    the

    DSC

    and

    MDSC

    samples

    were

    tested

    on

    aQ2000

    DSC

    in

    TZero

    Aluminumpanswith a nitrogen purge. The first heat, in this instance, shows a small glass

    transition (Tg)around58Cwith some coldcrystallizationbeginningaround90Candamelt

    withapeaktemperatureofabout148C. Thesecondheatonthissampleafteritwascooledat

    10deg/minshowsalargerTgaroundthesametemperatureasthefirstheat,butnoevidence

    ofcoldcrystallizationormelting. Theresultssuggestthatthetopportionofthecuphadsome

    amountofamorphousstructure,butbecausethesampleundergoessomecoldcrystallization

    or crystalperfection immediatelybefore themelt, theamountofcrystalline structure in the

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    2/9

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    3/9

    TA384 3

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    HeatFlow(W/g)

    Figure2:MDSCresultsonasampletakenfromthetopofthePLAcup

    AsampletakenfromthebottomofthePLAcupwastestedusingthesameModulated

    conditionsasthesample fromthetopofthecup. Theresultsareshown inFigure3. While

    therearesomesimilaritiesbetweentheMDSCresultsofsamplestakenfromthetopandthe

    bottomof

    the

    cup,

    there

    is

    one

    major

    difference

    that

    directly

    points

    to

    amajor

    difference

    in

    materialstructure. TheTgisapproximatelyatthesametemperatureasbeforeandthereisstill

    some enthalpic recovery, crystal perfection and melting that show up in both the Non

    Reversing and Reversing Heat Flows out beyond 120C. The major difference seen in the

    bottom of the cup is a large cold crystallization peak that begins around 80C. This peak

    suggeststhatsomeoftheamorphousstructureinthematerialisorderingandconvertingtoa

    morestructured,crystallinestructurewhichwasaneventthatdidnotshowup inthesample

    fromthetopofthecup. TheotherinterestingcharacteristicdeterminedfromtheMDSCresults

    isthefactthattheareaoftheNonReversingHeatFlow,includingthecoldcrystallization,and

    theReversingHeatFlowarenearlythesamevalue. Thisresultsuggeststhatthesampledidnot

    haveanycrystallinitytobeginwithandallofthecrystallinematerialthatmeltedwasformed

    duringthe

    cold

    crystallization,

    which

    is

    counter

    to

    the

    initial

    assumption

    based

    off

    of

    the

    optical

    appearancethatthesamplewasmorecrystalline.

    142.89C

    136.98C24.22J/g

    142.24C

    136.38C61.25J/g

    61.25 - 24.22 = 37.03 J/g

    Heat Only MDSC80 sec periods3 deg/min ramp

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    RevHeatFlow(W/g)

    -0.2

    -0.1

    0.0

    0.1

    NonrevHeatFlow(W

    /g)

    20 40 60 80 100 120 140 160 180 200

    Temperature (C)Exo Up Universal V4.7A TA Instruments

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    4/9

    TA384 4

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    RevHeatFlow(W/g)

    Figure3:MDSCresultsonasampletakenfromthebottomofthePLAcup

    Inorder toverifythatallofthecrystallinitywas formedduring theheatingrampand

    wasnot inthesample initially,aRapidHeatCoolDSC(RHC)experimentwasusedtoheatthe

    sample at 1000 deg/min in an attempt to suppress the cold crystallization. For the RHC

    experiment,aBeta

    RHC

    DSC

    was

    used

    and

    approximately

    0.3mg

    of

    sample

    was

    tested

    in

    aluminumpanscustomdesigned fortheRHC. Thetesttemperature rangewaswidenedto

    150Conthelowendand225Conthehighendinordertoaccommodatethehigherheating

    rateof1000deg/min. TheHeatFlowresultsfortheRHCexperimentareshowninFigure4and

    showonlyaTgaround76Candnothingelse. TheshiftupintemperatureoftheTginthiscase

    issimplyaresultoftheincreasedheatingratewhencomparedtoMDSCandDSC,whichboth

    have heating rates over an order of magnitude slower. There is no evidence of cold

    crystallization upon heating and the fact that there isno evidenceofmelting suggests that

    there is no crystallinematerial in the sample tomelt. For comparisonpurposes, the same

    sample taken from thebottomof the cupwas allowed to crystallizeby slowingheating the

    material toa temperaturearound125Cand then testedagain in theRHCat1000deg/min.

