tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1...

118
Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Animal Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation Filipe José de Amorim Vicente Doutoramento em Biologia (Biodiversidade) 2012

Upload: others

Post on 08-Jun-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Universidade de Lisboa

Faculdade de Ciências

Departamento de Biologia Animal

Tardigrada: a study on integrative taxonomy,

impacts on biodiversity and concerns with

conservation

Filipe José de Amorim Vicente

Doutoramento em Biologia

(Biodiversidade)

2012

Page 2: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Universidade de Lisboa

Faculdade de Ciências

Departamento de Biologia Animal

Tardigrada: a study on integrative taxonomy,

impacts on biodiversity and concerns with

conservation

Filipe José de Amorim Vicente

Tese especialmente elaborada para a obtenção do grau de doutor em

Biologia (Biodiversidade)

Orientação:

Prof. Roberto Bertolani (Università degli studi di Modena e Reggio Emilia)

Prof. Doutor Artur Serrano

2012

Page 3: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

(BD/39234/2007) and is an aggregate of scientific papers. Formatting of such

papers has been altered for a uniform look of the thesis. The author declares to have

participated in data collecting and analysis and in writing of all manuscripts used.

A presente tese doutoral foi financiada pela Fundação para a Ciência e a Tecnologia

(BD/39234/2007) e resulta da agregação de um conjunto de artigos científicos,

tendo a formatação dos mesmos sido alterada para efeitos de uma apresentação

uniformizada. O autor declara que participou na recolha de dados, sua análise e

escrita dos vários manuscritos apresentados.

Page 4: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Para o meu filho Tomás.

Page 5: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

   

Page 6: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation

  5  

Index  

 

Acknowledgments  (English  and  Portuguese).______________________________________6  

Summary  (English  and  Portuguese).________________________________________________8  

General  introduction.________________________________________________________________10  

Paper  1  -­‐  Micro-­‐invertebrates  conservation:  forgotten  biodiversity.____________15  

Paper  2  -­‐  The  impact  of  fire  on  terrestrial  tardigrade  biodiversity:  a  case-­‐study    

           from  Portugal._________________________________________________________________________29  

Paper  3  –  Considerations  on  the  taxonomy  of  the  Phylum  Tardigrada.______________45  

Paper  4  -­‐  Integrative  taxonomy  allows  the  identification  of  synonymous  species    

             and  a  new  genus  of  Tardigrada  Echiniscidae  (Heterotardigrada)._______________53  

Paper  5  -­‐  Observations  on  Pyxidium  tardigradum  (Ciliophora),  a  protozoan    

         living  on  Eutardigrada:  infestation,  morphology  and  feeding  behaviour.____79  

Paper  6  -­‐  A  phylogenetic  study  on  Pyxidium  tardigradum  (Peritrichia,  

Operculariida),  an  epizoic  protozoan  on  eutardigrades.__________________________101  

Concluding  remarks  and  future  perspectives.________________________________________116  

Page 7: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Filipe  Vicente  –  Doutoramento  em  Biologia    

 6  

Acknowledgements  

 

I  would  like  to  start  by  thanking  my  parents,  without  whose  support  I  would  not  

have  been  able  to  pursue  in  academics,  to  my  Inês  for  her  support  and  constantly  

pushing  me   forward,  and   to  all   family  members,   friends,   colleagues  and   teachers  

that  have  somehow  helped  shape  the  path  the  has  brought  me  here.      

Thank   you   both   to   the   deceased   professor  Maria   José   Boavida,   and   to   professor  

Artur  Serrano  for  having  accepted  the  co-­‐supervision  of  this  thesis,  for  welcoming  

me  in  their  labs,  for  the  suggestions,  comments  and  advises.  An  additional  thanks  

to  Zé   for  her   initial  help   in  dealing  with   the   insatiable  bureaucratic  beast;   in   this  

mater,  a  word  of  appreciation  to  professor  Leonel  Gordo  is  also  due.  

I  also  thank  my  colleagues,  friends  and  collaborators  at  the  University  of  Modena,  

Michele   Cesari,   Trevor   Marchioro,   Roberto   Guidetti,   Lorena   Rebecchi   e   Tiziana  

Altiero   for   their   relentless   support,   both   personally   and   professionally,   in   every  

single  one  of  my  many  visits.  I  feel  that  I  will  always  be  a  member  of  your  team.  

Finally,  I  want  to  thank  professor  Roberto  Bertolani,  main  supervisor  of  my  thesis,  

without   whom   it   would   not   have   become   a   reality.   Thank   you   for   opening   the  

doors  of  your  institution,  for  welcoming  me  within  your  work  group  since  my  first  

stay,   in  2006,  when   I  was   just  an  exchange  student  under   the  Leonardo  da  Vinci  

programme  and  had  nothing  more  to  offer  than  my  will  to  learn  about  the  animal  

group  of   his   expertise.  Thank  you  very  much   for   the   love,   concern   and  patience,  

personal  and  professional  support  and  for  all   the  times  that  you  were  more  than  

just  a  supervisor.  Thank  you  for,  together  with  your  team  members,  always  making  

feel  at  home.    

 

 

 

 

Page 8: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation  

  7  

Agradecimentos  

 

Quero   começar   por   agradecer   aos   meus   pais,   sem   o   apoio   dos   quais   não   teria  

conseguido   construir   o   meu   percurso   académico,   à   minha   Inês   pelo   apoio   e  

incentivo  constante  e  a  todos  os  familiares,  amigos,  colegas  e  professores  que,  de  

algum  modo,  me  ajudaram  a  moldar  o  percurso  que  me  trouxe  até  aqui.    

Agradeço   à   professora   Maria-­‐José   Boavida,   já   falecida,   e   ao   professor   Artur  

Serrano,   por   terem  aceite   a   co-­‐orientação  dos  meus   trabalhos  doutorais,   por  me  

terem   acolhido   nos   seus   laboratórios,   pelas   sugestões,   comentários   e   conselhos.  

Agradeço   à   Zé   pelo   apoio   inicial   a   lidar   com   o   insaciável   monstro   burocrático;  

neste  ponto,  uma  palavra  de  apreço  também  para  o  professor  Leonel  Gordo.    

Agradeço  aos  meus  colegas,  amigos  e  colaboradores  na  Universidade  de  Modena,  

Michele   Cesari,   Trevor   Marchioro,   Roberto   Guidetti,   Lorena   Rebecchi   e   Tiziana  

Altiero  pelo  incansável  apoio  pessoal  e  profissional  que  me  concederam  em  todas  

as  minhas  visitas.  Sinto  que  serei  sempre  um  membro  da  vossa  equipa.  

Por   fim,   quero   agradecer   ao   professor   Roberto   Bertolani,   principal   orientador  

desta   tese,   sem   o   qual   ela   não   seria   hoje   uma   realidade.   Agradeço   por   me   ter  

aberto   as  portas  da   sua   instituição,   e   acolhido  no   seio  do   grupo  de   trabalho  que  

dirige  desde  que,  em  2006,  eu  era  apenas  um  aluno  de  intercâmbio  pelo  programa  

Leonardo   da  Vinci   e   nada  mais   tinha   para   oferecer   do   que   vontade   de   aprender  

sobre   os   animais   em   que   é   especialista.   Muito   obrigado   pelo   carinho,   pela  

preocupação,  pela  paciência,  pelo  apoio  profissional  e  pessoal,  por  ter  sido  muitas  

vezes  mais  do  que  apenas  um  orientador.  Obrigado  por,  conjuntamente  com  a  sua  

equipa,  sempre  me  terem  feito  sentir  em  casa.    

 

 

 

Page 9: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Filipe  Vicente  –  Doutoramento  em  Biologia    

 8  

Summary  

 

This  thesis  presents  a  series  of  papers  on  some  understudied  aspects  of  the  biology  

of  tardigrades.  

Paper   1   is   an   essay   on   how   biodiversity   conservation   strategies   have   long  

neglected   and   disregarded  microscopic   fauna   in   favour   of  macro   fauna,   for   non-­‐

objective   reasons;   this  may  have  devastating   effects   for   groups  of   small   animals,  

since  they  are  rarely  granted  with  any  type  of  study  on  species  evaluation  status,  

let  alone  consequential  protective  measures.  

Paper   2   is   a   pioneer   study   into   possible   effects   of   habitat   destruction   caused   by  

forestal   fires  over  populations  of   tardigrades,   looking  both  at   levels  of   taxonomic  

and  genetic  richness.    

Paper  3   is  an  analysis  of   the  current  state  of   tardigrade   taxonomy,  a  critical   look  

into   the   traditional  way  of   describing  new   taxa,   and   a   proposal   for   an  update   of  

taxonomic  work  methodologies.  

Paper  4  sets  an  example  for  the  type  of  work  method  advocated  in  Paper  3;  it  is  the  

review   of   the   systematic   positioning   of   two   synonymous   species   based   on   the  

integration  of  morphological  observations  with  genetic  analysis.  

Paper   5   is   a   study   about   the   unknown   biology   of   the   eutardigrade   epizoic  

protozoan   Pyxidium   tardigradum,   analysing   its   morphology,   reproductive   and  

feeding  strategies,  and  also  the  nature  of  the  host-­‐colonizer  relationship.  

Paper  6   goes   further   on   the  previous   topic   and,   offering   the   first  DNA  data   of  P.  

tardigradum,   establishes   the   phylogenetic   position   of   the   species   and   analyses  

genetic  distances  between  two  European  populations.      

 

 

 

   

 

 

Page 10: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation  

  9  

Resumo  

 

A  presente  tese  compreende  um  conjunto  de  artigos  sobre  alguns  aspectos  pouco  

estudados  da  biologia  dos  tardígrados.  

O   Artigo   1   é   um   ensaio   sobre   como   os   animais   microscópicos   vêm   sendo  

negligenciados   face   à   macro   fauna,   de   forma   pouco   objectiva,   no   que   refere   a  

estratégias   de   biologia   da   conservação.   Tal   poderá   implicar   efeitos   devastadores  

para  a  micro  fauna,  visto  que  esta  raramente  é  agraciada  com  estudos  de  avaliação  

do  estatutos  de  conservação  das  espécies,  muito  menos  com  medidas  de  protecção.  

O  Artigo  2  é  um  estudo  pioneiro  sobre  os  efeitos,  em  populações  de  tardígrados,  da  

destruição   de   habitat   causada   por   fogos   florestais,   analisando   os   níveis   de  

diversidade  genética  e  taxonómica.    

O  Artigo  3  oferece  uma  análise  sobre  o  actual  estado  da  taxonomia  dos  Tardigrada,  

com   um   olhar   crítico   sobre   a   forma   tradicional   de   descrever   novos   taxa,   e  

propondo  uma  actualização  de  metodologia  nestes  estudos  taxonómicos.    

O   Artigo   4   estabelece   um   exemplo   do   tipo   de   metodologia   defendida   no   artigo  

anterior:   revê   a   posição   sistemática   de   duas   espécies   sinónimas,   com   base   na  

integração  de  estudos  morfológicos  com  análises  genéticas.  

O  Artigo  5  apresenta  um  estudo  sobre  vários  aspectos  desconhecidos  da  biologia  

do  protozoário  epizóico  de  eutardígrados  Pyxidium  tardigradum,  analisando  a  sua  

morfologia,   as   estratégias   de   reprodução   e   alimentação,   e   ainda   a   natureza   da  

interação  hospedeiro-­‐colonizador.  

O  Artigo  6  aprofunda  o  tema  anterior  e,  oferecendo  os  primeiros  dados  genéticos  

de  P.  tardigradum,  estabelece  a  posição  filogenética  da  espécie,  analisando  ainda  a  

distância  genética  entre  duas  populações  Europeias.  

 

 

 

 

Page 11: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

General Introduction    

 10  

General  introduction  

 

More   than   300   years   have   passed   since   Anton   van   Leeuwenhoek   first   observed  

and   described  microscopic   life.   Regardless   of   this,   in   some   scientific   disciplines,  

our  knowledge  of  biological  life  appears  to  grow  proportionally  to  its  physical  size.  

In  Conservation  Biology,  not  only  do  we  know  very  little  about  microscopic  life,  but  

we  also  give   it  very   little  credit  and   importance.  This   is   the  starting  point   for  the  

present  thesis.  

The  Phylum  Tardigrada  represents  a  good  example  of  such  an  ill-­‐known  group  of  

organisms.   These   are  microscopic   animals   present   across   Earth’s   habitats:   from  

dwelling   in   marine   sediments,   where   they   are   often   a   significant   component   of  

meiofauna;   in   freshwater   environments,   or   in   terrestrial   micro   habitats   with  

permanent   or   temporary   water   retention,   such   as   leaf   litter,   mosses   or   lichens,  

which   they   usually   inhabit   together   with   rotifers   and   nematodes,   all   of   which  

possess  cryptobiotic  capacities  (Ramazzotti  &  Maucci,  1983).  

The   most   studied   cases   of   cryptobiosis   are   anhydrobiosis   and   cryobiosis.  

Anhydrobiosis  means  that  these  animals  are  capable  of  dramatically  reducing  body  

water   volume,   suspending   all   metabolism   for   up   to   a   few   years   period,   them  

rehydrating   and   regaining   activity   once   environmental   water   returns   (Keilin,  

1959).  This  can  be  performed  at  any  stage  of  development  and  has  long  captured  

scientists’   attention   since   it   appears   to   be   a   form   of   paused   animal   life.   If   such  

biotechnology   were   to   be   mastered,   it   would   mean   that   we   could   ‘click   a   stop  

button’   on   living   organisms  without   inducing   death;   instead  we  would   have   the  

possibility  to  ‘click  play’  at  a  future  time  of  choice.  In  this  state  of  ‘suspended  life’,  

tardigrades   are   impressively   resistant   to   extreme   external   conditions   of  

temperature,  pressure  or  radiation  (Altiero  et  al.,  2011).  This  has   justified  recent  

experiments  in  the  planet’s  orbit,  under  unnatural  conditions  (Jönsson  et  al.,  2008;  

Persson  et  al.,  2011;  Rebecchi  et  al.,  2011).  Cryobiosis  is  represented  by  the  ability  

to  resist  to  freezing,  in  this  case  also  for  several  years  (Wright,  2001).  This  allows  

them  to  colonize  very  cold  lands  and  mountains  (Bertolani  et  al.,  2004).  

Page 12: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation

  11  

Even  tough  we  now  start  to  understand  how  tardigrades  respond  to  being  outside  

the  planet,  we   still   know  very   little   about   their   importance  on  Earth’s   ecological  

systems.   To   date,   no   study   exists   addressing   global   ecological   importance,   or  

species’   conservation   status.   This   is,   in  my   opinion,   a   severe   gap   in   our   current  

knowledge,   not   only   regarding   tardigrades,   but   all   micro   fauna   in   general.  

Microscopic   animals   play   important   roles   in   regulating   water,   air   and   nutrient  

cycles;  in  the  control  of  otherwise  destructive  plagues  and  infections;  or  in  climate  

regulation   (Price,   1987;   Commission  of   the  European  Communities,   2006).   In   an  

attempt  to  start  mitigating  this  scientific  gap,  I  have  studied  how  this  specific  slice  

of  biodiversity  is  affected  by  habitat  destruction.  

In   order   to   better   understand   how   micro   fauna   responds   to   environmental  

degradation,   we   first   need   to   raise   and   clarify   our   knowledge   levels   of   the   real  

values  of  biodiversity.  To  accomplish  this  goal,  it  is  of  the  utmost  importance  that  

we  update  the  ‘business-­‐as-­‐usual’  species  describing  protocol,  traditionally  limited  

to   morphological   observation,   by   integrating   other   sources   of   independent   and  

complementary  data,  particularly  by  bringing  genetic  work  into  play.  Genetics  can  

help   to   determine   the   evolutionary   and   phylogeographic   meaning   behind  

morphological   character   differences,   as   well   as   shed   some   light   on   the   barriers  

separating   intraspecific   from   interspecific   variability.   I   think   that   tardigrade  

taxonomy  is  in  urgent  need  of  this  contribution,  aiming  for  a  much-­‐needed  revision  

and  also  for  future  strongly  fundamented  species  descriptions.  An  example  is  set  in  

the  present  thesis.  

Another   important   gap   on   the   available   knowledge   of   tardigrades   is   the  

interactions  with  other  species.  A  few  studies  exist  already  on  the  topics  of  feeding  

habits   and   predator-­‐prey   interactions   of   terrestrial   species,   e.g.,   Doncaster   &  

Hooper   (1961);  Hohberg  &  Traunspurger   (2005);   Sánchez-­‐Moreno   et   al.   (2008).  

The  protozoan  Pyxidium  tardigradum  places  a  series  of  different  questions,  as  here  

tardigrades   are   neither   the   predator   nor   the   prey.   Pyxidium   tardigradum   is   a  

symphoriont   species   that   specifically   targets   eutardigrades,   one   about  which  we  

knew   very   little,   apart   from   the   generic   original   description   by   Van   der   Land  

(1964)  and  a  few  occasional  registers  of  occurrence  (Iharos,  1966;  Morgan,  1976;  

Hallas,  1977;  Wright,  1991;  Marley  and  Wright,  1994).  It  was  important,  however,  

Page 13: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

General Introduction    

 12  

to   seek   a   greater   understanding   about   the   nature   of   this   animal-­‐protozoan  

relationship,   about   the   life   cycle   of   the   latter,   and   about   the   positioning   of   the  

protozoan   in   the   evolutionary   tree   of   life.   These   questions   are   answered   in   this  

thesis.  

 

References  

Altiero,   T.,   Guidetti,   R.,   Caselli,   V.,   Cesari,   M.   &   Rebecchi,   L.   (2011)   Ultraviolet  

radiation   tolerance   in   hydrated   and   desiccated   eutardigrades.   Journal   of  

Zoological  Systematics  and  Evolutionary  Research  49(S1):  104-­‐110.    

Bertolani,   R.,   Guidetti,   R.,   Jönsson,   K.   I.,   Altiero,   T.,   Boschini,   D.   &   Rebecchi,   L.  

(2004)   Experiences  with   dormancy   in   tardigrades.   Journal   of   Limnology  63:  

16-­‐25.  

Commission  of  the  European  Communities  (2006)  Halting  the  loss  of  biodiversity  

by  2010  –   and  beyond;   Sustaining   ecosystem   services   for  human  well-­‐being.  

Brussels.  

Doncaster,   C.   C.   &   Hooper,   D.   J.   (1961)   Nematodes   attacked   by   protozoa   and  

tardigrades.  Nematologica  6:  333-­‐335.  

Hallas,  T.  E.  (1977)  Survey  of  the  tardigrades  of  Finland.  Annales  Zoologici  Fennici  

14:  173-­‐183.  

Hohberg,  K.  &  Traunspurger,  W.  (2005)  Predator–prey  interaction  in  soil  food  web:  

functional   response,   size-­‐dependent   foraging   efficiency,   and   the   influence   of  

soil  texture.  Biology  and  Fertility  of  Soils  41:  419-­‐427.  

Iharos,   G.   (1966)   A   Bakony-­‐hegyseg   Tardigrada-­‐faunaja.   III.   Különlenyomat   az  

Állattani  Közlemények  53:  69-­‐78.  

Jönsson,   I.   K.,   Rabbow,   E.,   Schill,   R.  O.,  Harms-­‐Ringdahl,  M.  &  Rettberg,   P.   (2008)  

Tardigrades  survives  exposure  to  space  in  low  Earth  orbit.  Current  Biology  18:  

729-­‐731.  

Keilin,  D.  (1959)  The  Leeuwenhoek  lecture  -­‐  the  problem  of  anabiosis  or  latent  life  

-­‐   History   and   current   concept.   Proceedings   of   the   Royal   Society   of   London  

Series  B-­‐  Biological  Sciences,  150:  149-­‐191.  

Page 14: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation

  13  

Marley,   N.   J.,  Wright,   D.   E.   (1994)   Pyxidium   tardigradum   van   der   Land,   a   rarely  

recorded   symphoriant   on   waterbears   (Tardigrada).   Quekett   Journal   of  

Microscopy  37:  232-­‐233.  

Morgan,  C.  I.  (1976)  Studies  on  the  British  tardigrade  fauna.  Some  zoogeographical  

and  ecological  notes.  Journal  of  Natural  History  10:  607-­‐623.    

Persson,  D.,  Halberg,  K.  A.,   Jorgensen,  A.,  Ricci,  C.,  Mobjerg,  N.  &  Kristensen,  R.  M.  

(2011)  Extreme  stress  tolerance  in  tardigrades:  surviving  space  conditions  in  

low  earth  orbit.   Journal  of  Zoological  Systematics  and  Evolutionary  Research  

49(S1):  90-­‐97.  

Price,  P.  W.  (1987)  The  role  of  natural  enemies  in  insect  populations.  In:  Barbosa  P,  

Schultz  JC  (eds)  Insect  outbreaks.  Academic  Press,  Inc.  London.  287-­‐312  pp.  

Ramazzotti,   G.   &   Maucci,  W.   (1983)   Il   phylum   Tardigrada.   Memorie   dell’Istituto  

Italiano  di  Idrobiologia  41:  1-­‐1012.  

Rebecchi,   L.,   Altiero,   T.,   Cesari,   M.,   Bertolani,   R.,   Rizzo,   A.   M.,   Corsetto,   P.A.   &  

Guidetti,   R.   (2011)   Resistance   of   the   anhydrobiotic   eutardigrade  

Paramacrobiotus   richtersi   to   space   flight   (LIFE–TARSE   mission   on   FOTON-­‐

M3).  Journal  of  Zoological  Systematics  and  Evolutionary  Research  49(S1):  98-­‐

103  

Sánchez-­‐Moreno,   S.,   Ferris,   H.   &   Guil,   N.   (2008)   Role   of   tardigrades   in   the  

suppressive   service   of   a   soil   food   web.   Agriculture,   Ecosystems   and  

Environment  124:  187-­‐192.  

Van   der   Land,   J.   (1964)   A   new   peritrichous   ciliate   as   a   symphoriont   on   a  

tardigrade. Zoologische  Mededelingen  39:  85-­‐88.  

Wright,   J.   C.   (1991)   The   significance   of   four   xeric   parameters   in   the   ecology   of  

terrestrial  Tardigrada.  Journal  of  Zoology  224:  59-­‐77.  

Wright,  J.  C.  Cryptobiosis  (2001)  300  Years  on  from  van  Leeuwenhoek:  what  have  

we  learned  about  tardigrades?  Zoologischer  Anzeiger  240:  563-­‐582.  

 

 

 

Page 15: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

Page 16: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

 

 

 

 

 

Paper  1  

 

Micro-­‐invertebrates  conservation:  forgotten  biodiversity.    

Filipe  Vicente  (2010)  Biodiversity  Conservation  19:  3629-­‐3634.  

