talk bristol uk-nl_2013_v01_for_web

93
Thermodynamic signatures of topological transitions in nodal superconductors arXiv:1302.2161 Bayan Mazidian 1,2 , Jorge Quintanilla 2,3 James F. Annett 1 , Adrian D. Hillier 2 1 University of Bristol 2 ISIS Facility, STFC Rutherford Appleton Laboratory 3 SEPnet and Hubbard Theory Consortium, University of Kent UK-NL Condensed Matter Meeting, Bristol, UK, 2013 (web version) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 1 / 69

Upload: jorge-quintanilla

Post on 17-Dec-2014

123 views

Category:

Technology


0 download

DESCRIPTION

Talk given at the UK-Netherlands meeting on strongly-correlated electrons, Bristol, August 2013.

TRANSCRIPT

Page 1: Talk bristol uk-nl_2013_v01_for_web

Thermodynamic signaturesof topological transitionsin nodal superconductors

arXiv:1302.2161

Bayan Mazidian1,2, Jorge Quintanilla2,3

James F. Annett1, Adrian D. Hillier2

1University of Bristol2ISIS Facility, STFC Rutherford Appleton Laboratory

3SEPnet and Hubbard Theory Consortium, University of Kent

UK-NL Condensed Matter Meeting, Bristol, UK, 2013(web version)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 1 / 69

Page 2: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

Page 3: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

Page 4: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

Page 5: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

Page 6: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69

Page 7: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

Page 8: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

Page 9: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

Page 10: Talk bristol uk-nl_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69

Page 11: Talk bristol uk-nl_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 4 / 69

Page 12: Talk bristol uk-nl_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 13: Talk bristol uk-nl_2013_v01_for_web

Power laws in nodal superconductors

Low-temperature specific heat of a superconductor gives information on thespectrum of low-lying excitations:

Fully gapped Point nodes Line nodesCv ∼ e−∆/T Cv ∼ T 3 Cv ∼ T 2

This simple idea has been around for a while.1

Widely used to fit experimental data on unconventional superconductors.2

1Anderson & Morel (1961), Leggett (1975)2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 6 / 69

Page 14: Talk bristol uk-nl_2013_v01_for_web

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69

Page 15: Talk bristol uk-nl_2013_v01_for_web

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69

Page 16: Talk bristol uk-nl_2013_v01_for_web

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69

Page 17: Talk bristol uk-nl_2013_v01_for_web

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Page 18: Talk bristol uk-nl_2013_v01_for_web

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Page 19: Talk bristol uk-nl_2013_v01_for_web

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Page 20: Talk bristol uk-nl_2013_v01_for_web

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].

A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Page 21: Talk bristol uk-nl_2013_v01_for_web

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69

Page 22: Talk bristol uk-nl_2013_v01_for_web

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 9 / 69

Page 23: Talk bristol uk-nl_2013_v01_for_web

Line crossings

A different power law is expected at line crossings(e.g. d-wave pairing on a spherical Fermi surface):

crossingof linear line nodes

∆2k = I1

(kx||

2 − ky||

2)2

or I1kx||

2ky||

2

g(E ) =

E (1+2ln| L+√

E/I141

√E/I

141

|)

(2π)3√I1I2∼ E0.8

n = 1.8 (< 2 !!)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 10 / 69

Page 24: Talk bristol uk-nl_2013_v01_for_web

Crossing of shallow line nodes

When shallow lines cross we get an even lower exponent:

crossingof shallow line nodes

∆2k = I1

(kx||

2 − ky||

2)4

or I1kx||

4ky||

4

g (E ) =

√E (1+2ln| L+E

14 /I

181

E14 /I

181

|)

(2π)3I14

1√

I2∼ E0.4

n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant⇒ n = 1Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 11 / 69

Page 25: Talk bristol uk-nl_2013_v01_for_web

Numerics

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n

T / Tc

linear point nodeshallow point node

linear line nodecrossing of linear line nodes

shallow line nodecrossing of shallow line nodes

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 12 / 69

Page 26: Talk bristol uk-nl_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 27: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 0

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 14 / 69

Page 28: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 15 / 69

Page 29: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 16 / 69

Page 30: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Line

ar

node

s

Line

ar

node

sJorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 17 / 69

Page 31: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 18 / 69

Page 32: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 19 / 69

Page 33: Talk bristol uk-nl_2013_v01_for_web

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Sha

llow

no

de

Sha

llow

no

de

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 20 / 69

Page 34: Talk bristol uk-nl_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 35: Talk bristol uk-nl_2013_v01_for_web

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69

Page 36: Talk bristol uk-nl_2013_v01_for_web

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69

Page 37: Talk bristol uk-nl_2013_v01_for_web

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69

Page 38: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Page 39: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Page 40: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Page 41: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69

Page 42: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69

Page 43: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69

Page 44: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69

Page 45: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramTreat A and B as in dependent tuning parameters and study quasiparticlespectrum. We find a very rich phase diagram with topollogically-distinct phases:8

8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 25 / 69

Page 46: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramWe find a very rich phase diagram with topollogically-distinct phases.9

9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 26 / 69

Page 47: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 27 / 69

Page 48: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 28 / 69

Page 49: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 29 / 69

Page 50: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 30 / 69

Page 51: Talk bristol uk-nl_2013_v01_for_web

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 31 / 69

Page 52: Talk bristol uk-nl_2013_v01_for_web

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 32 / 69

Page 53: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

334

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 33 / 69

Page 54: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 34 / 69

Page 55: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 35 / 69

Page 56: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 36 / 69

Page 57: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 37 / 69

Page 58: Talk bristol uk-nl_2013_v01_for_web

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Page 59: Talk bristol uk-nl_2013_v01_for_web