    Theresults

    for

    the

    material

    that

    was

    allowed

    to

    crystallize,

    shown

    in

    Figure

    5,

    prove

    that

    a

    samplewithcrystallinematerialthatmeltswillshowthatmeltingendothermevenifheatedat

    1000 deg/minwith very little shift in the onset ofmelting. If the sample initially had any

    crystallinestructure,themeltshouldhaveshownupinthefirstRHCexperiment.

    98.67C

    91.09C48.56J/g

    145.54C

    139.28C51.20J/g

    Heat Only MDSC80 sec periods3 deg/min ramp

    51.20 - 48.56 = 2.64 J/g

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    HeatFlow(W/g)

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    NonrevHeatFlow(W

    /g)

    20 40 60 80 100 120 140 160 180 200

    Temperature (C)Exo Up Universal V4.7A TA Instruments

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    5/9

    TA384 5

    75.97C(H)

    0.296mg of sample1000 deg/min

    0

    500

    1000

    1500

    Deriv.

    Temperature(C/min)

    -45

    -25

    -5

    15

    HeatFlow(W/g)

    -150 -100 -50 0 50 100 150 200 250Temperature (C)Exo Up Universal V4.7A TA Instruments

    Figure4: Thebottomofthecup,asreceived,testedintheRHCat1000deg/min

    75.46C(H)

    0.296mg of sample

    1000 deg/min

    0

    500

    1000

    1500

    Deriv.

    Temperature(C/m

    in)

    -45

    -25

    -5

    HeatFlow(W/g)

    -100 -50 0 50 100 150 200 250

    Temperature (C)Exo Up Universal V4.7A TA Instruments

    Figure5: ThebottomofthecuptestedintheRHCat1000deg/minafteritwasallowedtocrystallize

    To verify the conclusionsmade about the topof the PLA cup that therewas indeed

    some crystalline structure in thematerial initially, the same RHC experimentwas run on a

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    6/9

    TA384 6

    sample taken from the top of the cup. The results shown in Figure 6 actually show two

    endothermic peaks around 75 and 125C. Based on some of the previous experiments,

    however,thefirstendothermaround75Cismostlikelytheresultofsomeenthalpicrecovery

    thatovershadowstheTgsincetheotherRHCexperimentsat1000deg/minshowtheTgright

    around75Caswell. The secondendotherm isassociatedwith initialcrystallinity thatmelts

    around 125Cwhich compareswellwith theMDSC experiments of the samematerial that

    beginstomeltaround120Cminusthecrystalperfection.

    0.145mg of sample1000 deg/min

    0

    500

    1000

    1500

    Deriv.

    Temperature(C/min)

    -65

    -45

    -25

    -5

    HeatFlow(W/g)

    -100 -50 0 50 100 150 200 250Temperature (C)Exo Up Universal V4.7A TA Instruments

    Figure6: Thetopofthecup,asreceived,testedintheRHCat1000deg/min

    Anothertechniqueavailabletoexaminethecrystallinityorthechangeincrystallinityas

    afunctionoftemperature istheDMA. Figures7and8areexperimentsrunonthesamePLA

    cupsamplesusingtheRSADMA. Theresultscollectedonasamplefromthetopofthecupin

    Figure7showthattheStorageModulusofthesampledropsaround60Cwherethematerial

    goesthrough

    the

    Tg

    and

    then

    plateaus

    before

    dropping

    again

    around

    130C

    where

    the

    material

    melts. Bothof theseeventscorrelatequitewillwith the resultscollectedbyDSC. Figure8,

    whicharetheresultscollectedfromasamplefromthebottomhalfofthecupshowadropin

    StorageModulus around 60C for the Tg and then a significant increase inModulus around

    100C,which isusually indicativeofan increase instiffness/mobilityandcorrelatesverywell

    withthecoldcrystallizationshownintheMDSCresultsaroundthesametemperature. Figure9

    showsanoverlaycomparisonoftheStorageModulusbetweenthetwosamples.