Page 17: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

   

Page 18: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 Micro-­‐invertebrates  conservation      

  17  

Abstract  

The  concern  about  the  preservation  of  biodiversity  is  due,  in  part,  to  a  great  level  of  media  

coverage   granted   in   the   last   few   years   to   global   warming   and   consequential   climatic  

changes.  However,  there  are  still  considerably  large  gaps  in  scientific  knowledge  regarding  

the  ecological  status  of  many  species,  which  results  in  an  absence  of  conservation  strategy  

for   most   of   Earth’s   biodiversity   in   need   of   it.   The   extinction   of   many   animal   and   plant  

species  can  have  catastrophic  consequences  on  the  ecosystems’  balance  and  also  in  human  

well-­‐being,   resultant   from   the   break   of   ecological   services.   To   exemplify   how   a   specific  

group  of  microscopic  animals  can  be  endangered,   I  have  analyzed  the  case  of   the  phylum  

Tardigrada.   Tardigrades   are   microscopic   animals   that   inhabit   most   environments:  

terrestrial,   freshwater   and   marine.   Even   though   many   species   are   widespread   and   the  

terrestrial  ones  granted  with  cryptobiotic  skills,  they  are  adapted  to  each  habitat  type  and,  

additionally,  to  local  environmental  patterns.  This  means  that  these  tiny  metazoans  can  be  

under   significant   environmental   pressure   in   the   various   habitat   types   they   are   found   in.  

The   potential   need   of   protective   and   compensatory   measures   aiming   for   appropriate  

conservation  of  these  life  forms  is  discussed,  as  is  the  need  of  studying  for  their  objective  

elaboration.    

 

Keywords  

Biodiversity   conservation,   conservation   status,   micro-­‐invertebrates,   Tardigrada,  

preventive  and  protective  measures.  

 

 

 

 

 

 

 

 

 

Page 19: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  1    

 18  

Biodiversity  conservation  has  been  a  worldwide  issue  in  government  agendas  at  least  since  

the   United   Nations’   Earth   Summit   held   in   Rio   de   Janeiro,   Brazil,   in   1992,   where   world  

leaders  agreed  on  a  common  strategy  for  “sustainable  development”.  The  key  pact  achieved  

at  the  Summit  resulted  in  the  Convention  on  Biological  Diversity,  a  document  which  stresses  

conservation  of  biological  diversity  as  a  global  goal,  as  well  as   its  sustainable  use  and  the  

sharing  of  benefits  arising  from  the  exploration  of  genetic  resources.  

The   European   Community   has   ever   since   been   looking   to   be   in   the   lead   of   friendly  

biodiversity   policy-­‐making.   Examples   of   such   concern   are   the   Natura   2000   Network   of  

protected  areas,  LIFE  projects  and  management  plans  as  financial  instruments  supporting  

nature   conservation   projects.   The  most   relevant   of   the   latest   political   endeavors   in   this  

field  was  known  as  Countdown  2010,  an  agreement  achieved  in  2001  by  EU  governments  

towards   sustaining   biodiversity   loss   and   recovering   natural   habitats   by   2010,   which  

around  130  other  world  leaders  joined  in  2002.  

Meritorious  as   these  efforts  are,   there  are  still   great  gaps   in  knowledge  regarding  poorly  

known   taxonomic  groups  such  as   invertebrates,  plants,   tropical  biota  and  all   aquatic  and  

subterranean  habitats  (Millennium  Ecosystem  Assessment,  2005).  

Lévêque  et  al   (2005)  estimated   that   there  are  around  100,000  known   freshwater  animal  

species  today,  half  of  which  are  insects.  However,  many  freshwater  biodiversity  assessment  

studies  tend  to  focus  on  better-­‐known  groups  such  as  fish  and/or  on  endemic  or  keystone  

species.   Also,   they   claim,   official   species   richness   indexes   should   be   severely  

underestimated   in   lesser   studied   groups,   such   as   protozoans,   annelids   or   nematodes.  

Concerning  the  Protozoa,  for  instance,  much  of  our  knowledge  of  the  group’s  biodiversity  is  

tightly  linked  to  clinical  disease  in  vertebrates,  mainly  mammals  (Adlard  and  O’Donoghue  

1998).  There   is,  however,   a  whole  new  world  of  diversity   to  be  unveiled   in   the  Protozoa  

alone,  regarding  those  associated  with  invertebrates  (i.e.,  Vicente  et  al.  2008)  as  well  as  all  

other  free  living  species.    

The   IUCN’s   Red   List   of   Threatened   Species   includes   44,838   species   with   assessed  

conservation  statuses  in  its  2008  update.  This  number  has  been  increasing  each  year  and  

undoubtedly  reflects   the  work  of  many,  yet   it  still  only  represents  2.73%  of  all  described  

species   to   date.  Moreover,   a   quick   analysis   allows   for   a   view   of   really   how   biased   these  

assessments   are   towards   some   taxonomic   groups.   Considering   the   better   studied   ones,  

Page 20: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 Micro-­‐invertebrates  conservation      

  19  

mammals  and  birds,  100%  of  the  currently  described  species  have  been  evaluated  for  their  

conservation  statuses  and,  out  of  these,  21%  out  of  5,488  mammal  species  and  12%  out  of  

9990  bird  species  are  considered  to  be  endangered.    

Turning  our  attention  to  one  of  the  lesser  studied  groups,  we  see  that  only  0.13%  out  of  all  

the  described  insect  species  have  an  evaluated  status,  50%  of  which  are  endangered.  This  

means  that  half  of  the  few  insect  species  whose  conservation  statuses  have  been  assessed  

were   classified   as   threatened,   yet   extremely   few   out   of   the   950,000   calculated   species  

known   to   science  have  been  graced  with   conservational   study.  Let  me  highlight   that   this  

last  number  does  not  include  an  estimate  of  the  insect  species  that  are  yet  to  be  described  

(surely  many  more  than  birds  or  mammals),  which  means  that  considering   insects  alone,  

the  actual  number  of  threatened  species  could  easily  surpass  that  of  the  sum  of  all  existing  

vertebrates.  A  similar  scenario  is  shared  by  the  rest  of  invertebrates,  plants,  algae,  lichens  

and   mushrooms:   very   few   known   species   have   been   evaluated   for   their   threatened  

statuses,  with   few   exceptions.     Therefore,   it   appears   necessary   to   enrich   the   Red   List   of  

Threatened   Species   with   many   invertebrate   species   endemic   and/or   living   in   specific  

habitats  easily  endangered  (caves,  small  lakes,  small  rivers).  

Additionally,  I  think  that  we  still  take  biodiversity  conservation  under  a  prejudice  of  scale,  

neglecting   living   organisms   to   an   extensively   greater   degree   the   smaller   they   get,   even  

when  knowledge  is  available.  Stork  et  al.   (2008)  show  evidence  of  this  problem,  studying  

canopy  beetles.  If  this  is  true  for  small  macroscopic  animals,  the  more  truthful  it  becomes  

for   microscopic   ones.   In   other   words,   when   we   talk   about   preserving   biodiversity,   we  

should  not  disregard  microscopic  organisms  since  their  existence  is  of  a  crucial  nature  for  

the  maintenance  of  a  sustainable  balance  in  all  of  Earth’s  ecosystems.  

In   order   to   illustrate   how  a   specific   group  of  microscopic   organisms   can  be   endangered,  

let’s   consider   the  Tardigrada  phylum.  Tardigrades,   commonly  known  as  water  bears,  are  

microscopic  metazoans,  usually  much  less  than  1  mm  in  length  that  can  be  found  in  most  

environments,  terrestrial,  freshwater  and  marine.    

On   terrestrial   environments,   their   preferential   living   substrates   are  mosses,   lichens   and  

leaf  litter.  Regardless  of  their  ability  to  disperse  with  ease  and  high  abundance,  tardigrades  

are  habitat-­‐dependent   in   a   similar  way   to   larger   animals   (Guil  et   al.   2009).  Many   limno-­‐

terrestrial  species  are  ecologically  specialized  and  able  to  survive  only  in  particular  micro-­‐

Page 21: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  1    

 20  

environmental   conditions.   This   is   particularly   true   for   parthenogenetic   taxa   with   low  

individual  variability   (Pilato  1979:  Pilato  &  Binda  2001),  and  recent  studies  demonstrate  

that   the   number   of   endemic   species   is   higher   than   traditionally   believed   (Pilato   1979;  

Pilato   &   Binda   2001).   Hence,   the   destruction   of   these   micro-­‐habitats,   due   to   e.g.   the  

humanization  of  natural  areas,  causes  obvious  reduction  of  population  effectives  and  may  

cause  similar  results  in  the  phylum’s  biodiversity,  with  the  extinction  of  some  species  even  

before  they  were  known  to  science.  Other  causes  behind  habitat  reduction  are,  for  instance,  

air  pollution,  as   this   is  known  to   inhibit   lichen  growth  (Jovan  2008).  Moreover,  pollution  

can  directly   cause  a   reduction   in   tardigrade   species  and   specimen  number   (Vargha  et  al.  

2002).  A  contemporary  example  of  the  effect  air  pollution  has  on  these  animals  comes  from  

China,  were   acidic   rain   appears   to   be   behind   the   disappearing   of   tardigrades   from  most  

areas  where  air  pollution  is  stronger  (Miller,  pers.  comm.).    

Forest   fires   are   another  obvious  menace  yet,   ironically,   some   fire  prevention  procedures  

may  end  up  being  an  even  bigger  one.  Quartau  (2008)  pinpoints  how  mandatory  forestall  

vegetation  clearance  methodologies  have  been  carried  out  in  Portugal  and  how  much  they  

represent  a  serious  threat  to  biodiversity.  These  methods  involve  the  complete  removal  of  

all   potential   burning   materials,   including   bushes,   herbaceous   plants   and   grasses,   pines,  

branches   and   leaf   litter.   Since   these   organic   materials   will   usually   be   burnt   for   energy  

production,   the   outcome   is   clearly   catastrophic   for   animal   groups   inhabiting   those  

substrates,  including  ground  fauna,  entomofauna  and  other  macro  and  micro  invertebrates,  

as   well   as   for   all   the   inferior   plants   that   are   removed.   Considering   just   the   fauna,  mass  

extinctions   can   take  place,   resulting   in   the   loss   of   an  unprecedented  number  of   endemic  

species,  before  they  were  even  known  to  science  (Quartau  2008).  Additionally,  we  should  

also   consider   the   ecological   consequences   both   for   humankind,   with   the   breaking   of  

ecological   services,   as   well   as   for   all   other   fauna   to   some   extent   dependent   on   the   lost  

biodiversity.  Among  such  ecological  services  are  the  maintenance  of  the  nutrient  cycle  and  

soil  fertility,  the  production  of  food,  fuel  and  medicines,  the  regulation  of  hydric  resources,  

air  and  climate  (Commission  of  the  European  Communities  2006),  and  the  control  of  pests  

or   diseases   (Price   1987).   These   roles   played   by   the   natural   systems   highlight   how  

important  biodiversity  is  for  sustainable  development  and  general  human  well-­‐being.    

Returning  to  the  example  of  tardigrades,  global  warming  poses  the  greatest  menace  to  the  

freshwater   species.   Rebecchi   et   al.   (2009)   recently   demonstrated   that   the   limnic   species  

Page 22: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 Micro-­‐invertebrates  conservation      

  21  

Borealibius   zetlandicus   is   intolerant   to   desiccation.   In   the   case   of   this   limitation   being  

shared   by   other   limnic   species,   they   can   become   extinct   in   temperate   areas   such   as  

Southern   Europe,   where   future   higher   temperatures   may   turn   permanent   rivers,   ponds  

and  lagoons  into  temporary  ones.  The  eventual  verification  that  strictly  freshwater  species  

are   desiccation   intolerant   should   not   come   as   a   surprise   since   the   ability   to   undergo  

anhydrobiosis  is  an  adaptation  of  the  terrestrial  tardigrades  and  most  marine  tardigrades  

are  known  to  be  desiccation  intolerant  (Ramazzotti  &  Maucci  1983).  

That   does   not  mean,   however,   that   the   terrestrial   species   cannot   be   endangered   by   the  

climatic   changes,   since   their   desiccation   tolerances   have   been   proved   to   differ   from   one  

climatic   region   to   another   (Horikawa  and  Higashi  2004),   and   local   adaptation   to   current  

climatic  patterns   is  a  decisive   factor   in  the  current  geographic  distribution  of   tardigrades  

(Faurby  et  al.  2008;  Pilato,  1979;  Pilato  &  Binda  2001).    

In   marine   environments,   tardigrades   can   be   found   anywhere,   from   deep   sea   floors   to  

beaches,   dwelling   in   the   sediments.   However   being   one   of   the   main   groups   comprising  

meiofauna,   their   ecological   importance   is   still   poorly   understood.   On   beaches,   species  

distribution  follows  a  tide  influenced  gradient  (Kinchin  1992;  Morgan  and  Lampard  1986).  

Considering   the   expected   rising   of   the   sea   level   as   yet   another   consequence   of   global  

warming,  the  species  distribution  pattern  can  be  totally  disrupted  along  worldwide  shores,  

wherever   beaches   become   permanently   flooded.   This   could   mean   the   loss   of   immense  

habitat  areas  that  are  vital  for  the  survival  of  this  and  other  faunal  groups.  Adrianov  (2004)  

estimates  meiofauna   to   be   composed   of   20   to   30  million   species,   so   it   is   not   difficult   to  

imagine  how  a  swift   change   in   the  sea   level  would  affect  many  animal  species   inhabiting  

the  current  tidal  zone.  Aquatic  pollution  from  all  types  of  sources  may  also  have  an  impact  

on  marine  tardigrades,  but  no  studies  exist  hitherto  on  this  subject.  Pollution  has,  however,  

been  proved   to   negatively   correlate  with   nematode   population   structure   in   an   estuarine  

environment  (Gyedu-­‐Ababio  et  al.  1999).  Hence,   the  assumption  of  a  negative  effect   from  

water  pollution  on  marine  tardigrades  should  not  strike  us  as  being  too  far-­‐fetched.    

Facing   any   of   the   previously   referred   cases   of   potential   harm   to   the   diversity   of  

tardigrades,   one   could   argue   that   given   the   great   colonization   capabilities   these   animals  

have,   it   would   allow   them   to   re-­‐populate   any   given   habitat,   once   the   threat   disappears.  

True   as   it   may   be   for   some   ubiquitous   species,   it   will   not   be   so   for   all   others   that   are  

endemic.  We  should  also  keep  in  mind  that  the  event  of  a  re-­‐colonization  does  not  exclude  

Page 23: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  1    

 22  

the  hypothesis  of  considerable  genetic  diversity   loss.  Malmström  et  al.   (2009)   found   that  

five   years   after   a   fire   the  number   of   tardigrades  had   reached  52%  of   those   found   in   the  

unburnt   area.   Nevertheless,   this   study   did   not   include   any   species   identification  

procedures,  so  it  is  impossible  to  infer  on  how  effective  re-­‐colonizations  can  be  in  restoring  

the   original   biodiversity   levels.   The   destruction   of   a   microhabitat   to   which   an   endemic  

species   is   uniquely   linked   produces   a  marked   reduction   of   genetic   diversity   or   even   the  

extinction   of   that   species.   More   studies   on   this   matter   are   required,   since   our   limited  

knowledge   prevents   us   from   reaching   the   understanding   on   whether   or   not   preventive  

measures  are  required  to  protect  micro-­‐fauna,  as  well  as  on  which  they  should  be.    

Lack   of   knowledge   should   not,   however,   be   reason   enough   to   prevent   the   taking   up   of  

protective  measures,  general  as  they  may  be.  This  is  stated  in  the  Convention  on  Biological  

Diversity:  “(…)  where  there  is  a  threat  of  significant  reduction  or  loss  of  biological  diversity,  

lack   of   full   scientific   certainty   should   not   be   used   as   a   reason   for   postponing  measures   to  

avoid   or   minimize   such   a   threat.”   Increasing   our   understanding   of   biodiversity   and   the  

ecosystem’s   services   is   today   a   critical   need   and   also   a   scientific   challenge   in   order   to  

perfect  future  political  response  (Commission  of  the  European  Communities  2006).  

Considering   the   absolute   inexistence   of   studies   regarding   tardigrade   diversity   from   a  

conservational  point  of  view,   I  believe   that   these  animals,   and  others,   could  benefit   from  

some  preventive   and   compensatory  measures,   in   order   to   counter-­‐act   current   threats.     I  

hereby  suggest  a  few,  divided  into  general  and  specific  ones.    

Generally  all  micro-­‐invertebrate  populations  would  benefit  from:  

a) A  reduction  in  all  forms  of  environmental  pollution;  

b) An  immediate  cutback  in  greenhouse-­‐effect  gas  emissions,  in  order  to  prevent  short-­‐

term  climatic  changes;  

c) A  decrease  in  the  current  rate  of  habitat  destruction  resulting  from  human  activities.  

An   example   of   how   habitat   conversion   for   human   usage   could   be   compensated  

would  be  achieved  by  a  more  frequent  adoption  of  what  is  known  as  “Green  roofs”.  

This   architectural   practice   is   common,   for   instance,   in   some   northern   European  

regions   and   consists   of   creating   gardens   or   other   green   areas   in   roof   tops,   thus  

‘giving   back’   a   certain   percentage   of   the   soil   surface   that   was   ‘robbed’   by   the  

construction;  

Page 24: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 Micro-­‐invertebrates  conservation      

  23  

On  a  specific  level,  this  particular  taxon  could  benefit  from:  

d) Forestall   clearance  methodologies   that   took  micro-­‐fauna   into  consideration.  These  

would   include   the   removal   of   only   the   strictly  necessary   amount  of   biomass   from  

woods,   roads,   paths   or   forestall   corridors.   Additionally,   the   removed   materials  

should  not  be  burned  or  destroyed  in  any  other  way  in  order  to  preserve  all  the  live-­‐

forms  contained  there.  As  an  alternative,  they  could  be  translocated  to  a  nearby  area  

where  the  risk  of  fire  would  be  inferior  or  virtually  inexistent;  

e) Ex-­‐situ  preservation  projects.  These  could  be  conducted  in  public  or  private  gardens  

or  green  houses  and  would  act  as  genetic  banks,  in  a  similar  way  to  the  part  played  

by  zoos  and  aquariums  today;  

f) Beaches  partially  or  totally  closed  to  humans.  This  would  protect  coastal/marine  life  

from   the  great  pressure   imposed  by  people  during   summer  months,   and  could  be  

achieved  by  implementing  coastal  protected  areas.  

g) An   extension   of   taxonomic   and   biological   studies.   Particularly   useful   appears   the  

recent  genetic  work:  Tardigrade  Barcoding  Project  (Schill  2009),  TABAR  (Guidetti  et  

al.  2009b),  TardiBASE  (Blaxter  2008),  Kumamushi  Genome  Project   (Kunieda  et  al.  

2008),  MoDNA  (Cesari  et  al.  2009;  Guidetti  et  al.  2009a).  This  would  not  only  inflate  

our   level   of   knowledge   but   would   potentially   help   create   new   lines   of   research  

where  water-­‐bears  have  not  yet  been  used.  It  would  also  help  draw  media  attention  

to  the  taxon,  important  leverage  for  a  successful  conservation  strategy.        

All  of  these  suggestions  are  being  made  a  priori  and,  even  though  some  of  them  could  prove  

to   be   somewhat   correct,   they   would   have   to   be   refined   in   order   to   accurately   provide  

protection   for   the   Tardigrade   biodiversity.   Obviously,   such   perfectioning   of   any   given  

conservational  methodology  can  only  arise  from  previous  studying.  These  pioneer  studies  

shall  hopefully  come  true  in  a  near  future,  for  they  are  critically  necessary  not  only  to  help  

us   protect   a   vast   animal   taxon   whose   full   ecological   importance   still   eludes   our  

understanding;   but   also,   and  more   importantly,   to   help   bring   about   a  more   generalized  

discussion  on  the  conservation  of  all  of  those  taxonomic  groups  thus  far  neglected.    

 

 

 

Page 25: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  1    

 24  

Acknowledgements  

I  wish  to  thank  Professor  Roberto  Bertolani,  University  of  Modena  and  Reggio  Emilia,  Italy,  

and   Professor   Artur   Serrano,   University   of   Lisbon,   Portugal,   for   valuable   comments   and  

suggestions.   I   also   wish   to   thank   Dr.   Timothy   Bancroft-­‐Hinchey   at   the   Oxford   School   of  

Languages,  Lisbon,  for  reviewing  the  English  manuscript.  

This  work  was  supported  by  the  Fundação  para  a  Ciência  e  a  Tecnologia,  Portugal,  and    was  

partially  presented  at   the  11th   International  Symposium  on  Tardigrada  held   in  Tübingen,  

Germany,  August  3-­‐6  2009.            

 

References  

Adlard  RD,  O’Donoghue  PJ  (1998)  Perspectives  on  the  biodiversity  of  parasitic  protozoa  in  

Australia.  International  Journal  for  Parasitology  28:  776-­‐786.  

Adrianov  AV   (2004)  Current  problems   in  marine  biodiversity   studies.  Russian   Journal   of  

Marine  Biology  30(1):  1-­‐16.  

Blaxter  M  (2008)  TardiBASE  –  The  home  of  the  Edinburg  Tardigrade  Project.  Available  at:  

http://xyala.cap.ed.ac.uk/tardigrades/tardibase.html  (Accessed  26  June  2009).  

Cesari  M,  Bertolani  R,  Rebecchi  L,  Guidetti  R  (2009)  DNA  barcoding  in  Tardigrada:  the  first  

case   study   on   Macrobiotus   macrocalix   Bertolani   &   Rebecchi   1993   (Eutardigrada,  

Macrobiotidae).  Molecular  Ecology  Resources  9:  699-­‐706.  

Commission  of  the  European  Communities  (2006)  Halting  the  loss  of  biodiversity  by  2010  

–  and  beyond;  Sustaining  ecosystem  services  for  human  well-­‐being.  Brussels.  

Convention   on   Biological   Diversity   (2001)   2010   Biodiversity   Target.   Available   at:  

http://www.biodiv.org/2010-­‐target/default.asp  (Accessed  15  July  2009).  

Faurby  S,  Jönson  KI,  Rebecchi  L,  Funch  P  (2008)  Variation  in  anhydrobiotic  survival  of  two  

eutardigrade  morphospecies:   a   story   of   cryptic   species   and   their   dispersal.   Journal   of  

Zoology  275:  139-­‐145.  

Guidetti   R,   Schill   R,   Bertolani   R,   Dandekar   T,   Wolf   M   (2009a)   New   molecular   data   for  

tardigrade   phylogeny,   with   the   erection   of   Paramacrobiotus   gen.   nov.   Journal   of  

Zoological  Systematics  and  Evolutionary  Research  47(4):  315-­‐321.  

Guidetti  R,  Rebecchi  L,  Bertolani  R,  Cesari  M,  Jorgensen  A  (2009b)  Tardigrada  Barcoding  –  

TABAR.  Available  at:  http://www.barcodinglife.org  (Accessed  20  October  2009).  

Page 26: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 Micro-­‐invertebrates  conservation      

  25  

Guil   N,   Sánchez-­‐Moreno   S,   Machordom   A   (2009)   Local   biodiversity   patterns   in  

micrometazoans:  Are  tardigrades  everywhere?  Systematics  and  Biodiversity,  7(3):  259-­‐

268.  