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Page 60: Talk bristol uk-nl_2013_v01_for_web

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Page 61: Talk bristol uk-nl_2013_v01_for_web

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69

Page 62: Talk bristol uk-nl_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 63: Talk bristol uk-nl_2013_v01_for_web

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69

Page 64: Talk bristol uk-nl_2013_v01_for_web

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69

Page 65: Talk bristol uk-nl_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

5 Additional details

Page 66: Talk bristol uk-nl_2013_v01_for_web

Power laws in nodal superconductors

Let’s remember where this came from:

Cv = T(

dSdT

)=

12kBT 2 ∑

k

Ek − T dEkdT︸︷︷︸≈0

Ek sech2 Ek2kBT︸ ︷︷ ︸

≈4e−Ek /KBT

∼ T−2∫

dEg (E )E2e−E/kBT at low T

g (E ) ∼ En−1 ⇒ Cv ∼ T n∫

dεε2+n−1e−ε︸ ︷︷ ︸a number

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 42 / 69

Page 67: Talk bristol uk-nl_2013_v01_for_web

Power laws in nodal superconductors

Ek =√

ε2k + ∆2

k

≈√

I2k2⊥ + ∆

(kx|| , k

y||

)2

on the Fermi surface k||

x

k||

y

k|_ ∆(k

||

x,k||

y)

Compute density of states:

g(E ) =∫ ∫ ∫

δ(Ek − E )dkx dky dkz

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 43 / 69

Page 68: Talk bristol uk-nl_2013_v01_for_web

Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 44 / 69

Page 69: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εk I+ γk · σ

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk |)2 + (∆0 + |d(k)|)2; and

±√(εk − µ− |γk |)2 + (∆0 − |d(k)|)2

.

Take the most symmetric (A1) irreducible representation

d(k)/∆0 = A (X ,Y ,Z )− B(X(Y 2 + Z2) ,Y (Z2 + X2) ,Z (X2 + Y 2))

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 45 / 69

Page 70: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC) • Simplest noncentrosymmetric system: a surface.

• Rashba term in the Hamiltonian:

• In general, form & strength of SOC depend on details of electronic structure.

• Split Fermi surface:

spin for

spin for

kk

kkk

Gor'kov & Rashba, PRL, 87, 037004 (2001)

• There’s a zoo of phenomenologies for noncentrosymmetric superconductors:

•Triplet: CePt3Si [1]

•Singlet (conventional): Li2Pd3B [2], BaPtSi3 [3], Re3W [4]

•Singlet-triplet admixture: Li2Pt3B [2]

[1] Bauer et al. PRL (2004); [2] Yuan et al PRL (2006); [3] Batkova et al. JPCM (2010); [4] Zuev et al. PRB (‘07)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 46 / 69

Page 71: Talk bristol uk-nl_2013_v01_for_web

LaNiC2 – a weakly-correlated, paramagnetic superconductor?

Tc=2.7 K

W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

ΔC/TC=1.26 (BCS: 1.43)

specific heat susceptibility

0 = 6.5 mJ/mol K2

c 0 = 22.2 10-6 emu/mol

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 47 / 69

Page 72: Talk bristol uk-nl_2013_v01_for_web

ISIS

muSR

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 48 / 69

Page 73: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Zero field muon spin relaxation

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 49 / 69

Page 74: Talk bristol uk-nl_2013_v01_for_web

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 50 / 69

Page 75: Talk bristol uk-nl_2013_v01_for_web

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry

[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 51 / 69

Page 76: Talk bristol uk-nl_2013_v01_for_web

LaNiC2 is a non-ceontrsymmetric superconductor

Neutron diffraction

30 40 50 60 70 800

5000

10000

15000

20000

25000

30000

35000

Inte

nsity (

arb

un

its)

2 o

Orthorhombic Amm2 C2v

a=3.96 Å

b=4.58 Å

c=6.20 Å

Data from

D1B @ ILL

Note no inversion centre.

C.f. CePt3Si

(1), Li

2Pt

3B & Li

2Pd

3B

(2), ...

(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 52 / 69

Page 77: Talk bristol uk-nl_2013_v01_for_web

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 53 / 69

Page 78: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 54 / 69

Page 79: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 55 / 69

Page 80: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 56 / 69

Page 81: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

180o

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 57 / 69

Page 82: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v

Symmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2

v ’

v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 58 / 69

Page 83: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v

Symmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2

v ’

v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

These must be combined with the singlet and triplet representations of SO(3).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 59 / 69

Page 84: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 60 / 69

Page 85: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 61 / 69

Page 86: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 62 / 69

Page 87: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Non-unitary d x d* ≠ 0

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 63 / 69

Page 88: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Non-unitary d x d* ≠ 0

breaks only SO(3) x U(1) x T

Possible order parameters

* C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06

*

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 64 / 69

Page 89: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 65 / 69

Page 90: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Y d(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Z d(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Z d(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 66 / 69

Page 91: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Y d(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Z d(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Z d(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 67 / 69

Page 92: Talk bristol uk-nl_2013_v01_for_web

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

singlet

Pairing

instabilities

non-unitary

triplet

pairing

instabilities

unitary

triplet

pairing

instabilities

A1 B1

3B1(b) 3B2(b)

1A1 1A2

3A1(a) 3A2(a)

A2 B2

1B1 1B2

3B1(a) 3B2(a)

3A1(b) 3A2(b)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 68 / 69

Page 93: Talk bristol uk-nl_2013_v01_for_web

Li2PdxPt3−xB:order parameter

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 69 / 69