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    7/9

    TA384 7

    20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

    106

    107

    108

    109

    1010

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Tem [C]

    E'(

    )

    [Pa]

    E"(

    )

    [Pa]

    tan_delta(

    )

    []

    Figure7: DMAdatafromthetopportionofthecup

    20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

    105

    106

    107

    108

    109

    1010

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Tem C

    E'(

    )

    [Pa]

    E"(

    )

    [Pa]

    tan_delta(

    )

    []

    Figure8: DMAdatafromthebottomportionofthecup

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    8/9

    TA384 8

    0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

    106

    107

    108

    109

    1010

    Tem C

    E'(

    )

    [Pa]

    E'

    Top

    Bottom

    Figure9: OverlayoftheEDMAdatafromboththetopandbottomsectionsofthecup

    CONCLUSIONS

    A plastic drinking cup made from the biodegradable plastic, poly(lactic acid) was

    examinedusingDSC,MDSC,RapidHeat/CoolDSCandDMA. Theaimoftheinvestigationwas

    tocomparetwoareasthatappearedopticallyandstructurallydifferent,withthesupposition

    thatadifferenceincrystallinitymayberesponsible. Resultswereconsistentacrosstechniques

    showingadifferenceinitialcrystallinitybetweenthetwosections.

    REFERENCES

    1.E1269,DeterminingSpecificHeatCapacitybyDifferentialScanningCalorimetry,ASTM

    International,West

    Conshohocken,

    PA.

    2.L.ThomasandS.Aubuchon,HeatCapacityMeasurementsUsingQuasiIsothermal

    ModulatedDSC,TAInstrumentsApplication(TA230).

    3.L.Thomas,ModulatedDSCPaper#9,MeasurementofAccurateHeatCapacityValues,TA

    InstrumentsApplication(TP014).

  • 8/12/2019 TA384 Thermal Analysis Investigation of a Polylactic Acid Biodegradable Plastic

    9/9

    TA384 9

    TAInstruments

    UnitedStates

    109LukensDrive,NewCastle,DE19720Phone:13024274000Email:[email protected]

    Canada

    Phone:19053095387Email:[email protected].

    Mexico

    Phone:525552001860Email:[email protected]

    Spain

    Phone:34936009300Email:[email protected]

    UnitedKingdom

    Phone:44-0-20-8238-6100Email:[email protected]

    Belgium/Luxembourg

    Phone:3227060080Email:[email protected]

    Netherlands

    Phone:31765087270Email:[email protected]

    Germany

    Phone:4961964007060Email:[email protected]

    France

    Phone:33130489460Email:[email protected]

    Italy

    Phone:3902274211Email:[email protected]

    Sweden/Norway

    Phone:46855511521Email:[email protected]

    Japan

    Phone:81354798418Email:[email protected]

    Australia

    Phone:61395530813Email:[email protected]

    India

    Phone:918028398963Email:[email protected]

    China

    Phone:861085868899Email:[email protected]

    Taiwan

    Phone:886225638880Email:[email protected]

    Korea

    Phone:82.2.3415.1500 Email:[email protected]

    TocontactyourlocalTAInstrumentsrepresentativevisitourwebsiteatwww.tainstruments.com

    Copyright2007TAInstruments

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.tainstruments.com/http://www.tainstruments.com/http://www.tainstruments.com/mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]