Gyedu-­‐Ababio  TK,  Furstenberg  JP,  Baird  D,  Vanreusel  A  (1999)  Nematodes  as  indicators  of  

pollution:   a   case   study   from   the   Swartkops   River   system,   South   Africa.   Hydrobiologia  

397:  155-­‐169.  

Horikawa   DD,   Higashi   S   (2004)   Desiccation   tolerance   of   the   tardigrade   Milnesium  

tardigradum   collected   in   Sapporo,   Japan,   and  Bogor,   Indonesia.   Zoological   Science  21:  

813-­‐816.    

Jovan   S   (2008)   Lichen   bioindication   of   biodiversity,   air   quality,   and   climate:   baseline  

results   from  monitoring   in  Washington,  Oregon,   and   California.   Gen.   Tech.   Rep.   PNW-­‐

GTR-­‐737.  Portland,  OR:  U.S.  Department  of  Agriculture,  Forest  Service,  Pacific  Northwest  

Research  Station.  115  pp.  

Kinchin  IM  (1992)  An  introduction  to  the  invertebrate  microfauna  associated  with  mosses  

and   lichens  with   observations   from  maritime   lichens   on   the  West   coast   of   the  British  

Isles.  Microscopy  36:  721-­‐731.  

Kunieda  T,  Katayama  T,  Toyoda  A,  Horikawa  D,  Arakawa  K,  Kuwahara  H,  Yamaguchi  A,  Aizu  

T,   Abe   W   (2008)   Kumamushi   Genome   Project.   Available   at:   http://kumamushi.org  

(Accessed  20  July  2009).  

Lévêque   C,   Balian   EV,   Martens   K   (2005)   An   assessment   of   animal   species   diversity   in  

continental  waters.  Hydrobiologia  542:  39-­‐67.  

Malmström  A,  Person  T,  Ahlström  K,  Gongalsky  KB,  Bengtsson   J   (2009)  Dynamics  of   soil  

meso-­‐  and  macrofauna  during  a  5-­‐year  period  after  clear-­‐cutburning  in  a  boreal  forest.  

Aplied  Soil  Ecology  43:  61-­‐74.  

Millennium   Ecosystem   Assessment   (2005).   Ecosystems   and   Human   Well-­‐being:  

Biodiversity  Synthesis.  World  Resources  Institute,  Washington,  DC.  86  pp.  

Morgan  CI,  Lampard  DJ  (1986)  Supralittoral   lichens  as  a  habitat   for   tardigrades.  Glasgow  

Naturalist  21:  127-­‐138.      

Pilato  G   (1979)  Correlations  between   cryptobiosis   and  other  biological   characteristics   in  

some  soil  animals.  Bollettino  di  Zoologia,  46:  319-­‐332.  

Pilato  G,  Binda  MG  (2001)  Biogeography  and  limno-­‐terrestrial  Tardigrades:  are  they  truly  

incompatible  binomials?    Zoologischer  Anzeiger  240:  511-­‐516.  

Page 27: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  1    

 26  

Price  PW  (1987)  The  role  of  natural  enemies  in  insect  populations.  In:  Barbosa  P,  Schultz  JC  

(eds)  Insect  outbreaks.  Academic  Press,  Inc.  London.  287-­‐312  pp.  

Quartau   JA   (2008)   Preventative   fire   procedures   in  Mediterranean  woods   are   destroying  

their  insect  Biodiversity:  a  plea  to  the  EU  Governments.  Journal  Insect  Conservation  13:  

267-­‐270.  

Ramazzotti   G,   Maucci   W   (1983)   Il   phylum   Tardigrada.   Memorie   dell’Istituto   Italiano   di  

Idrobiologia,  41:  1-­‐1012.  

Rebecchi  L,  Boschini  D,  Cesari  M,  Lencioni  V,  Bertolani  R,  Guidetti  R  (2009)  Stress  response  

of   a   boreo-­‐alpine   species   of   tardigrade,   Borealibius   zetlandicus   (Eutardigrada,  

Hypsibiidae).  Journal  of  Limnology  68(1):  64-­‐70.  

Schill  R  (2009)  Tardigrade  Barcoding  Project.  Available  at:  http://tardigradebarcoding.org  

(Accessed  20  July  2009).  

Stork  NE,  Grimbacher  PS,  Storey  RI,  Oberprieler  RG,  Reid  CAM,  Slipinski  SA  (2008)  What  

determines  whether  a  species  of  insect  is  described?    Evidence  from  the  study  of  tropical  

forest  beetles.    Insect  Conservation  and  Diversity  1(2):  114-­‐119.  

United   Nations   (1993)   Multilateral   Convention   on   Biological   Diversity   (with   annexes):  

concluded  at  Rio  de  Janeiro  on  5  Juno  1992.  Treaty  series.    1760(30619):  142-­‐382.  

Vargha   B,   Ötvös   E,   Tuba   Z     (2002)   Investigations   on   ecological   effects   of   heavy   metal  

pollution   in  Hungary  by  moss-­‐dwelling  water  bears  (Tardigrada)  as  bioindicators.  Ann  

agric  Environ  Med.  9:  141-­‐146.  

Vicente   F,   Michalczyk   L,   Kaczmarek   L,   Boavida   MJ   (2008)   Observations   on   Pyxidium  

tardigradum  (Ciliophora),   a  protozoan   living  on  Eutardigrada:   infestation,  morphology  

and  feeding  behavior.  Parasitology  Research  103:  1323-­‐1331.  

Vié  J-­‐C,  Hilton-­‐Taylor  C,  Stuart  SN  (eds.)  (2009)  Wildlife  in  a  Changing  World  –  An  Analysis  

of  the  2008  IUCN  Red  List  of  Threatened  Species.  Gland,  Switzerland:  IUCN.  180  pp.  

Page 28: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

Page 29: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia
Page 30: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

 

 

 

 

 

 

Paper  2  

 

The   impact   of   fire   on   terrestrial   tardigrade   biodiversity:   a  case-­‐study  from  Portugal    

Filipe  Vicente,  Michele  Cesari,  Artur  Serrano  &  Roberto  Bertolani  

Journal  of  Limnology  (submitted)  

Page 31: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia
Page 32: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  31  

Abstract  

Currently,  loss  of  habitat  is  the  greatest  threat  to  biodiversity,  yet  little  is  known  about  its  

effect   on  microscopic   animal   taxa,   such   as   Tardigrada.   One   of   the   causes   behind   habitat  

destruction  is  forestall  fire,  both  naturally  occurring  and  caused  by  man.  The  latter  type  is  a  

very   common  method   used   in   agriculture,   as   a  way   for   killing   insect   plagues   or   for   soil  

preparation,  as  well  as  in  conservation,  being  used  for  creating  habitat  mosaics.  In  Portugal,  

42%  of  fire  frequency  is  due  to  human  activities.  The  impact  of  fires  in  biodiversity  is  not  

consensual,  with   studies  pointing   towards  different   conclusions.  Different  methodologies  

and  target  taxonomic  study  groups  may  partly  explain  this  paradigm.  

This   study   is   a   first   approach   to   possible   effects   caused   by   habitat   destruction   on  

tardigrade  populations.  For  this  we  have  analyzed  the  taxonomic  and  genetic  variations  of  

tardigrades   from   a   fire   affected   location   in   a   Portuguese   natural   park.   Sampling   was  

performed   during   a   10   year   period,   from   2000   to   2010.   The   location  was   affected   by   a  

small   fire   in  1998  and  a  big   fire   in  2003.  A  total  of  11  species   from  nine  separate  genera  

were  recorded,  and  19  cox1  haplotypes  were  found.    

Our  data  show  a  pattern  which  suggests  a  negative  effect  of  a   forestall   fire  on   tardigrade  

populations.   Taxonomic   and   genetic   richness,   as   well   as   animal   abundance   show   lower  

levels  in  the  years  after  a  fire,  when  compared  with  the  years  that  preceded  it.  Additionally,  

the  population  recovered  visibly  faster  after  the  small  fire  than  after  the  bigger  one.  This  is  

consistent   with   the   fact   that   larger   fires   destroy   larger   forestall   areas,   leaving   fewer  

animals   at   a   farther  distance  available   for   re-­‐colonization.  Most   species   found  before   the  

main   fire   are   also   found   after   it,   indicating   a   high   capability   to   re-­‐colonize   by   these  

tardigrades.  However,  only  three  of  all  recorded  haplotypes  were  found  both  pre  and  post  

the   main   fire,   which   indicates   genetic   diversity   loss   by   direct   consequence   of   fire.  

Therefore,  we  conclude  that  habitat  destruction  by  means  of  forestall  fire  has  a  detrimental  

effect  over  tardigrade  biodiversity,  and  may  have  similar  effects  on  other  small  animals.    

 

Keywords    

Fire  impact,  Tardigrada,  cox1,  Portugal,  biodiversity,  re-­‐colonization.  

 

Page 33: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  2  

 32  

Introduction  

Loss  of  habitat  is  currently  the  single  greatest  threat  to  biodiversity  (Millennium  Ecosystem  

Assessment,  2005).  However,  for  many  taxonomic  groups  there  is  still  no  clue  or  evidence  

of   how   habitat   loss   affects   their   intrinsic   biodiversity   and/or   population   structure  

(Andersen  and  Müller  2000,  Vicente  2010).  One  of  such  groups  is  the  phylum  Tardigrada.  

These   are   microscopic   metazoans   that   inhabit   most   of   the   planets   environments:  

terrestrial,   freshwater  and  marine.  On   terrestrial  environment,   they  are  commonly   found  

on  aquatic  microcosms  where  water   films  or  microwater  bodies  are  unpredictably  added  

and  temporarily  retained,  such  as  mosses  and  lichens.  

On   temperate   climates,   these   micro-­‐habitats   are   usually   inactive   during   the   warmer  

months  due   to  desiccation,   and   in  winter  when   frozen.  Mosses   and   lichens   recover   their  

activity  with   the   return   of  moisture,   together  with   the   fauna   that   usually   inhabits   them:  

tardigrades,  rotifers  and  nematodes,  all  of  which  are  capable  of  undergoing  anhydrobiosis.  

During  these  periods  of  inactivity,  these  terrestrial  micro  habitats  are  particularly  exposed  

to  environmental  threats  such  as  forestall  fires.  

Apart   from   the   obvious   directly   destructive   effect   that   fires   have   on   biodiversity,   their  

impact  on  ecosystems  is  very  important,  e.g.,  by  the  destruction  of  riparian  flora  supporting  

freshwater  systems   (New  et  al.  2010),  by  destroying  soil  grass  and   thus  accelerating  soil  

erosion  (Naveh  1998),  or  altering  mammal’s   foraging  behavior   (Wallace  and  Crosthwaite  

2005).  

Fires  have  long  been  known  to  reduce  populations  of  small  fauna,  as  they  have  historically  

been  used  to  attack  populations  of  agricultural  damaging  insects,  either  by  direct  kill  or  by  

habitat   destruction   (McCullough   et   al.,   1998).   Other   common   reasons   behind   the   use   of  

deliberate   fires   are   the   preparation   of   land   for   agriculture   (Sim-­‐Sim   et   al.,   2004)   or   the  

reduction  of   organic   fuel   levels,   in   order   to  minimize   the   impact   of   high  magnitude   fires  

(Andrew   et   al.,   2000;   York,   2000).   According   to   Simorangkir   (2007)   the   biggest   reason  

behind  the  widespread  use  of  fire  for  land  clearing  is  its  low  economic  cost,  mainly  in  large  

areas.   For   small   forest   areas,   zero-­‐burning   alternatives   can   be   as   low   cost-­‐effective   as  

burning.   The   extent   of   fire   induced  damages   is   dependent   on   several   factors,   such   as   its  

type  and  intensity,  environmental  variables  or  organism  adaptation  to  water   loss  (Araújo  

and  Ribeiro,  2005).  Additionally,  global  warming  is  another  source  of  higher  fire  frequency.  

Page 34: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  33  

In   the   Portuguese   case,   human   activities   explain   42%   of   changes   in   fire   frequency   and  

temperature  anomalies  explain  43%  of  the  area  burnt  (Costa  et  al.  2011).  

Nevertheless,   the   effect   of   fire   on   biodiversity   is   not   consensual.   Some   studies   suggest  

positive   fire   consequences,   such   as   the   maintenance   of   habitat   mosaics   of   different  

succession  stages  (Ghandi  et  al.,  2001).  That  is,  according  to  Parr  and  Andersen  (2006),  an  

increasingly   popular   theory   amongst   conservation   management   agencies   worldwide,  

which   has   resulted   in   patch   mosaic   burning   being   a   commonly   used   biodiversity  

conservation  strategy   these  days.  However,  other  studies  suggest  a  negative  outcome,  by  

destroying   endemic   and   low   dispersing   species   (Yanovsky   and   Kiselev   1996;   Quartau  

2009).   This   apparent   incongruence   of   conclusions   could   result   from   the   different  

conditions   in  which   individual   studies  were   conducted,   such   as   the   fire   regimes,   the   pre  

and   post-­‐fire   ecology   of   the   region,   or   the   taxa   in   focus   (Moretti   et   al.,   2004;   Parr   and  

Andersen,   2006).   According   to   New   et   al.   (2010),   pre   and   post   fire   data   follow   up   from  

burning  sites  are  a  common  gap  in  such  studies.  

To   date   no   such   studies   exist   with   a   specific   focus   on   tardigrades   or   other   micro-­‐

invertebrate  groups.   In  a  broad  spectrum  study,  Malmström  et  al.   (2009)   found  that,   five  

years  after  a  fire,  tardigrade  abundance  had  reached  52%  in  comparison  with  the  unburnt  

area.  However,  at  this  time  no  data  exist  regarding  effects  on  tardigrade  species,  population  

or  genetic  pool  diversity.    

In   this   study   we   are   trying   to   understand,   for   the   first   time,   how   limno-­‐terrestrial  

tardigrade  populations  respond  to  a  situation  of  habitat  loss  caused  by  forestall  fire.  To  do  

so,  we  analyzed  consecutive  samples  from  one  small  geographic  mountain  area  in  Portugal,  

and  focused  both  on  changes  in  population  dynamics  as  well  as  on  their  respective  levels  of  

genetic  diversity.  

 

 

 

 

 

Page 35: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  2  

 34  

Material  and  Metods  

Samples   of   the   moss   species   Orthotrichum   striatum   Hedwig,   1801   were   collected   at  

Carvalhal  da  Moita  do  Conqueiro,  Serra  da  Estrela’s  Natural  Park,  Portugal,  1529  m  above  

sea  level,  from  an  area  of  roughly  10  m2  (Fig.  1).  One  sample  per  year  was  collected  in  2000,  

2003,   2005,   2006,   2007   and   2010.   A   big   fire   occurred   in   2003,   about   one   month   after  

sampling;  a  smaller  fire  had  taken  place  previously,  in  1998.  Even  though  the  sampling  site  

was  visited  in  2004,  no  sample  was  collected  then  since  new  mosses  were  still  starting  to  

get  established.  

 

 Figure  1   –  Sampling   site   (Carvalhal   da  Moita   do   Conqueiro,   Serra   da   Estrela,   Portugal).   General   (left)   and  detailed  (right)  maps  of  Serra  da  Estrela’s  Natural  Park.  Arrow  points  to  sampling  site.  Source:  www.icnf.pt.    

Samples   were   left   to   air   dry   at   room   temperature,   weighed   and   tested   for   animals   by  

soaking  for  at  least  30  min  and  washed  through  consecutive  500  µm  and  38  µm  sieves.  All  

animals   and   eggs   present   in   sieved   sample   were   manually   selected   under   a  

stereomicroscope.    

Page 36: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  35  

Voucher  specimens  were  photographed  in  vivo  and  then  used  for  DNA  analysis,  following  

the  protocol  described  in  Cesari  et  al.  (2011).  The  other  animals  and  eggs  were  mounted  on  

slides   using   Faure-­‐Berlese   fluid.   In   vivo   and  mounted   specimens  were   observed   using   a  

light  microscope  Leitz  DM  RB,  always  at  100x  oil  objective  for  the  mounted  specimens  and  

eggs,  at  40x  or  100x  oil  for  the  in  vivo  specimens.  Species  richness  (d),  diversity  Shannon-­‐

Wiener   index   (H’)   and  dominance   Simpson   index   (λ’)   have  been   calculated  using  Primer  

5.2.9  (PRIMER-­‐E  Ltd.),  considering  all  animals  found  in  the  six  years.    

DNA   extraction     from   single   specimens   and   PCR   amplification   of   a   fragment   of   the   cox1  

gene  was  carried  out  following  Cesari  et  al.  (2009)  protocol,  using  LCO-­‐1490  (5’-­‐GGT  CAA  

CAA  ATC  ATA  AAG  ATA  TTG  G-­‐3′;  Folmer  et  al.  1994)  and  HCO-­‐2198  (5’-­‐TAA  ACT  TCA  GGG  

TGA  CCA  AAA  AAT  CA-­‐3’;  Folmer  et  al.  1994)  as  primers.  The  amplified  products  were  gel  

purified  using  the  Wizard  Gel  and  PCR  cleaning  (Promega)  kit.  For  assurance,  both  strands  

were  sequenced  using  an  ABI  Prism  3100  sequencer  (Applera).  Sequences  were  translated  

to  amino  acids  by  using  the  invertebrate  mitochondrial  code  implemented  in  MEGA  version  

5  (Tamura  et  al.,  2011)  in  order  to  check  for  the  presence  of  stop  codons  and  therefore  of  

pseudogenes.  Nucleotide  sequences  were  aligned  with  the  Clustal  algorithm  implemented  

in   MEGA5   (pairwise   and   multiple   alignment   parameters:   Gap   opening   penalty:   15,   Gap  

extension   penalty:   6.66)   and   checked   by   visual   inspection.   Nucleotide   sequences   of   the  

newly   analysed   specimens   were   submitted   to   GenBank   (Accession   Numbers   JX683810-­‐  

JX683833).  Specimens  pertaining   to  Diploechiniscus  oihonnae  (GenBank  A.N.   JX676191-­‐4)  

were  already  analyzed  in  Vicente  et  al.  (in  preparation)  and  they  were  also  included  in  the  

present  analysis.  Minimum  spanning  network  analysis  between  haplotypes  was  performed  

by  using  Arlequin  3.1  (Excoffier  et  al.,  2005)  and  visualized  by  using  HapStar  (Teacher  and  

Griffiths  2011).      

 

 

 

 

Page 37: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  2  

 36  

Results  

A  total  of  276  animals  (eggs  were  not  considered)  representing  11  species  and  nine  genera  

were   extracted   from   six   samples,   covering   a   10   year   time   span.   Sampling   was   not  

conducted  in  the  unrepresented  years.  Abundances  are  depicted  in  Table  1,  together  with  

species   richness   (d),   Shannon   index   (H’)   for   diversity   and   Simpson   index   (λ’)   for  

dominance  in  each  sample  (year).    

Table  1  –  Specimens  and  species  abundances  over  the  sampling  years.  d:  species  richness;  H’(loge):  Shannon  index  for  diversity;  λ’:  Simpson  index  for  dominance.    Species   Number  of  found  specimens    

 2000   2003   2005   2006   2007   2010   Overall  

Macrobiotus  cf.  macrocalix   1   15   8   46   2   8   80  

Pseudechiniscus  facettalis   19   0   0   3   51   2   75  

Echiniscus  blumi   0   0   0   0   0   61   61  

Diploechiniscus  oihonnae   0   2   2   2   10   0   16  

Milnesium  cf.  tardigradum   1   5   5   2   0   2   15  

Macrobiotus  vladimiri     3   1   1   4   0   1   10  

Minibiotus  furcatus   0   6   0   0   3   0   9  

Bryodelphax  parvulus   0   4   1   0   0   0   5  

Hypsibius  pallidus   0   2   0   0   0   0   2  

Ramazzottius  cf.  oberhaeuseri   0   1   0   0   1   0   2  

Echiniscus  quadrispinosus   1   0   0   0   0   0   1  

Total  specimens     25   36   17   57   67   74   276  

d     1.243   1.953   1.412   0.989   0.951   0.929    

H’  (loge)   0.849   1.702   1.300   0.750   0.798   0.653    

λ’     0.580   0.219   0.287   0.655   0.599   0.689    

 

Macrobiotus   cf.   macrocalix   is   the   most   commonly   found   species   overall,   the   richest   in  

specimen  numbers  and  the  only  one  present  in  all  sampling  years.  Those  specimens  differ  

from  the  type  material  of  Macrobiotus  macrocalix  Bertolani  and  Rebecchi,  1993  by  having  a  

higher   pit   number   on   the   egg   shell   and   sometimes   a   crenulated   distal   disc   of   the   egg  

processes,  as  well  as  for  their  different  haplotype.  In  terms  of  abundances,  it  is  followed  by  

Pseudechiniscus   facettalis   Petersen,   1951   and   then  by  Echiniscus  blumi   Richters,   1903.   In  

terms  of  continuity,  M.  cf.  macrocalix  is  followed  by  Milnesium  cf.  tardigradum,  Macrobiotus  

vladimiri  Bertolani,  Biserov,  Rebecchi  and  Cesari,  2011  (both  not  found  only  in  2007)  and  

then  by  P.  facettalis  (not  found  in  2003  and  2005)  and  Diploechiniscus  oihonnae  (Richters,  

Page 38: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  37  

1903)  (not  found  in  2000  and  2010).  The  remaining  species  show  much  lower  abundances  

and   are   present   only   in   one   (Hypsibius   pallidus   Thulin,   1911,   Echiniscus   quadrispinosus  

Richters,   1902,   E.   blumi)   or   two   (Minibiotus   furcatus   Ehrenberg,   1859),   Bryodelphax  

parvulus   Thulin   1928,   Ramazzottius   cf.   oberhaeuseri)   of   the   six   sampling   years.   Species  

richness  peaks  in  the  year  2003,  also  with  the  highest  diversity  index  (Shannon  index  H’)  

present  in  the  same  year,  in  correspondence  of  the  lowest  dominance  index  (Simpson  index  

λ’)  just  a  few  months  before  the  biggest  fire.    

In   regard   to   the  molecular   analysis,   19   cox1   haplotypes   were   identified   (Table   2)   in   all  

considered  years.  DNA  has  been  extracted  from  specimens  of  every  identified  species  but  

in  some  cases  it  was  not  possible  to  determine  the  haplotype.  Figure  2  depicts  a  minimum  

spanning  network  for  all  scored  haplotypes,  their  presence  in  each  sample  (year)  and  the  

intraspecific  distances,  in  terms  of  substitutions.    

Table  2   –  Distinct   haplotypes   registered   in   each   year,   for   the   different   species.   Each   species   is   assigned   a  unique  haplotype  letter  tag.  (-­‐)  –  Species  not  registered  in  a  given  year,  or  DNA  extracted  but  haplotypes  not  determined.    

  Species   2000   2003   2005   2006   2007   2010  

Macrobiotus  cf.  macrocalix   -­‐   A1,  A2,  A3   A2   A2,  A4   A2   A2  

Pseudechiniscus  facettalis   -­‐   -­‐   -­‐   B1   B2   -­‐  

Echiniscus  blumi   -­‐   -­‐   -­‐   -­‐   -­‐   C1,  C2  

Diploechiniscus  oihonnae   -­‐   D1   D2   D3   D2   -­‐  

Milnesium  cf.  tardigradum   -­‐   E1   E2   E2,  E3   -­‐   -­‐  

Macrobiotus  vladimiri   F1   -­‐   -­‐   -­‐   -­‐   F1  

Minibiotus  furcatus   -­‐   G1   -­‐   -­‐   G2   -­‐  

Bryodelphax  parvulus   -­‐   H1   H1   -­‐   -­‐   -­‐  

Hypsibius  pallidus   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐  

Ramazzottius  cf.  oberhaeuseri   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐  

Echiniscus  quadrispinosus   I1   -­‐   -­‐   -­‐   -­‐   -­‐  

 

The   spanning   network   (Fig.   2)   shows   a   reduced   number   of   substitutions   amongst  most  

haplotypes,  with  the  exception  of  D.  oihonnae,  where  two  haplotypes  are  separated  by  22  

substitutions.  With   four   haplotypes   each,  Macrobiotus   cf.  macrocalix   and  D.   oihonnae  are  

the  species  with  the  highest  genetic  diversity.  Milnesium  cf.  tardigradum  follows  with  three  

haplotypes.   Remaining   species   exhibit   only   one   or   two   haplotypes.   Macrobiotus   cf.  

macrocalix   also   exhibits   the   only   haplotype   present   in   100%   of   the   species’   samplings  

(haplotype  A2).  

Page 39: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  2  

 38  

 

 

Figure   2   -­‐   Minimum   spanning   network.   Haplotypes   are   represented   by   circles   with   the   area   being  proportional  to  their  frequency  of  occurrence.  Lines  represent  single  mutational  events,  while  small  half  filled  squares  denote  missing/ideal  haplotypes.  Different  shades/patterns  denote  different  sampling  years.  Letters  and  numbers  indicate  haplotypes  as  in  table  2.    

 

Page 40: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  39  

Discussion  

Macrobiotus   cf.  macrocalix   is   the   only   species   present   in   all   sampling   years,   other   than  

those  most  abundant.  Morphological  and  genetic  differences  of   these  specimens  with   the  

type  material  and  other  population  of  M.  macrocalix  are  not  a  subject  of  this  work  and  will  

be   discussed   in   a   future   paper   (Bertolani   et   al.,   in   preparation).   Haplotype   A2   of   this  

species  is  present  in  every  sample  and  is  largely  dominant  with  respect  to  the  other  three  

haplotypes  found  for  the  same  species.    

The  highest   species   richness   and  diversity   index   are   present   in   2003,   just   a   few  months  

before   the  biggest   fire.  Most   species   found   in   the   sampling   area  have  been   found   in   that  

sample.   In   2005   the   H’   is   relatively   high   but   lower   than   in   the   previous   sampling   year,  

while  in  the  following  three  samplings,  when  the  highest  numbers  of  specimens  have  been  

found,  the  H’  values  are  the   lowest.   In  the   last  three  samplings,   it   is  evident  that  the  high  

number  of  specimens  is  due  to  the  presence  of  a  dominant  species,  different  in  each  year.  

The  pre-­‐fire  sample  from  2003  shows  the  highest  number  not  only  of  species,  but  also  of  

haplotypes.   This   is   in   accordance   with   a   similar   moss   and   lichen   successional   study  

conducted   in   the  same  area,  where  post-­‐fire  biodiversity   levels  significantly  decreased   in  

burnt  areas  in  opposition  to  unburnt  ones,  with  the  differences  fading  as  the  years  passed  

by  (Sim-­‐Sim  et  al.,  2004).  However,  it  should  be  noted  that  it  was  not  a  pristine  population,  

regardless  of   being   the   ‘richest’   one  of   all.  Occurrence  of   a  previous   smaller   fire   in  1998  

(see   introduction),   was   the   reason   why   the   2000   sample   presented   considerably   lower  

scores  throughout  the  analysis,  in  comparison  with  those  from  the  year  2003.    

The  fact  that  the  main  fire,  in  2003,  was  one  of  greatest  proportions  is  quite  evident  when  

we  consider  not  only  the  unmatched  levels  of  2003’s  population  richness,  but  also  the  fact  

that   recovery   was   clearly   delayed   by   that   fire.   This   should   be   so,   because   a   fire   of  

considerable   proportions   destroys   a   larger   forestall   area   than   a   smaller   fire,   thus   killing  

more  animals  as  well  as  their  live  substrates.  Therefore,  fewer  animals  are  left  alive  and  at  

a  longer  distance,  making  the  process  of  re-­‐colonization  less  likely  to  occur.  An  example  of  

how   the   destruction   of   living   substrates   can   affect   invertebrate   biodiversity   comes   from  

Diniz   et   al.   (2011)   who,   while   studying   caterpillars,   found   that   the   occurrence   of   these  

animals  in  their  plant  hosts  was  between  2.4  and  5.2  times  higher  in  unburnt  areas  than  in  

burnt  ones.  

Page 41: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  2  

 40  

The  lower  number  of  species  found  after  the  fires  matches  the  results  of  York  (1999),  who  

showed  that  areas  subjected  to  frequent  low-­‐intensity  fires  had  significantly  lower  levels  of  

several   macro   invertebrate   taxa.   In   York   (1998)   the   loss   of   morphospecies   as   a  

consequence  of  frequent  fires  reached  46%,  in  comparison  with  control  unburnt  areas.  

Most  species  found  before  the  main  fire  are  also  found  after  it,  indicating  a  high  capability  

to   re-­‐colonize   by   tardigrades.   The   only   exceptions   are  Hypsibius   pallidus   and   Echiniscus  

quadrispinosus,   but   they   only   represent   1.09%   of   the   overall   population.   Looking   at   the  

genetic  data,  the  spanning  network  shows  a  reduced  number  of  substitutions  among  most  

haplotypes,  with  the  exception  of  D.  oihonnae,  where  two  haplotypes  are  separated  by  22  

substitutions.  This   accounts   for   a  Kimura  2-­‐parameters  distance  of   4%   (Vicente  et   al.,   in  

preparation),   still   within   the   single-­‐species   limits.   Only   haplotypes   A2,   F1   and   H1   are  

represented  both  pre  and  post  main  fire.  That  means  that  even  though  most  species  were  

able  to  return  to  the  destroyed  location,  almost  90%  of  the  haplotypes  are  unique  to  either  

one  of  the  situations:  pre  or  post-­‐fire  destruction.  However,  this  does  not  imply  a  massive  

genetic  diversity  loss  as  a  sole  consequence  of  fire,  since  the  verified  haplotypes  continue  

to   shift   within   the   same   species   after   the   fire.   A   good   example   is  Diploechiniscus   with   a  

different  haplotype  in  every  sampling  year,  indicating  a  very  dynamic  genetic  change  in  the  

genetic  structure  of   the  population.  Being   the  number  of  data   limited,  we  cannot  exclude  

that   some   haplotypes   not   found   in   2000-­‐2003   were   already   present   in   those   years.  

Nonetheless,   the   high   numbers   of   newly   scored   haplotypes   let   us   to   hypothesize   that   at  

least   some   of   them   come   from   areas   where   the   passive   transport   is   a   possibility.   It   is  

evident  that  the  more  common  haplotypes  were  able  to  survive   in  the  same  or   in  nearby  

non-­‐burned  habitats  and  then  re-­‐colonize  the  original  spot.  Haplotype  A2  clearly  states  it.  

The  fact  that  all  other  post  main  fire  haplotypes  besides  A2,  F1  and  H1  are  not  only  new  but  

also   inconsistent   in  presence,  suggests   that   the  original  genetic  pool  has  generically  been  

replaced  and  may  have  been  lost.  This  suggests  that  the  community  will  need  many  years  

to   reach  a  new  balance.  Original  biodiversity   indexes  were   far   from  being   reached  seven  

years   after   the  main   fire   and   it   is   not   possible   to   predict  when   and   if   they  will   ever   be  

restored.  However,   in   the  hypothesis  of  a   longer   study,  we  should  consider   that  a   longer  

term   study   could   constitute   a   very  difficult   goal   to   set:   in   the   case  of  Australian   lowland  

savannah  only  3%  of   the   landscapes  remain  unburnt   for  more  than  5  years  (Andersen  et  

al.,  2005).  

Page 42: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  41  

In   our  opinion,   an   implementation  of   the  molecular   approach,   other   than  morphological,  

should   be   considered   into   the   elaboration   of   future   forestall   and   other   natural   areas’  

management  strategies  as  well  as  biodiversity  conservation  policy  making,  particularly  in  

what  concerns  induced  fire  management.  

We  conclude   that  even   though   terrestrial   tardigrades  are  a   taxonomic  group   that  can  re-­‐

colonize  a  given  destroyed  habitat  with  considerable  ease,  significant  biodiversity  richness  

is  lost  in  a  destructive  event  such  as  forestall  fire.  The  amount  of  biodiversity  loss  in  such  

an  event  is,  at  least  in  part,  determined  by  the  magnitude  of  the  fire.  Even  though  our  data  

cannot   be   extrapolated   to   other   taxonomic   groups,   they   could   serve   as   reference   for   co-­‐

existing  taxa  such  as  nematodes  or  rotifers.  

 

Acknowlodegments  

The   authors  wish   to   thank  Dr.   César  Garcia   (Botanical  Garden,   Lisbon)   for  providing   the  

moss  samples  used  in  this  study.  We  are  also  very  grateful  to  Dr.  Juliana  Hinton  (McNeese  

State   University,   USA)   for   her   kindness   in   revising   the   English.   This   work   was   partially  

funded   by   the   Portuguese   Fundação   para   a   Ciência   e   a   Tecnologia   with   a   grant  

(SFRH/BD/39234/2007)  to  the  first  author.  The  research  is  also  part  of  the  project  MoDNA  

supported   by   Fondazione   Cassa   di   Risparmio   di   Modena   (Italy)   and   the   University   of  

Modena  and  Reggio  Emilia  (Modena,  Italy).  

 

References  

Andersen  AL,  Cook  GD,  Corbett  LK,  Douglas  MM,  Eager  RW,  Russell-­‐Smith  J,  Setterfield  SA,  

Williams   RJ,   Woinarski   JCZ,   2005.   Fire   frequency   and   biodiversity   conservation   in  

Australian  tropical  savannas:   implications  from  the  Kapalga  fire  experiment.  Austral  

Ecol.  30:155-­‐167.  

Andersen   AL,   Müller  WJ,   2000.   Arthropod   responses   to   experimental   fire   regimes   in   an  

Australian  tropical  savannah:  ordinal-­‐level  analysis.  Austral  Ecol.  25:199-­‐209.  

Andrew  N,  Rodgerson  L,  York  A,  2000.Frequent  fuel-­‐reduction  burning:  the  role  of  logs  and  

associated  leaf  litter  in  the  conservation  of  ant  biodiversity.  Austral  Ecol.  25:99-­‐107.  

Araújo   EA,   Ribeiro   GA,   2005.   Fire   Impacts   on   the   Entomofauna   of   the   Soil   in   Forest  

Page 43: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  2  

 42  

Ecosystems.  Nat.  Desenvolvimento  1:75-­‐85.  

Cesari  M,  Bertolani  R,  Rebecchi  L,  Guidetti  R,  2009.  DNA  barcoding  in  Tardigrada:  the  first  

case   study   on  Macrobiotus   macrocalix  Bertolani   and   Rebecchi   1993   (Eutardigrada,  

Macrobiotidae).  Mol.  Ecol.  Res.  9:699-­‐706.  

Cesari  M,  Giovannini   I,  Bertolani  R,  Rebecchi  L,  2011.  An  example  of  problems  associated  

with  DNA  barcoding  in  tardigrades:  a  novel  method  for  obtaining  voucher  specimens.  

Zootaxa  3104:42-­‐51.  

Costa  L,  Thonicke  K,  Poulder  B,  Badeck  FW,  2011.  Sensitivity  of  Portuguese  forest  fires  to  

climatic,   human,   and   landscape   variables:   subnational   differences   between   fire  

drivers  in  extreme  fire  years  and  decadal  averages.  Reg.  Environ.  Change  11:531-­‐551.  

Diniz   IR,   Higgins   B,   Morais   HC,   2011.   How   do   frequent   fires   in   the   Cerrado   alter   the  

lepidopteran  community?  Biodivers.  Conserv.20:1415-­‐1426.  

Excoffier,  L,  Laval  G,  Schneider  S,  2005.  Arlequin  ver.  3.0:  An  integrated  software  package  

for  population  genetics  data  analysis.  Evol.  Bioinform.  Online  1:47-­‐50.  

Folmer  O,  Black  M,  Hoeh  W,  Lutz  R.  Vrijenhoek  R,1994.  DNA  primers   for  amplification  of  

mitochondrial  cytochrome  c  oxidase  subunit   I   from  diverse  metazoan  invertebrates.  

Mol.  Mar.  Bio.  Biotechnol.  3:294-­‐299.  

Gandhi  KJK,  Spence  JR,  Langor,  DW,  Morgantini  LE,  2001.  Fire  residuals  as  habitat  reserves  

for   epigaeic   beetles   (Coleoptera:   Carabidae   and   Staphylinidae).   Biol.   Conserv.  

102:131-­‐141.  

Malmström  A,   Person   T,   Ahlström  K,   Gongalsky   KB,   Bengtsson   J,   2009.   Dynamics   of   soil  

meso-­‐   and   macrofauna   during   a   5-­‐year   period   after   clear-­‐cutburning   in   a   boreal  

forest.  App.  Soil  Ecol.  43:61-­‐74.  

McCullough   DG,  Werner   RA,   Neumann   D,   1998.   Fire   and   insects   in   northern   and   boreal  

forest  ecosystems  of  North  America.  Annu.  Rev.  Entomol.  43:107-­‐127.    

Millennium   Ecosystem   Assessment   (2005)   Ecosystems   and   Human   Well-­‐being:  

Biodiversity  Synthesis.  World  Resources  Institute,  Washington,  DC:  86  pp.  

Moretti  M,  Obrist  MK,  Duelli  P,  2004.  Arthropod  biodiversity  after  forest  fires:  winners  and  

losers  in  the  winter  fire  regime  of  the  southern  Alps.  Ecography.  27:173-­‐186.  

Naveh   Z,   1998.   From   Biodiversity   to   Holistic   conservation   of   the   biological   and   cultural  

diversity   of   Mediterranean   landscapes.   In:   Rundel   P,   Montenegro   G   and   Jaksic   FM  

(eds.),   Landscape   disturbance   and   biodiversity   in   Mediterranean-­‐type   ecosystems.  

Ecological  studies.  Vol.  136  Springer,  Berlin,  pp.  23-­‐50.  

Page 44: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

The  impact  of  fire  on  terrestrial  tardigrade  biodiversity    

  43  

New  TR,  Yen  AL,  Sands  DPA,  Greenslade  P,  Neville  PJ,  York  A,  Collet  NG,  2010.  Planned  fires  

and  invertebrate  conservation  in  south  east  Australia.  J.  Insect  Conserv.  14:567-­‐574.    

Parr   CL,   Andersen   AN,   2006.   Patch   Mosaic   Burning   for   Biodiversity   Conservation:   a  

Critique  of  the  Pyrodiversity  Paradigm.  Conserv.  Biol.  20:1610-­‐1619.  

Quartau   JA,   2009.   Preventative   fire   procedures   in   Mediterranean   woods   are   destroying  

their  insect  Biodiversity:  a  plea  to  the  EU  Governments.  J.  Insect  Conserv.  13:267-­‐270.  

Sim-­‐Sim  M,   Carvalho   P,   Sérgio   C,   Garcia   C,   Rego   F,   2004.   Recolonisation   and   changes   in  

bryophyte   and   lichen   biodiversity   in   burned   areas   from   the   Serra   da   Estrela  

(Portugal).  Cryptogam.  Bryol.  25:279-­‐296.  

Simorangkir  D,  2007.  Fire  use:  Is   it  really  the  cheaper  land  preparation  method  for  large-­‐

scale  plantations?  Mitig.  Adapt.  Strat.  Glob.  Change  12:147-­‐164.  

Tamura  K,  Peterson  D,  Peterson  N,  Stechler  G,  Nei,  M,  Kumar  S,  2011.  MEGA5:  molecular  

evolutionary  genetics  analysis  using  maximum  likelihood,  evolutionary  distance,  and  

maximum  parsimony  methods.  Mol.  Biol.  Evol.  28:2731-­‐2739.  

Teacher   AGF,   Griffiths   DJ,   2011.   HapStar:   automated   haplotypes   network   layout   and  

visualization.  Mol.  Ecol.  Res.  11:151–153.  

Vicente   F,2010.   Micro-­‐invertebrates   conservation:   forgotten   biodiversity.   Biodivers.  

Conserv.  19:3629-­‐3634.  

Wallace  LL,  Crosthwaite  KA,  2005.The  effect  of  fire  spatial  scale  on  Bison  grazing  intensity.  

Landscape  Ecol.  20:337-­‐349.  

Yanovski   VM,   Kiselev   VV,   1996.   Response   of   the   endemic   insect   fauna   to   fire   damage   in  

forest   ecosystems.   pp   409-­‐413.   In:   Goldammer   JG   and   Furyaev   VV.   (eds.),   Fire   in  

ecosystems  of  boreal  Eurasia.  Kluwer  Academic  Publishers.  

York  A,  1998.  Managing  for  biodiversity:  What  are  the   long-­‐term  implications  of   frequent  

fuel-­‐reduction   burning   for   the   conservation   of   forest   invertebrates?   Third  

International  Conference  on  Forest  Fire  Research.  Proceedings  Vol.  II,  pp.  1435-­‐1445.  

16-­‐20  November  1998.  Luso,  Portugal.  

York  A,  1999.  Long-­‐Term  Effects  of  Frequent  Low-­‐Intensity  Burning  on  the  Abundance  of  

Litter-­‐Dwelling  Invertebrates  in  Coastal  Blackbutt  Forests  of  Southeastern  Australia.  

J.  Insect  Conserv.  3:191-­‐199.  

York  A,  2000.  Long-­‐term  effects  of   frequent   low-­‐intensity  burning  on  ant  communities   in  

costal    blackbutt  forests  of  southeastern  Australia.  Austral  Ecol.  25:83-­‐98.    

Page 45: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

Page 46: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

 

 

 

 

 

 

 

 

Paper  3  

 

Considerations  on  the  taxonomy  of  the  Phylum  Tardigrada  

 Filipe  Vicente  &  Roberto  Bertolani    

Zootaxa  (submitted)  

Page 47: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

   

Page 48: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Considerations  on  the  taxonomy  of  the  Phylum  Tardigrada    

  47  

 Macrobiotus  hufelandi  Schultze1834  is  the  founding  species  of  the  Phylum  Tardigrada  and  

the  group’s  taxonomic  list  is  constantly  receiving  new  members,  with  several  new  species  

being  added  every  year.  In  order  to  provide  a  single  and  complete  database  for  all  known  

species   of   tardigrades,   as   well   as   standardizing   the   description   criteria,   a   checklist   was  

created  by  Guidetti  &  Bertolani  (2005).  However,  this  effort  calls  for  constant  attention  to  

keep  an  updated  list  that  registers  all  the  new  species  descriptions,  which  is  evidenced  by  

the   fact   that   the   currently   available   checklist   is   already   in   its   21st   version   (Degma   et   al.,  

2009-­‐2012).  Here  we  can  find  a  total  of  1167  species  representing  114  genera  (Table  I),  12  

subfamilies,  24  families  and  four  super  families,  four  orders  and  three  classes;  one  of  which  

(Mesotardigrada)   is   represented   by   a   single   species   (Thermozodium   esakii)   and   is   quite  

controversial   (Nelson,   2002).   Other   uncertainties   are   noted   in   the   positioning   of   the  

families   of   Beornidae   and   Necopinatidae,   each   containing   only   one   species,   the   genus  

Apodibius,   or   the   veracity   of   Oreella   vilucensis   (nomen   dubium).     The   flood   of   new  

descriptions,   recently  published  or   in  press,   for  new  species   (e.g.  Kaczmarek  et  al.   a,b,   in  

press   ;  Miller  et  al.,  2012a;  Pilato  et  al.,  2012;  Zawierucha  et  al.,   in  press)  and  new  genera  

(Miller  et  al.,  2012b;  Vicente  et  al.,  submitted),  continues  unabated.  A  sign  that  tardigrade  

biodiversity  still  has  a  great  deal  of  richness  to  reveal  and  that  we  might  have  only  seen  the  

tip  of  the  iceberg.  

Table   I   lists   tardigrade   genera   and   we   can   see   that   some   are   substantially   richer   than  

others.  The  genus  Echiniscus   is   the  most  speciose,  with  163  species  (the  average   is  10.33  

species  per  genus),  closely   followed  by  Macrobiotus,  with  153  species.    These  two  genera  

alone   contain   27.08%   of   all   known   tardigrade   species   and   combined   with   Isohypsibius,  

Diphascon   and  Minibiotus,   nearly   half   (49.36%)   of   the   known   tardigrade   taxa.   However,  

this  list  is  more  than  just  a  portrait  of  the  actual  Tardigrada  biodiversity;  it  also  reflects  a  

curious   hidden   bias.   Sampling   is   far   more   abundantly   performed   on   terrestrial  

environments   than   marine.   The   relatively   few   numbers   of   described   marine   species,  

therefore,   could   be   related   to   this   fact.   Only   at   ninth   place   do   we   find   a   marine   genus,  

Batillipes,  with  27  species.  At  the  generic  level,  marine  tardigrades  are,  nevertheless,  richer  

in   terms  of  diversity   (Appeltans  et  al.,  2012).   It   is   incredibly   simple   to   sample   terrestrial  

habitats   for   tardigrades,   since   we   find   them   on   virtually   any   piece   of   moss   or   lichen,  

anywhere.   Thus,   terrestrial   tardigrades   have   been   a   preferential   target   by   all   of   those  

willing   to   study   these  animals.   In   time,   this  has   led   to   the   strong   terrestrial  bias   and   the  

Page 49: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  3  

 48  

limited   number   of  marine   species   that   are   registered   today.  We   therefore   call   for  more  

effort  to  be  put  into  the  study  of  marine  tardigrades,  in  order  to  provide  a  clearer  picture  of  

the  Phylum’s  biodiversity.  

Table  I   -­‐  Number  of  species  per  genus,   following  version  21  of   the  “Actual  checklist  of  Tardigrada  species”  (Degma,  Bertolani  &  Guidetti,  2009-­‐2012).  

Genus   #  of  species  Echiniscus   163  Macrobiotus   153  Isohypsibius   131  Diphascon   82  Minibiotus   47  Pseudechiniscus   43  Hypsibius   42  Doryphoribius   34  Batillipes,  Paramacrobiotus   27  Ramazzottius   26  Milnesium   19  Bryodelphax   18  Dactylobiotus   16  Echiniscoides   15  Florarctus,  Styraconyx,  Tenuibiotus   13  Tanarctus,  Itaquascon   11  Halechiniscus,  Calcarobiotus   10  Cornechiniscus   9  Mixibius   8  Coronarctus,  Angursa,  Bertolanius,  Pseudobiotus,  Murrayon   7  Stygarctus,  Antechiniscus,  Hypechiniscus,  Hexapodibius,  Platicrista   6  Actinarctus,   Megastygarctides,   Parastygarctus,   Pseudostygarctus,   Mopsechiniscus,  Calohypsibius,  Parhexapodibius,  Thulinius  

5  

Testechiniscus,  Astatumen,  Microhypsibius,  Insuetifurca     4  Archechiniscus,  Dipodarctus,  Wingstrandarctus,  Raiarctus,  Rhomboarctus,  Anisonyches,  Oreella,  Bryochoerus,  Auteruseus,  Hebesuncus,  Halobiotus,  Ramajendas,  Xerobiotus,  Apodibius  

3  

Euclavarctus,   Parmursa,   Chrysoarctus,   Orzeliscus,   Parechiniscus,   Eohypsibius,  Haplomacrobiotus,  Mesocrista,  Parascon,  Eremobiotus  

2  

Trogloarctus,   Clavarctus,   Exoclavarctus,   Moebjergarctus,   Proclavarctus,   Ligiarctus,  Paradoxipus,  Opydorscus,  Bathyechiniscus,  Lepoarctus,  Paratanarctus,  Pleocola,  Tetrakentron,  Tholoarctus,   Zioella,   Neoarctus,   Neostygarctus,   Renaudarctus,   Carphania,   Novechiniscus,  Proechiniscus,   Thermozodium,   Bergtrollus,   Limmenius,   Milnesioides,   Haplohexapodibius,  Bindius,  Paradiphascon,  Acutuncus,  Borealibius,  Fractonotus,  Thalerius,  Adorybiotus,  Biserovus,  Famelobiotus,   Minilentus,   Pseudodiphascon,   Pseudohexapodibius,   Richtersius,   Schusterius,  Macroversum,  Beorn,  Necopinatum  

1  

 

Until   now,   species   are   usually   only   described   on  morphological   and  morphometric   data  

based  on  a  limited  number  of  characters.  To  date,  only  one  species,  Macrobiotus  vladimiri  

Bertolani,   Biserov,   Rebecchi   and   Cesari,   2011,   has   been   described   on   combined  

morphological  and  molecular  information,  i.e.  integrative  taxonomy  (Pardial  et  al.,  2010).  A  

few   other   species   have   also   been   considered   using   integrative   taxonomy   and   barcoded  

with  mtDNA  cox1  gene  (Cesari  et  al.,  2009,  2011;  Bertolani  et  al.,  2010,  2011a,b;  Vicente  et  

Page 50: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Considerations  on  the  taxonomy  of  the  Phylum  Tardigrada    

  49  

al.,   submitted).  Combine   this   limited  use  of   integrated   taxonomy  with  a   small  number  of  

specialized   taxonomists   and  we   have   the   potential   for   a   lot   of   incorrect   descriptions.   At  

times,   species   descriptions   have   been   supported   by   minor   differences   that   new,  

independent  data  have   shown   to  be  no  more   than   intraspecific  morphological   variability  

(see   Vicente   et   al.,   submitted).   Based   on   experience,   it   is   our   strong   belief   that   the  

tardigrade   taxonomic   list   contains   many   examples   of   incorrect   or   limited   taxonomic  

descriptions,  which  are  in  need  of  revision  (such  as  the  68  subspecies  on  the  checklist).  We  

therefore   urge   taxonomists   to   make   an   effort   towards   using   an   integrative   taxonomic  

approach  in  their  future  work.  This  can  be  achieved  by  incorporating  the  study  of  genetics,  

ecology,   feeding   behaviour,   reproductive   strategies   and   other   available   sources   of  

independent   data,   and   integrating   these   results   with   traditional   morphological   analysis.  

This  should  to  make  sure  new  species  are  described  with  stronger  foundations  and  prevent  

the  creation  of  new  synonyms.  It  would  also  help  speed  the  revision  of  older,  past  errors,  

thus  ensuring  the  official   tardigrade  taxonomic  species   list  reflects,  as  closely  as  possible,  

the  true  biodiversity  richness  of  this  animal  group.    

 

Acknowledgements  

We  thank  Professor  Artur  Serrano  (Faculty  of  Sciences,  University  of  Lisbon,  Portugal)  for  

valuable   comments   on   the   manuscript.   We   also   wish   to   thank   Sandra   McInnes,   of   the  

British  Antarctic  Survey,   for  her   critical   support  and   the  English   revision.  This  work  was  

funded   by   the   Portuguese   Fundação   para   a   Ciência   e   a   Tecnologia   with   a   grant  

(SFRH/BD/39234/2007)  to  the  first  author.  

 

References  

Appeltans,   W.,   Ahyong,   S.T.,   Anderson,   G.,   Angel,   M.V.,   Artois,   T.,   Bailly,   N.,   Bamber,   R.,  

Barber,  A.,  Bartsch,  I.,  Berta,  A.,  Błazėwicz-­‐Paszkowycz,  M.,  Bock,  P.,  Boxshall,  G.,  Boyko,  

C.B.,  Brandão,  S.N.,  Bray,  R.A.,  Bruce,  L.N.,  Cairns,  S.D.,  Chan,  T.Y.,  Cheng,  L.,  Collins,  A.G.,  

Cribb,  T.,  Curini-­‐Galletti,  M.,  Dahdouh-­‐Guebas,  F.,  Davie,  P.J.F.,  Dawson,  M.N.,  De  Clerck,  

O.,   Decock,   W.,   De   Grave,   S.,   de   Voogd,   N.J.,   Domning,   D.P.,   Emig,   C.C.,   Erséus,   C.,  

Eschmeyer,  W.,  Fauchald,  K.,  Fautin,  D.G.,  Feist,  S.W.,  Fransen,  C.H.J.M.,  Furuya,  H.,  Garcia-­‐

Alvarez,  O.,  Gerken,   S.,   Gibson,  D.,  Gittenberger,  A.,  Gofas,   S.,   Gómez-­‐Daglio,   L.,   Gordon,  

Page 51: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  3  

 50  

D.P.,   Guiry,   M.D.,   Hernandez,   F.,   Hoeksema,   B.W.,   Hopcroft,   R.R.,   Jaume,   D.,   Kirk,   P.,  

Koedam,  N.,   Koenemann,   S.,   Kolb,   J.B.,   Kristensen,   R.M.,   Kroh,   A.,   Lambert,   G.,   Lazarus,  

D.B.,   Lemaitre,   R.,   Longshaw,   M.,   Lowry,   J.,   Macpherson,   E.,   Madin,   L.P.,   Mah,   C.,  

Mapstone,  G.,  McLaughlin,  P.A.,  Mees,  J.,  Meland,  K.,  Messing,  CG.,  Mills,  C.E.,  Molodtsova,  

T.N.,  Mooi,  R.,  Neuhaus,  B.,  Ng,  P.K.L.,  Nielsen,  C.,  Norenburg,  J.,  Opresko,  D.M.,  Osawa,  M.,  

Paulay,  G.,  Perrin,  W.,  Pilger,  J.F.,  Poore,  G.C.B.,  Pugh,  P.,  Read,  G.B.,  Reimer,  J.D.,  Rius,  M.,  

Rocha,  R.M.,  Saiz-­‐Salinas,  J.I.,  Scarabino,  V.,  Schierwater,  B.,  Schmidt-­‐Rhaesa,  A.,  Schnabel,  

K.E.,   Schotte,   M.,   Schuchert,   P.,   Schwabe,   E.,   Segers,   H.,   Self-­‐Sullivan,   C.,   Shenkar,   N.,  

Siegel,  V.,  Sterrer,  W.,  Stöhr,  S.,  Swalla,  B.,  Tasker,  M.L.,  Thuesen,  E.V.,  Timm,  T.,  Todaro,  

M.A.,  Turon,  X.,  Tyler,  S.,  Uetz,  P.,  van  der  Land,  J.,  Vanhoorne,  B.,  van  Ofwegen,  L.P.,  van  

Soest,  R.W.M.,  Vanaverbeke,  J.,  Walker-­‐Smith,  G.,  Walter,  T.C.,  Warren,  A.,  Williams,  G.C.,  

Wilson,   S.P.   &   Costello   M.   (2012)   The   Magnitude   of   Global   Marine   Species   Diversity.  

Current  Biology,  22(23),  123–456.  

Bertolani,  R.,  Rebecchi,  L.  &  Cesari,  M.  (2010)  A  model  study  for  tardigrade  identification.  

In:  P.L.  Nimis  &  R.  Vignes   Lebbe   (Eds.),  Tools   for   Identifying  Biodiversity:   Progress   and  

Problems,  EUT,  Trieste,  Italy,  pp.  333–339.  

Bertolani,  R.,  Biserov,  V.,  Rebecchi,  L.  &  Cesari,  M.  (2011a)  Taxonomy  and  biogeography  of  

tardigrades   using   an   integrated   approach:   new   results   on   species   of   the  Macrobiotus  

hufelandi  group.  Invertebrate  Zoology,  8,  23–36.  

Bertolani,   R.,   Rebecchi,   L.,   Giovannini,   I.   &   Cesari,   M.   (2011b)   DNA   barcoding   and  

integrative  taxonomy  of  Macrobiotus  hufelandi  C.A.S.  Schultze  1834,  the  first  tardigrade  

species  to  be  described,  and  some  related  species.  Zootaxa,  2997,  19–36.  

Cesari,  M.,  Bertolani,  R.,  Rebecchi,  L.  &  Guidetti,  R.  (2009)  DNA  barcoding  in  Tardigrada:  the  

first   case   study   on  Macrobiotus   macrocalix  Bertolani   &   Rebecchi   1993   (Eutardigrada,  

Macrobiotidae).  Molecular  Ecology  Resources,  9,  699–706.  

Cesari,   M.,   Giovannini,   I.,   Bertolani,   R.   &   Rebecchi,   L.   (2011)   An   example   of   problems  

associated  with   DNA   barcoding   in   tardigrades:   a   novel  method   for   obtaining   voucher  

specimens.  Zootaxa  3104:  42–51.  

Degma,  P.,  Bertolani,  R.  &  Guidetti,  R.  (2009-­‐2012)  Actual  checklist  of  Tardigrada  species.  

Ver.  21:  30-­‐06-­‐2012.  http://www.tardigrada.modena.unimo.it/miscellanea/Actual%20  

checklist%20of%20Tardigrada.pdf,  pp.  36.  

Guidetti,  R.  &  Bertolani,  R.  (2005)  Tardigrade  taxonomy:  an  updated  check  list  of  the  taxa  

and  a  list  of  characters  for  their  identification.  Zootaxa,  845,  1–46.  

Page 52: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Considerations  on  the  taxonomy  of  the  Phylum  Tardigrada    

  51  

Kaczmarek,  Ł.,  Jakubowska,  N.,  &  Michalczyk,  Ł.  (in  press  a)  Current  knowledge  on  Turkish  

tardigrades  with   a   description   of  Milnesium  beasleyi   sp.   nov.   (Eutardigrada:   Apochela:  

Milnesiidae,  the  granulatum  group).  Zootaxa.  

Kaczmarek,   Ł.,   Schabetsberger,   R.,   Litwin,   N.   &   Michalczyk,   Ł.   (in   press   b)  Dactylobiotus  

vulcanus,   a   new   freshwater   eutardigrade   from   Fiji   and   Vanuatu   (Oceania),  with   a   key  

and   remarks   on   dubious   species   of   the   genus   Dactylobiotus.   New   Zealand   Journal   of  

Zoology.  

Meyer,   H.A   &   Hinton,   J.G.   (in   press)   Tardigrades   (Phylum   Tardigrada)   of   the   Island   of  

Barbados   in   the   West   Indies,   with   the   Description   of  Milnesium   barbadosense   sp.   n.  

(Eutardigrada:  Milnesiidae).  Caribbean  Journal  of  Science.  

Miller,   W.R,   Clark,   T.   &   Miller,   C.   (2012a)   Tardigrades   of   North   America:   Archechiniscus  

biscaynei,   nov.sp.   (Arthrotardigrada:   Archechiniscidae),   a   Marine   Tardigrade   from  

Biscayne  National  Park,  Florida.  Southeastern  Naturalist,  11(2),  279–286.  

Miller,   W.R.,   Schulte,   R.   &   Johansson,   C.   (2012b)   Tardigrades   of   North   America:   further  

description  of  the  genus  Multipseudechiniscus  Schulte  &  Miller,  2011  (Heterotardigrada:  

Echiniscoidea:   Echiniscidae)   from   California.   Proceedings   of   the   Biological   Society   of  

Washington,  125(2),  153–164.  

Nelson,  D.  (2002)  Current  Status  of  the  Tardigrada:  Evolution  and  Ecology.  Integrative  and  

Comparative  Biology,  42,  652–659.  

Pardial,   J.M.,   Miralles,   A.,   De   la   Riva,   I.   &   Vences,   M.   (2010)   The   integrative   future   of  

taxonomy.  Frontiers  in  Zoology,  7(16),  1–14.  

Pilato,  G.,  McInnes,  S.J.  &  Lisi,  O.  (2012)  Hebesuncus  mollispinus  (Eutardigrada,  Hypsibiidae),  

a  new  species  from  maritime  Antarctica.  Zootaxa,  3446,  60–68.  

Vicente,   F.,   Fontoura,   P.,   Cesari,   M.,   Rebecchi,   L.,   Guidetti,   R.,   Serrano,   A.   &   Bertolani,   R.  

(submitted)  Integrative  taxonomy  allows  the  identification  of  synonymous  species  and  a  

new  genus  of  Tardigrada  Echiniscidae  (Heterotardigrada).  Zootaxa.  

Schultze,   C.A.S.   (1834)   Macrobiotus   Hufelandii   animal   e   crustaceorum   classe   novum,  

reviviscendi   post   diuturnam   asphyxiam   et   ariditatem   potens,   etc.   8   Seiten,   1   tab.   C.  

Curths,  Berlin,  6  pp,  I  Table.  

Zawierucha,   K.,   Michalczyk,   Ł.   &   Kaczmarek,   Ł.   (in   press)   The   first   record   of   Tardigrada  

from   the   Republic   of   Zambia,   with   a   description   of   Doryphoribius   niedbalaisp.   nov.  

(Eutardigrada:  Hypsibiidae,  the  evelinae  group).  African  Zoology.    

Page 53: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia
Page 54: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

 

 

 

 

 

 

Paper  4  

 

Integrative   taxonomy   allows   the   identification   of  synonymous   species   and   a   new   genus   of   Tardigrada  Echiniscidae  (Heterotardigrada).    

Filipe  Vicente,  Paulo  Fontoura,  Michele  Cesari,  Lorena  Rebecchi,  Roberto  Guidetti,  Artur  Serrano  &  Roberto  Bertolani  

 Zootaxa  (submitted)  

Page 55: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia
Page 56: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  55  

Abstract:    

The  taxonomy  of  tardigrades  is  challenging  as  they  demonstrate  a  limited  number  of  useful  

morphological   characters,   therefore   several   species   descriptions   are   supported   by   only  

minor   differences.   For   example,   Echiniscus   oihonnae   and   Echiniscus   mutispinosus   are  

separated   exclusively  by   the   absence  or  presence  of   dorsal   spines   at  position  Bd.  Doubts  

were  raised  on  the  validity  of  these  two  species,  which  were  often  sampled  together.  Using  

an  integrative  approach,  based  on  genetic  and  in-­‐depth  morphology,  we  studied  two  new  

Portuguese   populations,   and   compared   these   with   archived   collections.   We   have  

determined  that  the  two  species  must  be  considered  synonymous  with  Echiniscus  oihonnae  

the  senior  synonym.  Our  study  showed  generally  low  genetic  distances  of  cox1  gene  (with  a  

maximum   of   4.1%),   with   specimens   displaying   both   morphologies   sharing   the   same  

haplotype,   and   revealed   character   Bd   to   be   variable.   Additionally,   a   more   in-­‐depth  

morphological   and   phylogenetic   study   based   on   the   18S   gene   uncovered   in   a   new  

evolutionary   line   within   the   Echiniscidae,   which   justified   the   erection   of  Diploechiniscus  

gen.   nov.   The   new   genus   is   in   a   sister   group   relationship  with  Echiniscus   and   is,   for   the  

moment,  composed  of  a  single  species.  

 

Keywords    

Diploechiniscus   gen.   nov.,   Diploechiniscus   oihonnae   comb.   nov.,   DNA   barcoding,   18S,  

phylogeny,  morphology  

 

 

 

 

 

 

 

Page 57: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 56  

Introduction  

Currently   the   phylum   Tardigrada   comprises   c.   1000   described   species   (Guidetti   &  

Bertolani,  2005),  with  regular  new  additions.  These  microscopic  metazoans  have  a  limited  

number   of   taxonomically   useful   morphological   characters.   As   a   consequence,   species  

descriptions  are  sometimes  based  on  minor  differences  that  are  not  always  easy  to  confirm.  

Only  recently  has  α-­‐taxonomy  been  combined  with  genetic  data  (Guidetti  et  al.,  2005,  2009;  

Møbjerg  et  al.,  2007;  Jørgensen  et  al.,  2007,  2011;  Cesari  et  al.,  2009,  2011;  Guil  &  Giribet,  

2009;  Schill  et  al.,  2010;  Bertolani  et  al.,  2010,  2011a,  2011b).  

An  example  of  one  of  the  minor  morphological  differences  that  has  separated  two  species  

can   be   found   in   the   absence   or   presence   of   a   spine   at   position   Bd,   which   differentiates  

Echiniscus  oihonnae  Richters,  1903  from  Echiniscus  multispinosus  Cunha,  1944b  within  the  

heterotardigrade   genus   Echiniscus   (for   the   classification   of   dorsal   plates,   spines   and  

filaments   see   Ramazzotti   &   Maucci,   1983   and   Kristensen,   1987).   In   describing   E.  

multispinosus,  Cunha  (1944b)  also  noted  a  difference  in  size,  i.e.  slightly  smaller  dimensions  

with  respect  to  E.  oihonnae.  Moreover,  specimens  have  been  reported  with  spine  Bd  on  only  

one  side  (found  in  Norway  moss)  together  with  numerous  specimens  attributed  to  regular  

E.   multispinosus   and   very   similar   specimens   attributed   to   E.   oihonnae   (Ramazzotti   &  

Maucci,  1983).  It  is  interesting  to  note  that  several  authors  have  found  both  species  at  the  

same   localities,   (e.g.   Cunha  1944a,   1944b   (Viseu   and  Coimbra,   Portugal);   Fontoura   1981  

(Amarante,  Portugal),  and  Dudichev  &  Biserov  2000  (Iturup  Island,  Kuril  Islands,  Russia)).  

In  addition,  both  species  have  black  eyes,  when  Echiniscus  eyes  are  normally  red  or  absent  

(Kristensen,  1987).  These  facts  described  above  raised  the  question  of  whether  these  are  

two  valid  tardigrade  species,  or  simply  variants  of  a  single  species  (Ramazzotti  &  Maucci,  

1983;  Maucci  &  Durante,  1984;  Dudichev  &  Biserov,  2000),  and  also  whether  these  (or  this)  

species  really  belong  to  the  genus  Echiniscus.  

For   this   paper   we   carried   out   an   integrative   taxonomy   study   with   a   more   in   depth  

morphological  analysis  and  added  molecular  analysis  on  two  Portuguese  populations  of  E.  

oihonnae  and  E.  multispinosus  using  mitochondrial  cytochrome  c  oxidase  subunit  1  (cox1)  

and   nuclear   18S   rDNA   gene   markers.   The   former,   using   the   DNA   barcoding   approach,  

allowed  a  better  species  description,  while  the  latter  was  used  to  identify  the  generic  and  

phylogenetic  position  of  the  specimens.  

Page 58: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  57  

Material  and  Methods  

Fresh  moss  and  lichen  samples  were  collected  at  Moita  do  Conqueiro  in  Serra  da  Estrela’s  

Natural  Park  (40°  23′  50″  N,  7°  38′  4″  W)  and  at  Castro  Laboreiro  in  Peneda-­‐Gerês  National  

Park  (42°  2′  17″  N,  8°11′  45″  W),  both  in  Portugal  (Table  1).  Animals  were  extracted  from  

samples  by  soaking  in  tap  water  for  at  least  30  min  and  washed  through  consecutive  500  

µm  and  38  µm  sieves.  Individual  samples  were  manually  selected  under  stereomicroscope  

observation.   Voucher   specimens   (Table   1)  were   photographed   in   vivo   and   then   used   for  

DNA   analysis   following   the   protocol   described   in   Cesari   et   al.,   (2011).   Seventy-­‐seven  

specimens  were  permanently  mounted  with  Hoyer’s  or  Faure  fluid  and  observed  under  a  

Nomarski   Differential   Interference   Contrast   Microscope   (DIC)   and/or   at   Phase   Contrast  

(PhC).  Six  more  were  prepared  for  Scanning  Electronic  Microscopy  following  the  protocol  

described  by  Bertolani  et  al.  (2011a).  These  specimens  were  examined  under  a  Philips  SEM  

XL  40,  available  at   the   ‘Centro   Interdipartimentale  Grandi  Strumenti’   at   the  University  of  

Modena  and  Reggio  Emilia  (Italy).  For  morphological  comparisons,  specimens  identified  as  

E.  oihonnae  or  E.  multispinosus  from  the  Maucci  collection,  Museo  Civico  di  Storia  Naturale  

di   Verona,   Verona,   Italy,   were   examined.     These   included:   15   specimens   from   Forså  

(Norway),  three  specimens  from  Sierra  de  Urbion  (Spain),  three  specimens  from  Caldas  das  

Taipas  and  13  specimens  from  Vilar  Formoso  (Portugal)  (mounting  media  not  specified).  A  

total   of   122   specimens   pertaining   to   the   two   Echiniscus   species   were   inspected   and  

analyzed   for   this   paper:   104   from   Portugal,   15   from   Norway   and   three   from   Spain.  

Unfortunately,   type  specimens  of  E.  oihonnae  (from  Merok,  Norway)  and  E.  multispinosus  

(from  Viseu,  Portugal)  were  not  available.  

To  place  E.  oihonnae  and  E.  multispinosus  within  the  Echiniscidae  group  both  morphological  

and   molecular   results   were   extended   to   other   taxa:   Testechiniscus   spitsbergensis  

(Scourfield,   1897)   from  Lingmark  Glacier,   Disko   Island,   Greenland,  Bryodelphax   tatrensis  

Węglarska,   1959   and   Bryodelphax   parvulus   Thulin,   1928   from   Slovensky   Ray,   Muránska  

Planina   National   Park,   Slovakia   (see   Table   1).   Specimens   from   these   samples   were  

photographed   in   vivo   and   used   for   DNA   analysis   or   considered   for   the   morphological  

analysis.  Additional  samples  included  paratypes  of  Bryodelphax  johannis  Bertolani,  Guidi  &  

Rebecchi,   1995   from   the   Bertolani   collection   (Department   of   Life   Sciences,   University   of  

Modena   and   Reggio   Emilia,   Modena,   Italy)   and   specimens   from   the   Maucci   collection:  

holotype   and   paratypes   of   Bryodelphax   amphoterus   Durante   Pasa   &   Maucci,   1975,  

Page 59: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 58  

specimens   of  B.   parvulus   from  Monte   Spaccato,   Trieste,   Italy,  T.   spitsbergensis   from  Gran  

San  Bernardo,  Italy  and  Testechiniscus  spinuloides  (Murray,  1907b)  from  Oren,  Norway.  

 Table  1  –  Sampling  sites,  taxonomic  classification  and  GenBank  references  for  cox1  and  18S  sequences  of  all  utilized  specimen.  NA:  not  available.  

Sample   Specimen   Current  attribution   Locality   Substrate   GenBank  A.N.             cox1   18S  

C3039   Et.01   Echiniscus  oihonnae   Moita  do  Conqueiro   Moss   JX676191   JX676181  C3040   V03   Echiniscus  oihonnae   Moita  do  Conqueiro   Moss   JX676192   JX676182  C3041   V02   Echiniscus  oihonnae   Moita  do  Conqueiro   Moss   JX676193   JX676183  C3042   V07   Echiniscus  oihonnae   Moita  do  Conqueiro   Moss   JX676194   JX676184  C3250   V01   Echiniscus  oihonnae   Castro  Laboreiro   Lichen   JX676195   NA  C3250   V04   Echiniscus  oihonnae   Castro  Laboreiro   Lichen   JX676196   JX676185  C3250   V08   Echiniscus  oihonnae   Castro  Laboreiro   Lichen   JX676197   NA  C3250   V11   Echiniscus  multispinosus   Castro  Laboreiro   Lichen   JX676198   JX676186  C2257   V03   Testechiniscus  spitsbergensis   Disko  Island   Moss   JX676199   JX676187  C3019   V01   Bryodelphax  tatrensis   Slovensky  Ray   Moss   NA   JX676188  C3019   V02   Bryodelphax  parvulus   Slovensky  Ray   Moss   NA   JX676189  C3020   V01   Bryodelphax  tatrensis   Slovensky  Ray   Moss   NA   JX676190  

 

Molecular  analysis  involved  DNA  was  extracted  from  single  specimens  by  using  a  modified  

rapid   salt   and   ethanol   precipitation  method   (Cesari   et   al.,   2009).   PCR   amplification   of   a  

portion  of  the  mtDNA  cox1  gene  was  carried  out  as  described  in  Cesari  et  al.  (2009),  using  

as  primers  LCO-­‐1490  (5’-­‐GGT  CAA  CAA  ATC  ATA  AAG  ATA  TTG  G-­‐3′;  Folmer  et  al.,  1994)  

and   HCO-­‐2198   (5’-­‐TAA   ACT   TCA   GGG   TGA   CCA   AAA   AAT   CA-­‐3’;   Folmer   et   al.   1994).   A  

region   of   the   nuclear   ribosomal   small   subunit   gene   (18S   rDNA)   was   amplified   with   the  

primer  combination  18S  a2.0  (5’-­‐ATG  GTT  GCA  AAG  CTG  AAA-­‐3’;  Whiting  et  al.,1997)  and  

18S  9R  (3’-­‐GAT  CCT  TCC  GCA  GGT  TCA  CCT  AC-­‐5’;  Giribet  et  al.,  1996),  using  the  following  

protocol:  35  cycles  with  30  sec  at  94  °C,  30  sec  at  48  °C  and  one  min  at  72  °C,  with  a  final  

elongation   step   at   72   °C   for   10  min.   The   amplified   products  were   gel   purified   using   the  

Wizard   Gel   and   PCR   cleaning   (Promega)   kit.   Both   strands  were   subjected   to   sequencing  

reactions   by   using   the   Big   Dye   Terminator   1.1   kit   (Applied   Biosystems)   and   sequenced  

using   an   ABI   Prism   3100   sequencer   (Applied   Biosystems).   Nucleotide   sequences   of   the  

newly  analyzed  specimens  were  submitted  to  GenBank  (accession  numbers:  JX676181-­‐99;  

Table  1).  

For  cox1  gene  analysis,  chromatograms  obtained  were  checked  for  presence  of  ambiguous  

bases:  sequences  were  translated  to  amino  acids  by  using  the   invertebrate  mitochondrial  

code   implemented   in  MEGA5   (Tamura  et  al.,  2011)   in  order   to   check   for   the  presence  of  

Page 60: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  59  

stop   codons   and   therefore   of   pseudogenes.   Nucleotide   sequences  were   aligned  with   the  

Clustal   algorithm   implemented   in  MEGA5   (pairwise   and  multiple   alignment   parameters:  

Gap  opening  penalty:  15,  Gap  extend  penalty:  6.66)  and  checked  by  visual   inspection.  For  

appropriate   molecular   comparisons,   we   included   in   our   analysis   cox1   sequences   from  

GenBank   identified   as   T.   spitsbergensis   and   several   species   of   Echiniscus   (see   Table   2).  

Intraspecific,   interspecific,   and   overall   mean   Kimura   2-­‐parameters   (K2P)   distances  

between  scored  haplotypes  were  determined  using  MEGA5.    

 Table  2  –  Sequences  and  related  specimens  from  GenBank.    

Species                                              Genbank  A.N.     cox1   18S  

Testechiniscus  spitsbergensis  (Scourfield,  1897)    

HM193419   HM193385,  EU266967-­‐8  

Echiniscus  spiniger  Richters,  1904b   HM193408   HM193376  Echiniscus  wendti  Richters,  1903   GU329528    Echiniscus  merokensis  Richters,  1904a   FJ435813   FJ435719  Echiniscus  bigranulatus  Richters,  1908   HM193406   HM193373  Echiniscus  viridissimus  Péterfi,  1956   HM193409   AF056024  Echiniscus  trisetosus  Cuénot,  1932   FJ435815   FJ435718  Echiniscus  canadensis  Murray,  1910   FJ435814    Echiniscus  testudo  (Doyère,  1840)   EF620368-­‐81,  

EU244601  GQ849022  

Echiniscus  blumi  Richters,  1903   EF620382,  EU046090,  EU046098,  EU046168,  EU046197-­‐8,  HM193407  

HM193375,  EU049476,  EU049482,  EU049486  

Echiniscus  jenningsi  Dastych,  1984     EU266969  Echiniscus  granulatus  (Doyère,  1840)     DQ839606  Echiniscus  sp.   EF620367   EF632453,  EF632457,  

EF632458,  EU266964,  EU266971,  EU266974,  EU266976  

Bryodelphax  parvulus  Thulin,  1928     HM193371  Bryodelphax  sp.     EF632434  Cornechiniscus  lobatus  (Ramazzotti,  1943)  

  EU038077,  EU038079,  HM193372  

Mopsechiniscus  granulosus  Mihelčič,  1967     HM193379  Hypechiniscus  exarmatus  (Murray,  1907a)     HM193377  Hypechiniscus  gladiator  (Murray,  1905)     HM193378  Parechiniscus  chitonides  Cuénot,  1926     HM193380  Proechiniscus  hanneae  (Petersen,  1951)     HM193381  Pseudechiniscus  islandicus  (Richters,  1904c)  

  HM193383  

Pseudechiniscus  facettalis  Petersen,  1951     FJ435720,  HM193382  Pseudechiniscus  sp.     EU266965  Milnesium  tardigradum  Doyère,  1840     GQ925696    

Page 61: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 60  

For  18S  gene  analysis,  nucleotide  sequences  were  aligned  with  the  Muscle  algorithm,  using  

default   parameters   implemented   in   MEGA5.   A   sequence   identified   as   Milnesium  

tardigradum  Doyère,  1840  was  used  as  outgroup.  Other  Heterotardigrada  sequences  from  

GenBank  were  also   included  in  the  analysis   for  appropriate  comparisons  (see  Table  2).  A  

Bayesian  inference  dendrogram  was  computed  using  the  program  MrBayes  3.2  (Ronquist  

et   al.,   2012).   Best   fitting  model   evaluations   were   performed   taking   into   account   Akaike  

Information   Criterion   (AIC)   and   Bayes   Information   Criterion   (BIC)   (jModeltest   0.0.1;  

Posada,   2008),  which   identified   the  GTR+G  model   to   be  most   suitable.   Two   independent  

runs,  each  of   four  Metropolis-­‐coupled  Markov  chains  Montecarlo  (MCMC),  were   launched  

for   7   x   106   generations,   trees  were   sampled   every   100   generations   and   the   first   17500  

were   discarded.   The   analyses   were   run   three   times,   all   of   which   resulted   in   identical  

topologies.  

 

 

Figure    1  -­‐  Echiniscus  oihonnae,  specimen  in  vivo.  Note  the  black  eyes  and  the  orange  body  color  (DIC;  bar  =  10  µm).  

 

 

 

 

 

Page 62: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  61  

Results  

Morphological  data  

The  first  evidence  obtained  from  all  the  newly  collected  Portuguese  specimens  attributable  

to  E.   oihonnae   or  E  multispinosus   is   that   they   have   black   eyes   (Fig.   1,   4A)   and   a   double  

dorsal  sculpture  in  the  cuticular  plates  (Fig.  2A,  B,  4D).  We  also  found  that  all  the  specimens  

from   the   Maucci   collection,   atributed   to   these   two   species,   had   black   eyes   and   double  

sculpture.   In  both   species,   the  buccal   tube   is   relatively   long,   narrow  and   the  presence  of  

stylet  supports  is  very  often  recognizable  (Fig.  3).    

 

 

Figure  2  -­‐  Echiniscus  oihonnae.  A:  general  view  of  the  dorsal  sculpture.  B:  Detail  of  the  dorsal  sculpture   .  C:  Sculpture  of  the  terminal  plate  IV.  D:  Dorsal  sculpture  of  the  scapular  pate.  (A:  DIC;  B-­‐C:  PhC;  D:  SEM;  Bar  =  10  µm).  

 

 

Page 63: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 62  

Using   phase   contrast   this   sculpture   appears   as   dark,   regularly   shaped   polygonal   grains,  

each  normally  surrounded  by  six  other  grains  and  separated  by  a  thin  white  region.  Above  

this   layer  are  more  widely  dispersed  white  circular  grains  of   irregular  size  (Fig.  2B).  The  

quantity   of   these   white   grains   is   variable   in   the   different   specimens,   but   always   more  

numerous  on  the  terminal  plate  IV  (Fig.  2C).  Using  SEM,  only  the  second  type  of  sculpture  

(white  circular  grains)   is  visible  as   irregularly  dispersed  pits  on   the  surface  of   the  plates  

(Figs  2D  and  5B,  C).    

 

 

Figure    3   -­‐  Echiniscus  oihonnae.  Buccal-­‐pharyngeal  apparatus  (PhC);  note  the  stylet  supports  (arrowheads).  (Bar  =  10  µm).    

Sculpture   on   the   dorsal   cephalic   plate   begins   with   the   fine   lower   dark   grains,   which   is  

followed  by  larger  double  sculpture  that  shows  an  anterior  median  depression  (visible  only  

on   well   extended   specimens;   Fig.   4A).   The   dorsal   segmental   plates   I-­‐IV   conform   to   the  

Echiniscus   pattern.   All  median   dorsal   plates  with   double   sculpture;  median   dorsal   plates  

m1  and  m2  are   transversally  divided   (Fig.  4B),  median  plate  m3  present  and  entire   (Fig.  

4C).  Lateral  plates  are  at  both  sides  of  the  scapular  plate  (Fig.  4D).  Ventral  cuticular  plates  

are  always  present   (Fig.  4E,  F),   though  several  are  often  weak  and  sometimes  difficult   to  

identify  and  number.    

Regarding   the  cuticular  appendages,   filaments  A,  B,  C,   spine  D  and   filament  E  are  always  

present   (Fig.   5A),   as   are   filament   Cd   and   the   spine   Dd.   Adult   animals   with   variable   Bd  

morphologies  were  observed  in  the  newly  sampled  Portuguese  populations,  as  well  as  both  

Portuguese   and   Norwegian   specimens   in   the   Maucci   collection.   We   found   that   from   71  

specimens  of  the  newly  collected  population  from  Castro  Laboreiro  the  typical  E.  oihonnae  

Page 64: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  63  

(without   Bd)   morphology   was   dominant   (54   specimens,   78.3%)   over   the   typical   E.  

multispinosus   (with   Bd)   morphology   (eight   specimens,   11.6%)   and   intermediate   forms  

(with  Bd  on  only  one  side)  (seven  specimens,  10.1%),  and  two  specimens  where  it  was  not  

possible  to  see  the  appendages  clearly.  

 

 Figure   4   -­‐   Echiniscus   oihonnae.   A:   Cephalic   (cp)   and   neck   (np)   plates.   B:   Median   plates   m1   and   m2  (arrowheads).  C:  median  plate  m3  (arrowhead).  D;  Scapular  (I)  and  lateral  (lp,  arrowhead)  plates.  E:  anterior  ventral  plates  (arrowheads).  F:  Posterior  ventral  plate  (arrowhead).  (A-­‐E:  PhC;  F:  DIC;  bar  =  10  µm).    

Page 65: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 64  

In   addition,   a   two   clawed   larva   has   been   found,   with   all   appendages   except   Bd.   Barbed  

filaments  and  spines  were  also  common  (Fig.  6A-­‐C),  and  small  dorsal-­‐lateral  hooked  spines  

B’,  C’,  D’  and  E’  have  been  observed  on  dorsal  plates.  Spines  E’  can  be  simple  or  double  (Fig.  

5B).  The  dentate  collar  is  always  present  on  the  fourth  pair  of  legs  (Fig.  5C),  and  lateral  leg  

plates   are   present,   characterized  by   simple   sculpture   (uniform  black   grains   under  phase  

contrast;  Fig.  5D).    

 Figure  5   -­‐  Morphological   features  of  Echiniscus  oihonnae/multispinosus.  A:  Lateral  view  with  discriminated  spines  and   filaments  (see   text).  B:  Terminal  plate  with   two  spines  E’   (arrowhead).  C:  Leg  of   the   fourth  pair  with  indented  collar  (arrowhead).  D:  Leg  plates  (arrowheads).  (A:  DIC;  B-­‐C:  SEM;  D:  PhC;  bar  =  10  µm).  

 

Internal  claws  of  all   legs  with  a  robust,  basal  hooked  spur.  External  claws  usually  smooth  

but  occasionally  the  external  claws  of  leg  IV  have  one  or  two  thin,  right-­‐angled,  short  spurs.  

The   shape   of   the   gonopore   reveals   the   presence   of   both   females   and  males   (Fig.   7A,   B),  

though  unfortunately  this  was  not  visible  in  slides  of  the  Maucci  collection.  Among  the  71  

adults  sampled  from  Castro  Laboreiro  seven  were  confirmed  as  males  and  28  as  females.  

Morphometric   details   of   this   material   is   provided   in   Table   3.   The   presence   of   stylet  

Page 66: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  65  

supports  and  ventral  plates,  observed  in  fresh  specimens  but  not  always  visible  in  the  older  

mounted  specimens,  are  used  for  morphological  comparison.  Other  details  are  referred  in  

the  species  re-­‐description  (see  below).      

 Figure  6  -­‐  Barbed  filaments  and  spines  (A,  B:  PhC;  C:  DIC;  bar  =    10  µm).  

 

For   comparison,   we   examined   the   morphological   characters   of   specimens   belonging   to  

Bryodelphax  and  Testechiniscus   (see  Material  and  Methods).  All  Bryodelphax   species  were  

characterized  by  dorsal  plates  with  a  double  sculpture  that  appear  under  phase  contrast  as  

dark  and  white  grains,  and  ventral  plates  are  present  but  not  on  all  species  (i.e.  B.  parvulus).  

In  contrast,  the  sculpture  of  the  dorsal  plate  in  T.  spitsbergensis  appear  as  a  quite  different,  

single  layer  and  ventral  plates  are  more  evident.    

 

 

Figure  7  -­‐  Echiniscus  oihonnae:  gonopores.  A:  female  gonopore  (arrowhead).  B:  male  gonopore  (arrowhead).  (PhC;  bar  =  10  µm).  

 

Page 67: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 66  

Table  3  –  Measurements  of  specimens  attributable  to  E.  oihonnae  and  E.  multispinosus  (values  in  µm).  

Structures   Mean   Standard  deviation  

Min   Max   Number  of  specimens  

Body  length   231.4   40.0   147.1   295.1   36  Scapular  plate  length   53.4   10.2   35.6   70.9   35  Internal  cephalic  cirrus   19.8   3.94   10.3   25.8   34  External  cephalic  cirrus   21.9   4.1   14.1   28.0   38  Cephalic  papilla   8.3   1.6   4.9   11.4   37  Clava   6.0   1.0   4.1   8.4   34  Appendage  A   71.8   15.2   39.8   101.5   35  Appendage  B   44.4   15.5   13.1   75.6   38  Appendage  C   80.9   25.9   31.3   122.8   38  Appendage  D   31.8   7.4   17.3   44.7   38  Appendage  E   113.4   44.4   38.5   186.2   34  Appendage  Bd*   17.4   11.2   2.0   39.3   12  Appendage  Cd   50.6   15.1   25.0   78.1   38  Appendage  Dd   7.8   2.6   0.5   12.4   38  Spine  leg  I   4.6   0.8   2.9   5.9   31  Internal  Claws  II/III   14.2   2.9   8.7   18.1   38  External  Claws  II/III   13.2   2.8   7.6   17.1   38  Internal  Claws  IV   16.8   3.4   10.1   21.8   26  External  Claws  IV   14.9   3.3   8.9   19.2   28  Papilla  leg  IV   4.1   0.7   2.0   5.1   23  *Measured  only  in  specimens  of  the  E.  multispinosus  type  having  an  evident  Bd  appendage.  

 

Molecular  data  

Molecular   analysis  was   carried   out   on  603  bp  of   cox1  mtDNA  gene.   Six   haplotypes  were  

found   in   the   two   Portuguese   populations,   with   genetic   distances   ranging   from   0%   to   a  

maximum   of   4.1%   (Table   4).   Only   one   specimen   with   the   typical   E.   multispinosus  

morphology   (C3250   –   V11)  was   available   for  molecular   analysis   and   it   shares   the   same  

haplotype  with   the  morphologically   identified  E.  oihonnae   (C3250  –  V08).  We  analyzed  a  

single   T.   spitsbergensis   specimen   with   very   similar   results   to   the   specimen   identified   in  

GenBank  (0.6%),  while   it  was  very  well  differentiated  from  all  specimens  attributed  to  E.  

oihonnae  (19.6-­‐20.2%).    

Table  4   –  Kimura  2-­‐parameter  distances   computed   among   all   specimens.   The   analysis  was   carried  out   on  603bp  of  cox1  gene.  

        1   2   3   4   5   6   7   8   9  1   C3039  Et.01  E.  oihonnae                    2   C3040  V03  E.  oihonnae   0.034                  3   C3041  V02  E.  oihonnae   0.000   0.034                4   C3042  V07  E.  oihonnae   0.012   0.040   0.012              5   C3250  V01  E.  oihonnae   0.007   0.041   0.007   0.014            6   C3250  V04  E.  oihonnae   0.000   0.034   0.000   0.012   0.007          7   C3250  V08  E.  oihonnae   0.019   0.040   0.019   0.024   0.024   0.019        8   C3250  V11  E.  multispinosus   0.018   0.038   0.018   0.022   0.022   0.018   0.000      9   C2257  V03  T.  spitsbergensis   0.197   0.195   0.197   0.202   0.196   0.197   0.199   0.196    10   HM193419  T.  spitsbergensis   0.192   0.189   0.192   0.194   0.191   0.192   0.196   0.195   0.006  

Page 68: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  67  

 Comparisons  between  Echiniscus  and  Testechiniscus  taxa  (Table  5)  showed  that  individuals  

attributed   to   E.   oihonnae-­‐multispinosus   were   very   well   differentiated   with   respect   to   all  

other  taxa  (18.0-­‐21.3%),  with  values  comparable  to  the  other  interspecific  and  intergeneric  

distance  scores.  

 Table  5  –  Kimura  2-­‐parameter  distances  computed  among  (on  the  diagonal)  and  within  (column  D)  taxa.  All  haplotypes  are  included  in  the  analysis,  which  was  carried  out  on  603bp  of  cox1  gene.  NP  =  not  possible;  only  one  available  sequence.  

      1   2   3   4   5   6   7   8   9   10   D  

1   E.  oihonnae-­‐multispinosus                       0.019  2   T.  spitsbergensis   0.195                     0.006  3   E.  spiniger   0.196   0.197                   NP  4   E.  wendti   0.208   0.221   0.218                 NP  5   E.  merokensis   0.213   0.206   0.222   0.229               NP  6   E.  blumi-­‐canadensis   0.199   0.191   0.191   0.200   0.194             0.134  7   E.  bigranulatus   0.201   0.222   0.190   0.192   0.215   0.198           NP  8   E.  viridissimus   0.180   0.208   0.182   0.163   0.249   0.189   0.189         NP  9   E.  trisetosus   0.196   0.217   0.185   0.191   0.180   0.088   0.190   0.190       NP  10   E.  testudo   0.200   0.187   0.177   0.210   0.182   0.194   0.192   0.188   0.200     0.007  11   Echiniscus  n.  sp.   0.208   0.192   0.184   0.189   0.208   0.184   0.182   0.188   0.189   0.081   NP      

The  phylogenetic  tree  computed  from  18S  sequences  (Fig.  8)  shows  Bryodelphax  species  in  

basal   position,   though   the   next   node   is   ill-­‐supported   (0.72   posterior   probability).   Inside  

this  second  cluster,  Parechiniscus  chitonides  Cuénot,  1926  is   in  a  sister  group  relationship  

with  the  remaining  species,  which  are  further  divided  in  three  main  clusters,  with  very  high  

posterior  probability  values:  a)  Proechiniscus  +  Cornechiniscus  +  Pseudechiniscus  islandicus  

(Richters,   1904c);   b)   Mopsechiniscus   +   Pseudechiniscus   facettalis   Petersen,   1951   +   a  

sequence   attributed   to   Echiniscus;   c)   Hypechiscus   in   a   sister   group   relationship   with   a  

cluster   grouping  Testechiniscus   and  Echiniscus.   Inside   this   latter   group,   the   phylogenetic  

relationships  are  well  defined  and  supported  with  the  specimens  attributed  to  E.  oihonnae  

and  E.multispinosus  grouped  together  and  in  a  sister  group  relationship,  well  differentiated  

from  the  other  Echiniscus  taxa.    

 

 

 

 

Page 69: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 68  

Discussion  

Our   new   morphological   observations   together   with   molecular   analysis   lead   to   some  

significant  results.  Firstly,  the  problem  of  species  validity;  where  the  comments  from  other  

authors   (e.g.   Ramazzotti   &  Maucci,   1983;  Maucci   &   Durante,   1984;   Dudichev   &   Biserov,  

2000)  raised  our  doubts  about  whether  E.  oihonnae  and  E.  multispinosus  were  two  species,  

or  simply  variants.    Apart  from  Cunha’s  (1944b)  note  that  E.  multispinosus  individuals  were  

smaller,   only   the   dorsal   spine   Bd   defined   the   two   species.   Previous   works,   studying   the  

Echiniscus   blumi-­‐canadensis   series   and   utilising   integrative   taxonomy   (molecular   (cox1)  

and   morphometrics),   have   demonstrated   that   cuticular   filaments   and   spines   can   vary  

greatly  within  the  same  species  (Guil  2008;  Guil  &  Giribet  2009).  In  our  study  we  verified  

that   all   the  morphological   features  were   shared  by  E.   oihonnae   and  E.  multispinosus,   and  

represented  very   little   variability.  The  most   variability  occurred   in   spines  Bd   (present  or  

absent),  E’  (simple  or  double)  and  spurs  on  external  claws  IV  (present  or  absent).  We  also  

registered   new   characters   that   had   not   previously   been   noted,   such   as   the   presence   of  

black-­‐brownish   eyes,   stylet   supports,   ventral   plates   and   double   sculpture   on   the   dorsal  

plates.   In  the  Echiniscus   line  (Kristensen,  1987),   the  presence  of  stylet  supports   is  shared  

with  Testechiniscus,  Bryodelphax   and  Bryochoerus,   ventral   plates  with  Testechiniscus   and  

some   Bryodelphax,   black   eyes   only   with   Testechiniscus   and   the   double   sculpture   with  

Bryodelphax  and  a  few  Echiniscus  species.  

The  analysis  of  the  cox1  sequences  clearly  showed  all  the  animals  were  very  closely  related.  

Specimens   with   exact   matching   morphologies   produced   cox1   gene   genetic   distances  

ranging   from   3.4   to   4.1%,   considered   within   limits   for   populations   of   the   same   species  

(Cesari,   et   al.   2011).   This   result  was   further   supported   by   two   specimens,   attributed   by  

morphology   to   the   two   different   species,   sharing   the   same   haplotype.   We   therefore  

consider   all   the   specimens   of   E.   oihonnae   and   E.   multispinosus   belonging   to   the   same  

species.  We  have  no   genetic   data   from  Norwegian   (type   locality)   populations   to   analyse,  

and  it  would  be  interesting  to  confirm  the  Norwegian  and  Portuguese  population  species-­‐

relationships.   Nevertheless,   the   morphological   data   we   obtained   were   consistent   and  

strong  enough  to  report  a  one-­‐species  diagnosis,  with  the  conclusion  that  E.  multispinosus  

should   be   considered   the   junior   synonym   of  E.   oihonnae.   Reports   of   these   species   from  

outside   Europe  will   require   revision   before   the   geographical   distribution   of  E.   oihonnae  

could  be  defined.  

Page 70: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  69  

Our  study  of  the  morphological  and  18S  rDNA  data  offered  the  opportunity  to  review  and  

revise  the  taxonomic  position  of  E.  oihonnae.  Using  morphology  we  found  the  presence  of  

black   eyes   and   ventral   plates,   are   all   characters   absent   or   not   visible   in   Echiniscus.  

Normally,   also   dorsal-­‐lateral   supernumerary   spines   (C’,   D’,   etc.)   are   absent   in  Echiniscus.  

For   this   analysis   we   also   examined   (Bertolani   &   Guidetti,   unpublished)   two   Echiniscus  

species   exhibiting   dorsal-­‐lateral   supernumerary   spines:   Echiniscus   menzeli   Heinis,   1917  

(Valle  d’Aosta,  Italy)  and  Echiniscus  melanophtalmus  Bartoš,  1936  (Istria,  Croatia)  (from  the  

Maucci   collection).   These   two   species   display   Testechiniscus-­‐type   dorsal   plate   sculpture,  

median  plates,  ventral  plates  and,  in  Echiniscus  menzeli,  dark  eyes.  Unfortunately,  the  stylet  

supports   were   not   detectable   due   to   the   conservation   state   and   the   age   of   the   slides.  

However,  in  our  opinion,  both  Echiniscus  menzeli  and  Echiniscus  melanophtalmus  should  be  

attributed   Testechiniscus   and   thus   expanding   this   genus   to   six   species.   Comparing  

Bryodelphax   characters,  we   found   the  double  sculpture  of   the  dorsal  plates,   transversally  

divided  median  plates  m1  and  m2  and  an  undivided  plate  m3,  plus  the  ventral  plates  (not  

present  in  all  species),  were  all  shared  with  E.  oihonnae.    

We   were   not   able   to   include   Antechiniscus,   Novechiniscus,   and   Bryochoerus   in   our   18S  

analysis,  due  to  partial  or  total  lack  of  molecular  information.  According  to  Jørgensen  et  al.  

(2011),   Antechiniscus   belongs   to   the   same   clade   of   Proechiniscus,   Cornechiniscus   and  

Pseudechiniscus   islandicus,   therefore   in   morphology   and   evolutionary   lines   very   distinct  

from  E.  oihonnae.  The  shape  of  the  dorsal  plates  in  Novechiniscus  is  very  peculiar  and  very  

different   from   all   other   Echiniscidae   (Rebecchi   et   al.,   2008).   The   genus   Bryochoerus   is  

distinguished   from   E.   oihonnae   by   the   presence   of   red   eyes   (when   present)   and   a  

transversally  divided  median  plate  3,  and  the  absence  of  a  double  sculpture,  ventral  plates  

and  supernumerary  dorsal-­‐lateral  spines.  

There   is   no   single   morphological   autapomorphy   characterizing   E.   oihonnae,   but   a  

combination  of  characters,  which  does  not  match  the  known  genera  of  Echiniscidae.  This  

was  confirmed  by  our  18S  analysis,  where  E.  oihonnae  formed  a  distinct  and  well  supported  

clade  within  the  same  evolutionary  line  of  the  Echiniscidae  family  that  included  Echiniscus  

and  Testechiniscus   (Fig.   8).  Bryodelphax,  which   forms   from   a  more   basal   node,  was   even  

further  removed  from  E.  oihonnae.    

Page 71: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 70  

In   conclusion,   based   on   the   clade   supported   by   18S   analysis   and   the   combination   of  

morphological   characters   described,   we   propose   the   erection   of   a   new   taxon  

Diploechiniscus  gen.  nov  for  Echiniscus  oihonnae  (and  its  junior  synonim  E.  multispinosus).    

 

 

Figure   8   -­‐   Bayesian   inference   dendrogram   computed   on   18S   sequences.   Numbers   near   nodes   indicate  posterior  probability.  Newly  analyzed  specimens  are  shown  in  bold.  Grey  area  denotes  specimens  previously  attributed  to  Echiniscus  oihonnae  and  Echiniscus  multispinosus.    

Page 72: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  71  

Taxonomic  account  

Diploechiniscus  gen.  nov.  

Diagnosis.   Echiniscids   with   dorsal   plates   I,   II,   III,   IV   (II   and   III   paired),   transversally  

subdivided  median  plates  m1  and  m2  and  undivided  plate  m3  present;  double  sculpture  in  

the  dorsal  plates,  represented  (under  phase  contrast)  by  dark  polygonal  and  white  circular  

grains;  ventral  plates  present,   especially  evident   in   the  anterior,  head   region  and  around  

the  gonopore;  supernumerary  dorsal-­‐lateral  spines  present;  buccal  tube  long  and  narrow,  

with  stylet  supports.  Orange  body,  dark-­‐brown  eyes.      

Type  species:  Echiniscus  oihonnae  Richters,  1903  

Composition:  Diploechiniscus  oihonnae  (Richters,  1903)  comb.  nov.,  to  date  the  only  species  

attributable  to  the  new  genus.  

Junior  synonym:  Echiniscus  multispinosus  

Etymology:  from  the  Greek  δίπλόος  (diplóos)  =  double,  composed  of  two  parts;  referring  to  

the  cuticle  sculpture,  and  Echiniscus,  the  first  of  the  echiniscid  genera  to  be  described.  

Remarks.   The   echiniscid   genera   most   similar   to   Diploechiniscus   are   Testechiniscus,  

Echiniscus   and   Bryodelphax.   Diploechiniscus   is   differentiated   from   Testechiniscus   by   the  

presence  of  double   sculpture   in   the  dorsal  plates,   subdivided  dorsal  plate  m2  and  dorsal  

plate   m3.   It   is   differentiated   from   Echiniscus   by   the   presence   of   black   eyes,   subdivided  

dorsal   plates   m1   and  m2,   double   sculpture   in   the   dorsal   plates,   supernumerary   dorsal-­‐

lateral  spines,  ventral  plates  and  evident  stylet  supports.  From  Bryodelphax,  Diploechiniscus  

is  differentiated  by  the  presence  of  black  eyes,  supernumerary  dorsal-­‐lateral  spines,  dorsal  

and   lateral   filaments  or   spines   (apart   filament  A),   terminal  plate  notched,   and   the  adults  

are   much   larger.   The   juxtoposition   of   the   four   genera   into   different   evolutionary   lines  

within  the  Echiniscidae  was  confirmed  by  18S  sequences.  

 

 

 

 

 

Page 73: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 72  

Diploechiniscus  oihonnae  (Richters,  1903)  comb.  nov.    

Type  locality:  Merok,  Norway  

Diagnosis    

Body  colour  reddish-­‐brown.  Dark  brown  eye  spots.  Stylet  supports  present.  Long  filaments  

A,  B,  C,  D  and  E.  Short  hooked  dorsal-­‐lateral  spines  B’,  C’,  D’  and  E’.  Long  filaments  Cd  and  

short  spines  Dd.  Spine  Bd  present  or  absent.  Dorsal  plates  present:  I,  paired  II  and  III,  and  IV,  

transversally  subdivided  median  plates  m1  and  m2  and  median  plate  m3  entire.  Terminal  

plate  (IV)  notched.  Double  sculpture  of  the  dorsal  plates  observed  under  light  microscopy.  

Faint  ventral  plates  present,  with  those  at  the  anterior  and  posterior  more  clearly  visible.  

Sensory   spine  on   leg   I   and  papilla   on   leg   IV,   present.   Lateral   leg  plates,   present.  Dentate  

collar   on   leg   IV,   present.   Females   and   males   present,   with   gonopores   typical   of   the  

echiniscid  form.  

 

Re-­‐description   of   the   species   (from   the   original   description   and   from   re-­‐examined  

specimens   collected   in   Forså,   Norway;   Sierra   de   Urbion,   Spain;   Caldas   das   Taipas,   Vilar  

Formoso,  Castro  Laboreiro  and  Moita  do  Conqueiro,  Portugal).  

Body  colour  orange.  Eye  spots  simple  and  dark  brown.  Buccal  cirri  long,  clavae  large.  Stylet  

supports  present  (sometimes  difficult  to  observe  in  older  slides).  Dorsal  plates  present,  all  

(except   neck   plate)   characterized   by   double   sculpture,   which   appears   as   dark,   regular  

polygonal  grains  under  white  circular  grains  when  viewed  with  phase  contrast.  Dark  grains  

are  separated  by  thin,  white  region  from  neighbours  (normally  groups  of  six);  white  grains  

of   various   sizes,   never   overlaping  dark   grains,   and   irregularly  distributed.   Cephalic   plate  

unpaired,   with   median   depression   to   the   anterior   margin;   fine   anterior   sculpture   and  

larger  posterior  double   sculpture.  Neck  plate,   a   long   transverse   and   relatively   thin  band,  

anterior   and   posterior   region   unsculptured   and   fine,   dark   grains   in   the   middle.   Dorsal  

segmental  plates:  plate  I  (or  scapular  plate)  entire,  with  two  sculptured  small  lateral  plates  

exhibiting   fine,  dark  grains;  plates   II  and  III  paired  and  characterised  by  an  unsculptured  

transverse   band,   and   plate   IV   (or   terminal   plate),   entire   but   faceted   and   notched   (not  

obvious   in   older   specimens).   Median   intersegmental   plates:   plate   m1,   transversally  

subdivided,   anterior   region   formed  of   a   large,   flat   and   thin   rectangle  not   always  obvious  

due   to   overlapping   scapular   plate;   plate   m2,   transversally   subdivided   and   with   an  

unsculptured  transverse  band,  plate  appears  as  two  obtuse  angle  isosceles  triangles  joined  

Page 74: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  73  

by   their   larger   side;   and   m3,   entire,   small   and   not   obvious   but   with   double   sculpture.  

Lateral   intersegmental  plates  are  difficult  to   identify,   though  unsculptured  spaces  exist  at  

la2  and  la3.  Long  filaments  A,  B,  C,  D  and  E,  sometimes  barbed.  Short  hooked  dorsal-­‐lateral  

spines  B’,  C’,  D’   and  E’.   Lateral   spine  E’,   simple  or  double.  Bd  variable  as   long   spine,   very  

short  spur,  or  absent  and  can  be  present  on  one  or  both  sides  of  plate  II.  Long  filaments  Cd  

and  short  spines  Dd.  Ventral  sculpture  present  as  fine  granulation,  with  clearly  visible  head  

plate  and  posterior  plates  beside  gonopore.  Leg  plates  present  laterally,  with  dark  granular  

sculpture.   Spiniform  papilla   present   on   leg   I;   papilla   on   leg   IV  with   rounded   tip.  Hooked  

spurs  an  all  internal  claws,  external  claws  I-­‐III  smooth,  occasionally  one  or  two  short  right-­‐

angled  spurs  on  the  leg  IV.  Dentate  collar  variable,  comprised  of  six  to  13  triangular  teeth,  

some  irregularly  bifurcated.    

Gonopore;  a  short  tube  in  the  males,  and  rosette  in  the  females.  

The   geographical   distribution   of   E.   oihonnae   includes:   Portugal,   Switzerland,   Northern  

Europe   (including   polar   islands),   U.S.A.,   Canada,   Australia   (Ramazzotti   &   Maucci   1983);  

Japan  (Mathews,  1937);  Kuril  Islands,  Far  East  Russia  (Dudichev  &  Biserov  2000).  Most  of  

the   non-­‐Eurpean   citations   require   confirmation,   as   for   example,   Murray   (1910)   was  

doubtful  about  his  identification  of  Australian  and  Canadian  specimens,  and  the  Californian  

specimens,   initially   assigned   to   E.   oihonnae,   were   revised   as   T.   laterculus   (Schuster,  

Grigarick  &  Toftner,  1980).    

 

Acknowledgements  

This  study  was  partially  supported  by  the  Fundação  para  a  Ciência  e  a  Tecnologia,  Portugal,  

with   a   grant   (BD/39234/2007)   to   the   first   author   and   by   the   program   Pest-­‐

OE/MAR/UI0331/2011   to   the   research   of   the   second   author,   and   also   by   the   European  

Distributed  Institute  of  Taxonomy  (EDIT)  within  the  program  ATBI:  All  Taxa  Biodiversity  

Inventories   in   the  Gemer  Area,   Slovakia.   The   research   is   also  part   of   the  project  MoDNA  

supported   by   Fondazione   Cassa   di   Risparmio   di   Modena   (Italy)   and   the   University   of  

Modena   and   Reggio   Emilia   (Modena,   Italy).   The   authors   wish   to   thank   Dr.   César   Garcia  

(Botanical  Garden,  Lisbon)  for  providing  the  moss  samples  from  the  Portuguese  locality  of  

Moita  do  Conqueiro,  and  Museo  Civico  di  Storia  Naturale  di  Verona  for  the  availability  of  the  

slides   of   the   Maucci   collection.   They   also   wish   to   thank   Sandra   McInnes,   of   the   British  

Antarctic  Survey,  for  her  critical  support  and  the  English  revision.  

Page 75: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 74  

References    

Bartoš,   E.   (1936)   Neue   Tardigraden-­‐Arten   aus   dem   unterkarpatischen   Ruβland.  

Zoologischer  Anzeiger,  114(1/2),  45-­‐48.  

Bertolani,  R.,  Guidi,  A.  &  Rebecchi,  L.  (1995)  Tardigradi  della  Sardegna  e  di  alcune  piccole  

isole  circum-­‐sarde.  Biogeographia,  18,  229-­‐247.      

Bertolani,  R.,  Rebecchi,  L.  &  Cesari,  M.  (2010)  A  model  study  for  tardigrade  identification.  

In:  P.L.  Nimis  &  R.  Vignes   Lebbe   (Eds.),  Tools   for   Identifying  Biodiversity:   Progress   and  

Problems,  EUT,  Trieste,  Italy,  pp.  333–339.  

Bertolani,  R.,  Biserov,  V.,  Rebecchi,  L.  &  Cesari,  M.  (2011a)  Taxonomy  and  biogeography  of  

tardigrades   using   an   inegrated   approach:   new   results   on   species   of   the  Macrobiotus  

hufelandi  group.  Invertebrate  Zoology,  8,  23-­‐36.  

Bertolani,   R.,   Rebecchi,   L.,   Giovannini,   I.,   &   Cesari,   M.   (2011b)   DNA   barcoding   and  

integrative  taxonomy  of  Macrobiotus  hufelandi  C.A.S.  Schultze  1834,  the  first  tardigrade  

species  to  be  described,  and  some  related  species.  Zootaxa,  2997,  19-­‐36.  

Cesari,  M.,  Bertolani,  R.,  Rebecchi,  L.  &  Guidetti,  R.  (2009)  DNA  barcoding  in  Tardigrada:  the  

first   case   study   on  Macrobiotus   macrocalix  Bertolani   &   Rebecchi   1993   (Eutardigrada,  

Macrobiotidae).  Molecular  Ecology  Resources,  9,  699-­‐706.  

Cesari,   M.,   Giovannini,   I.,   Bertolani,   R.   &   Rebecchi,   L.   (2011)   An   example   of   problems  

associated  with   DNA   barcoding   in   tardigrades:   a   novel  method   for   obtaining   voucher  

specimens.  Zootaxa,  3104,  42-­‐51.  

Cuénot,   L.   (1926)   Description   d’un   Tardigrade   nouveau   de   la   faune   française.   Comptes  

Rendus  de  l’Académie  des  Sciences  de  Paris,  182,  744.    

Cuénot,  L.  (1932)  Tardigrades.  In:  Faune  de  France,  24,  1-­‐96.  Ed.  Paul  Lechevalier,  Paris.  

Cunha,   A.X.   (1944a)   Tardigrados   da   Fauna   Portuguesa.   II.  Memórias   e   Estudos   do  Museu  

Zoológico  da  Universidade  de  Coimbra,  155,  1-­‐12.  

Cunha,   A.X.   (1944b).   Echiniscus   multispinosus   sp.   n.,   un   tardigrade   nouveau   de   la   fauna  

portugaise.  Memórias  e  estudos  do  Museu  Zoológico  da  Universidade  de  Coimbra,  159,  1-­‐4.  

Dastych,  H.   (1984)  The  Tardigrada   from  Antarctic  with  descriptions  of  new  species.  Acta  

Zoologica  Cracoviensia,  27,  377-­‐436.          

Doyère,  L.M.  (1840)  Mémoire  sur  les  Tardigrades.  I.  Annales  des  Sciences  Naturelles,  Paris,  

Série  2,  14,  269-­‐362.    

Page 76: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  75  

Dudichev,   A.L.,   Biserov,   V.I.   (2000)  Tardigrada   from   Iturup   and  Paramushir   Islands   (The  

Kuril  Islands).  Zoologichesky  Zhurnal,  79,  771-­‐778  (in  Russian).  

Durante  Pasa,  M.V.  &  Maucci,  W.  (1975)  Tardigradi  muscicoli  dell  Istria  com  descrizione  di  

due   specie   nuove.   In   R.P.   Higgins   (ed).   International   Symposium   on   Tardigrades.  

Memorie  dell’Istituto  Italiano  di  Idrobiologia,  32  (Suppl.),  69-­‐91.  

Folmer,   O.,   Black,   M.,   Hoeh,   W.,   Lutz,   R.   &   Vrijenhoek,   R.   (1994)   DNA   primers   for  

amplification  of  mitochondrial   cytochrome   c   oxidase   subunit   I   from  diverse  metazoan  

invertebrates.  Molecular  Marine  Biology  and  Biotechnology,  3,  294–299.  

Fontoura,  P.  (1981)  Contribution  pour  l'étude  des  Tardigrades  terrestres  du  Portugal.  Avec  

la  description  d'une  nouvelle  espèce  du  genre  Macrobiotus.  Publicações  do   Instituto  de  

Zoologia  "Dr.  Augusto  Nobre",  Faculdade  Ciências  do  Porto,  62,  157-­‐178.  

Giribet,  G.,  Carranza,  S.,  Baguña,  J.,  Riutort,  M.  &  Ribera,  C.  (1996)  First  molecular  evidence  

of  a  Tardigrada  +  Arthropoda  clade.  Molecular  Biology  and  Evolution,  13,  76-­‐84.    

Guidetti,  R.  &  Bertolani,  R.  (2005)  Tardigrade  taxonomy:  an  updated  check  list  of  the  taxa  

and  a  list  of  characters  for  their  identification.  Zootaxa,  845,  1-­‐46.  

Guidetti,   R.,   Gandolfi,   A.,   Rossi,   V.   &   Bertolani,   R.   (2005)   Phylogenetic   analysis   in  

Macrobiotidae   (Eutardigrada,   Parachela):   a   combined   morphological   and   molecular  

approach.  Zoologica  Scripta,  34,  235-­‐244.  

Guidetti,  R.,  Schill,  R.O.,  Bertolani,  R.,  Dandekar,  T.  &  Wolf,  M.  (2009)  New  molecular  data  

for   tardigrade   phylogeny,   with   the   erection   of   Paramacrobiotus   gen.   n.,   Journal   of  

Zoological  Systematics  and  Evolutionary  Research,  4,  315-­‐321.  

Guil,   N.   (2008)   New   records   and   within-­‐species   variability   of   Iberian   tardigrades  

(Tardigrada),  with  comments  on  the  species  from  the  Echiniscus  blumi-­‐canadensis  series.  

Zootaxa,  1757,  1-­‐30.  

Guil,   N.   &   Giribet,   G.   (2009)   Fine   scale   population   structure   in   the   Echiniscus   blumi-­‐

canadensis  series  (Heterotardigrada,  Tardigrada)  in  an  Iberian  mountain  range—When  

morphology  fails  to  explain  genetic  structure.  Molecular  Phylogenetics  and  Evolution,  51,  

606-­‐613.  

Heinis,  F.  (1917)  Tardigradenaus  der  _Umgebung  von  Triest.  Zoologischer  Anzeiger,  49,  94–

96.  

Jørgensen,  A.,  Møbjerg,  N.,  &  Kristensen,  R.M.   (2007)  A  molecular  study  of   the   tardigrade  

Echiniscus   testudo   (Echiniscidae)   reveals   low   DNA   sequence   diversity   over   a   large  

geographical  area.  Journal  of  Limnology,  66  (Suppl.  1),  77-­‐83.  

Page 77: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Integrative  taxonomy  allows  the  identification  of  synonymous  species  

 76  

Jørgensen,   A.,   Møbjerg,   N.,   &   Kristensen,   R.M.   (2011)   Phylogeny   and   evolution   of   the  

Echiniscidae  (Echiniscoidea,  Tardigrada)  –  an   investigation  of   the  congruence  between  

molecules  and  morphology.  Journal  of  Zoological  Systematics  and  Evolutionary  Research,  

49  (Suppl.  1),  6-­‐16.    

Kristensen,   R.M.   (1987)   Generic   revision   of   the   Echiniscidae   (Heterotardigrada),   with   a  

discussion   of   the   origin   of   the   family.   In:   R.   Bertolani   (ed.).   Biology   of   Tardigrades.  

Selected  Symposia  and  Monographs  U.Z.I..  1.  Mucchi.  Modena.  pp.  261-­‐335.    

Mathews,  G.B.  (1937)  Tardigrada  from  Japan.  Peking  Natural  History  Bulletin,  11,  411-­‐412.  

Maucci,   W.   &   Durante,   M.V.   (1984)   I   Tardigradi   della   Penisola   Iberica.   Miscellanea  

Zoologica,  8,  67-­‐80.  

Mihelčič  F.  (1967)  Ein  Beitrag  zur  Kenntnis  der  Tardigraden  Argentiniens.  Verhandlungen  

der  Zoologische-­‐Botanischen  Gesellschaft  in  Wien  107,  43-­‐56.  

Møbjerg,  N.,  Jørgensen,  A.,  Eibye-­‐Jacobsen,  J.,  Agerlin  Halberg,  K.,  Persson,  D.  &  Kristensen,  

R.M.   (2007)   New   records   on   cyclomorphosis   in   the   marine   eutardigrade   Halobiotus  

crispae  (Eutardigrada:  Hypsibiidae).  J.  Limnol.,  66  (Suppl.  1),  132-­‐140.  

Murray,  J.  (1905)  The  Tardigrada  of  the  Scottish  lochs.  Transactions  of  the  Royal  Society  of  

Edinburgh,  41,  3,  27,  677-­‐698.      

Murray,  J.  (1907a)  Scottish  Tardigrades  collected  by  the  Lake  Survey   .  Transactions  of  the  

Royal  Society  of  Edinburgh,  45,  3,  24,  641-­‐668.    

Murray,   J.   (1907b)  Arctic  Tardigrada,  collected  by  Wm  S.  Bruce.  Transactions  of   the  Royal  

Society  of  Edinburg,  45,  3,  669-­‐681.    

Murray,  J.  (1910)  Tardigrada.  Reports  of  the  Scientific  Investigations  of  the  British  Antarctic  

Expedition.  1907-­‐1909.  London,  1,  5,  81-­‐185.  

Péterfi,  F.  (1956)  Contributioni  la  cunoasterea  Tardigradelor  din  R.  P.  R.  Studii  si  Cercetari  

de  Biologia.  Accademia  R.  P.  R.,  Filiola  Cluj,  7,  149-­‐155.    

Petersen,  B.  (1951)  The  Tardigrade  Fauna  of  Greenland.  A  faunistiuc  study  with  some  few  

ecological  remarks.  Meddelelser  om  Grønland,  150,  5,  5-­‐94.  

Posada,   D.   (2008).   jModelTest:   Phylogenetic   Model   Averaging.   Molecular   Biology   and  

Evolution,  25,  1253-­‐1256.    

Ramazzotti,   G.   (1943)  Nuova   varietà   del   Tardigrado  Pseudechiniscus   cornutos.  Rivista   di  

Scienze  Naturali  “Natura”  di  Milano,  34,  89-­‐90.  

Ramazzotti,  G,  Maucci,  W.  (1983)  Il  Phylum  Tardigrada.  III  edizione  riveduta  e  aggiornata.  

Memorie  dell’Istituto  Italiano  di  Idrobiologia  Dott.  Marco  De  Marchi,  41,  1–1012.  

Page 78: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  4    

  77  

Rebecchi,   L.,   Altiero,   T.,   Eibye-­‐Jacobsen,   J.,   Bertolani,   R.  &  Kristensen,  R.M.   (2008)  A  new  

discovery   of   Novechiniscus   armadilloides   (Schuster,   1975)   (Tardigrada,   Echiniscidae)  

from   Utah,   USA   with   considerations   on   non-­‐marine   Heterotardigrada   phylogeny   and  

biogeography.  Organisms,  Diversity  &  Evolution,  8,  58–65.  

Richters,  F.  (1903)  Nordische  Tardigraden.  Zoologisher  Anzeiger,  28,  5,  168-­‐172.    

Richters,  F.  (1904a)  Arktische  Tardigraden.  Fauna  Arctica,  3,  493-­‐508.    

Richters,   F.(1904b)   Beitrag   zur   Verbreitung   der   Tardigraden   im   südlichen   Skandinavien  

und  an  der  mecklenburgischen  Küste.  Zoologischer  Anzeiger,  28,  347–352.    

Richters,  F.(1904c)  Islandische  Tardigraden  Zoologischer  Anzeiger,  28  (10),  373–377.    

Richters,  F.  (1908)  Moosbewohner.  Wissenschaftliche  Ergebnisse  der  Schwedischen  Südpolar  

Expedition  (1901-­‐1903),  5,  2,  1-­‐16.    

Ronquist,  F.,  Teslenko,  M.  van  der  Mark  P.,  Ayres  D.,  Darling  A.,  Höhna  S.,  Larget  B.,  Liu  L.,  

Suchard  M.A.,  &  Huelsenbeck   J.P.   (2012).  MrBayes  3.2:   efficient  Bayesian  phylogenetic  

inference  and  model  choice  across  a  large  model  space.  Systematic  Biology,  61(3),  539-­‐

542.  

Schuster,   R.   O.,   Grigarick,   A.A.   &   Toftner,   E.   C.   (1980).   A   new   species   of  Echiniscus   from  

California  (Tardigrada:  Echiniscidae).  Pan-­‐Pacific  Entomologist,  56(4),  265-­‐267.  

Schill,   R.O.,   Förster,   F.,   Dandekar,   T.  &  Wolf,  M.   (2010)  Using   compensatory   base   change  

analysis   of   internal   transcribed   spacer   2   secondary   structures   to   identify   three   new  

species  in  Paramacrobiotus  (Tardigrada).  Organisms  Diversity  &  Evolution,  10,  286-­‐296.  

Scourfield,  D.J.   (1897)   Contributions   to   the   non-­‐marine   Fauna   of   Spitbergen.   Tardigrada.  

Proceedings  of  the  Zoological  Society  of  London.  790-­‐791.  

Tamura,   K.,   Peterson,   D.,   Peterson,   N.,   Stechler,   G.,   Nei,   M.   &   Kumar,   S.   (2011).   MEGA5:  

molecular   evolutionary   genetics   analysis   using   maximum   likelihood,   evolutionary  

distance,   and  maximum  parsimony  methods.  Molecular   Biology   and   Evolution,   28(10),  

2731-­‐2739.  

Thulin,  G.  (1928)  Über  die  Phylogenie  und  das  System  der  Tardigraden.  Hereditas,  11,  207-­‐

266.  

Węglarska,   B.   (1959)   Die   Tardigraden   (Tardigrada)   Polens.   I.   Tardigraden   der  

Woiwodschaft  Krakow.  Acta  Zoologica  Cracovioensia,  2,  699-­‐745.      

Whiting,   M.F.,   Carpenter,   J.M.,   Wheeler,   Q.D.   &   Wheeler,   W.C.   (1997).   The   Strepsitera  

problem:   phylogeny   of   the   holometabolous   insect   orders   inferred   from   18S   and   28S  

ribosomal  DNA  sequences  and  morphology.  Systematic  Biology,  46,  1-­‐68.  

Page 79: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

Page 80: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

 

 

 

 

 

Paper  5  

 

Observations   on   Pyxidium   tardigradum   (Ciliophora),   a  protozoan   living   on   Eutardigrada:   infestation,   morphology  and  feeding  behaviour.    

Filipe   Vicente,   Łukasz   Michalczyk,   Łukasz   Kaczmarek   &   Maria-­‐José   Boavida  

(2008)  Parasitology  Research  103:  1323-­‐1331.    

Page 81: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

   

Page 82: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  81  

Abstract    Pyxidium  tardigradum  is  a  protozoan  that  has  been  reported  on  a  few  occasions  as  an  epizoan  

symphoriont   living   on   eutardigrades.   We   report   here   the   first   records   of   this   species   from  

Kirghizia  (the  first  Asian  record),  Poland  and  Portugal.  The  Portuguese  population  revealed  the  

largest   P.   tardigradum   infestation   ever   described   in   terms   of   both   the   whole   tardigrade  

population,  with  60%  affected  animals,   as  well   as   a   single  host,  with  35  attached  protozoan.  

The   first   ever   SEM  photomicrographs   and   pictures   of   live  P.   tardigradum   are   also   given.  No  

considerable   ultrastructural   variability   was   detected   within   or   between   the   populations,  

suggesting   that   P.   tardigradum   may   be   a   true   cosmopolitan   species.   Given   that   the   ciliate  

imposed  significant  extra  volumes  on  infested  tardigrades  (from  1%  to  as  much  as  136%),  we  

also  discuss  possible  negative  effects  of   the  protozoan  on   the   fitness  of   the  host  and  suggest  

that   P.   tardigradum   should  probably  be   considered  as   a   eutardigrade  parasite.   Furthermore,  

some  hypotheses  about  the  life  history  strategies  of  the  ciliate  are  proposed.  

 

Keywords  

Pyxidium   tardigradum,   stalked   epizoan,   Tardigrada   symphoriont,   parasitism,   life   history,  

feeding  behaviour,  ultrastructure,  SEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 83: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 82  

Introduction  In   some   Protozoa   at   least   a   part   of   the   life   cycle   is   sessile,   i.e.   individuals   live   attached   to  

organisms,   such   as   other   Protozoa,   plants,   animals   as   well   as   to   organic   debris.   Pyxidium  

tardigradum   is   a   ciliate   protozoan   (Ciliophora:  Peritricha:  Epistylidae)   described   in   1964   by  

Van  der  Land  as  an  epizoic  symphoriont  of  a  tardigrade  Ramazzottius  oberhaeuseri  (originally  

Hypsibius  oberhaeuseri).  It  is  a  sessile  species  that  has  been  identified  on  a  few  occasions  as  a  

eutardigrade  symphoriont.  Given  that  a  symphoriont  is  defined  as  an  organism  that  is  carried  

and   often   also   dispersed   by   its   host,   this   term   does   not   describe   the   character   of   the  

relationship  in  terms  of  benefits  and  costs  received/paid  by  the  host  (Corliss,  2002).  In  other  

words,   from   the   host’s   point   of   view   a   symphoriont   can   be   a   symbiont,   a   commensal   or   a  

parasite.  

The   observations   of  P.   tardigradum   are   scarce.   Iharos   (1966),   Hallas   (1977),  Wright   (1991)  

and   Marley   &   Wright   (1994)   reported   low   or   moderate   infestations   on   the   following   host  

tardigrade   species:   Isohypsibius   undulatus   (originally   Hypsibius   undulatus),   Macrobiotus  

hufelandi,  Milnesium  tardigradum,  Minibiotus  intermedius  and  R.  oberhaeuseri.  Only  one  major  

infestation   has   been   reported   by   Morgan   (1976),   who   observed   some   R.   oberhaeuseri  

populations  with  over  50%  affected  animals,   carrying  up   to  eight   P.   tardigradum   individuals  

each.   He   also   reported   the   ciliate   attached   to  M.   tardigradum.   All   these   observations   were  

based  on  tardigrades  collected  exclusively  from  European  locations.  However,  a  low  number  of  

epizoan   Peritricha   attached   to   Ramajendas   frigidus   (originally   Hypsibius   renaudi)   from   the  

Antarctic   have   been   reported   both   by   Jennings   (1976)   and   Dastych   (1984),   although   the  

Protozoan   species   identification  was   not   given   by   the   authors.   All   of   these   host   species   are  

eutardigrades;  no  P.  tardigradum  has  ever  been  observed  attached  to  a  heterotardigrade.  

Sessile  Peritricha,  like  P.  tardigradum,  reproduce  by  longitudinal  cell  division  with  reference  to  

the   stalk,   thus   theoretically   it   is   possible   for   a   few   colonial   cells   to   share   a   common   stalk  

(Westphal,  1976).  However,  no  evidence  of  such  colonies  was  found  so  far.  

In   this   paper   we   illustrate   and   compare   detailed  morphology   of   P.   tardigradum   within   and  

between  the  Portuguese,  Polish  and  Kirghizian  populations.  We  also  describe  some  aspects  of  

the  Portuguese  population  structure.  Moreover,  we  attempt  to  estimate  the  magnitude  of  costs  

imposed  on  tardigrades  by  P.  tardigradum  and  hypothesise  about  the  life  history  strategies  of  

the  ciliate.  We  also  provide  the  first  photographs  of  live  P.  tardigradum  and  the  first  Scanning  

Electron  Microscope  (SEM)  photomicrographs  of  the  peritrichid.  

Page 84: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  83  

Material  and  Methods  

Kirghizian   tardigrades  were  extracted   from  a  moss   sample   collected   from  rocks   in   the  Tien-­‐

shan  Mountains,  near   the   Issyk-­‐Kul  Lake  and   the  Karakul  City,  ca.1600  m  above  sea   level,   in  

2002,  leg.  Ł.  Kaczmarek.  Tardigrades  from  Poland  were  found  in  a  moss  sample  collected  from  

rocks   in   the  Ojcowski  National  Park,  Chełmowa  Mountain,  near   the  Łokietek  Cave,  ca.  500  m  

above  sea  level,  in  2003,  leg.  Ł.  Kaczmarek.  

Except  for  one  specimen,  all  Polish  tardigrades  were  mounted  on  microscope  slides  in  Hoyer’s  

medium   and   examined   and   photographed   using   Phase   Contrast   Microscope   (PCM).   The  

remaining  specimen  and  all  Kirghizian  specimens  were  prepared  for  SEM,  by  being  subjected  

to  ethanol/acetone  series  (30,  40,  50,  60,  70,  80,  90,  100%  ethanol,  then  33,  67,  100%  acetone,  

each  step  5  min   long,  performed  at  room  temperature),   followed  by  CO2  critical  point  drying  

and  Pt  coating).  

Portuguese  tardigrades  were  collected  on  the  14.01.2008.,  after  a  few  rainy  days  from  a  moist  

lichen   sample   growing   on   a   lemon   tree   (Citrus   limon   L.)   in   the   locality   of   Quinta   do   Conde,  

about  20  km  south  of  Lisbon,  ca.  54  m  above  sea  level  (leg.  F.  Vicente).  The  lichen  sample  was  

sieved   consecutively   through   500   µm   and   32   µm   pore   size   mesh,   and   tardigrades   were  

collected  under  a  stereomicroscope  (65-­‐400×).  Live  animals  were  examined  and  filmed  under  

a   Leica   TCS   co-­‐focal   microscope   (CF)   (100-­‐1000×).   All   animals   were   then   fixed   with   4%  

paraformaldehyde   in   PBS.   Some  were   prepared   for   SEM   observations   by   being   subjected   to  

alcohol   series   (50,  60,  70,  80,  90,  95  and  99,5%  methanol,  10  min  each,  at  4ºC),   followed  by  

critical  point  drying  in  CO2.  These  specimens  were  coated  with  Au  and  examined  under  a  JEOL  

USM  5200  LU  SEM.  The  remaining  animals  were  mounted  in  Neo-­‐Mount  medium  (Merck)  and  

observed,   counted   and   photographed   under   a   Nomarski   Differential   Interference   Contrast  

Microscope  (DIC)  (40-­‐1000×).    

Ten   random  Pyxidium   cells   (mounted,   each   from   a   different   tardigrade   specimen),   from   the  

Portuguese   population   were   measured   (excluding   stalks).   Since   the   Pyxidium   cell   is  

approximately   a   prolate   ellipsoid,   the   volume   v   can   be   easily   calculated   if   cell   length   l   and  

width  w  are  known:  2

2234

⎟⎠

⎞⎜⎝

⎛⋅⋅=wlv π .  We  also  estimated  volumes  of  eighty  three  random  fixed  

Portuguese   R.   cf.   oberhaeuseri   specimens   of   which   61%   were   infested   (the   proportion   of  

infested  individuals  in  the  sample  did  not  differ  from  the  whole  population,  p=0.88,   21χ =0.04).  

Page 85: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 84  

As   the   shape   of   a   eutardigrade   body   is   also   close   to   a   prolate   ellipsoid,   we  measured   body  

length  and  width  and  calculated  the  volume  using  the  equation  provided  above.  The  maximal  

body  width  was  measured   (between   legs   II   and   III)   and  body   length  measures   excluded   the  

hind   legs.   In   order   to   assess   the   extra   relative   volumes   imposed   on   infested   tardigrades  we  

multiplied  the  number  of  Pyxidia  by  the  mean  P.  tardigradum  cell  volume  and  then  divided  the  

obtained  value  by  the  tardigrade  body  volume.   In  other  words,   the  extra  relative  volume  is  a  

percentage  of  the  host’s  body  volume.  

 

 

Figure  1  -­‐  Observed  quantities  of  Pyxidium  tardigradum  attached  to  the  Portuguese  Ramazzottius  cf.  oberhaeuseri.  Since  the  population  consisted  of  a  100  tardigrades,  the  values  can  be  read  both  as  the  numbers  of  individuals  and  percentages.      

Given  that  one  stalk  can  theoretically  hold  more  than  one  cell  and  the  number  of  protozoans  

attached  to  a   tardigrade  may  change  over   time,  empty  stalks  were  not  counted  (i.e.  we  were  

interested  in  the  current  population  structure  only).  

In  order  to  establish  whether  Pyxidia  are  selective  when  attaching  to  tardigrades  of  different  

sizes   we   compared   volumes   of   infested   and   non-­‐infested   R.   cf.   oberhaeuseri   from   the  

Portuguese   population   using   a   two-­‐tailed   independent   samples   Mann-­‐Whitney   U-­‐test.   To  

establish  whether  there  is  a  relationship  between  the  magnitude  of  infestation  and  host’s  body  

volume  we  used  a  two-­‐tailed  Spearman’s  correlation.    

Page 86: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  85  

Cortical  ribs  between  the  anterior  end  of  the  cell  and  the  anlage  of  the  ciliary  wreath,  from  the  

ciliary  wreath   to   the   stalk   and   the   total   number   of   ribs  were   counted   using   SEM.   Given   the  

technical  difficulties,  the  number  of  cortical  ribs  was  determined  only  in  three  specimens  of  P.  

tardigradum  from  the  Asian  population  and  in  five  from  each  of  the  European  populations.  

Means   were   compared   using   Kruskal-­‐Wallis   tests   with   exact   significance.   The   Benjamini-­‐

Hochberg   correction   was   applied   to   the   α-­‐level   to   control   the   overall   Type   I   error   rate   in  

multiple   tests   (Benjamini   &   Hochberg   1995).   All   statistics   were   computed   using   SPSS   14.0  

licensed  to  the  University  of  East  Anglia  (Norwich,  UK).  

 

 

Figure  2   -­‐  Non-­‐infested  specimens  of  Portuguese  R.   cf.  oberhaeuseri  were  statistically  significantly  smaller   than  infested   individuals   (p=0.02,   means   and   standard   errors   for   body   volume,   the   dashed   line   represents   the  population  mean).    

 

 

 

 

Page 87: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 86  

Results  

Infestation  

Fifteen  P.  tardigradum  specimens  on  three  Macrobiotus  cf.  hufelandi  were  found  in  the  Polish  

sample,  whereas  in  the  Kirghizian  sample  three  protozoans  were  attached  to  two  Ramazzottius  

cf.  oberhaeuseri.  

The  Portuguese  population  consisted  of  111  tardigrades.  Ramazzottius  cf.  oberhaeuseri  was  the  

dominant   species   with   100   individuals,   of   which   60%   were   affected   by   the   protozoan.   A  

quantitative  distribution  of  P.  tardigradum  affecting  these  R.  cf.  oberhaeuseri  is  depicted  in  Fig.  

1.  Note   that   even   though   the  most   heavily   infested   tardigrade   carried   thirty-­‐five   protozoans  

(see  also  Fig.  4),  the  majority  of  hosts  (52%)  had  only  one  to  six  ciliates  attached.  The  average  

number  of  P.  tardigradum  per  tardigrade  was  5.7.  

A  50%  infestation  affected  four  Milnesium  cf.  tardigradum,  and  seven  Macrobiotus  sp.  had  no  P.  

tardigradum   on   them.   This   amounted   to   the   total   of   55.9%   tardigrades   affected   by   P.  

tardigradum.    

The  number  of  Pyxidia  attached  to  tardigrades  varied  considerably,  from  only  a  single  ciliate  to  

as   many   as   35   protozoans   (Fig.   4).   On   average   infested   tardigrades   had   5.7   ±   0.9   ciliates  

attached   (mean   ±   standard   error).   Also,   the   relative   extra   volume   imposed   on   tardigrades  

ranged   from  only  0.8%  to  as  much  as  135.9%.  On  average   infested   tardigrades  carried  extra  

13.7  ±  3.5%  of   their  volume  (mean  ±  standard  error).   In  addition   to   the   reported  protozoan  

numbers,  some  tardigrades  exhibited  also  empty  stalks  (43  stalks  attached  to  17  animals  total).  

All  observed  ciliates  occupied  the  dorsal  and  the  dorso-­‐lateral  portions  of  the  animals  (i.e.  no  

protozoans   were   found   attached   to   the   ventral   cuticle).   Most   Pyxidia   concentrated   on   the  

posterior  parts  of  the  animal  bodies  (Figs  5-­‐7).    

Infested  individuals  of  the  Portuguese  R.  cf.  oberhaeuseri  were  statistically  significantly  larger  

than  non-­‐infested  specimens  (means  ±  standard  errors:  9.3  ±  1.1  ×  105  µm3  (non-­‐infested)  and  

12.4  ±  0.9  ×  105  µm3  (infested),  p=0.02,  U=568,  N=83),  see  also  Fig.  2.  The  difference  was  even  

more  significant  when  instead  of  volume  we  used  the  tardigrade  body  length  as  the  body  size  

estimator   (p<0.001,   U=385,   N=83).   However,   the   magnitude   of   infestation   (among   infested  

individuals)   was   not   correlated   with   the   host’s   body   volume   (p=0.865,   ρ=0.25   (ρ2=0.06),  

N=50),  see  also  Fig.  3.    

Page 88: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  87  

 

Figure  3   -­‐  Among   infested  R.   cf.  oberhaeuseri   the  number  of  P.   tardigradum   per   tardigrade  was  not   correlated  with  the  tardigrade  body  volume  (p=0.88,  linear  regression  with  95%  confidence  intervals).    

In   the  Portuguese  population  the  average  number  of  Pyxidia  attached  to   infested  tardigrades  

was   5.7,   which   translated   into   a   volume   of   1.19   ×   105   µm3   (we   assumed   the   volume   of   an  

average   P.   tardigradum   cell,   see   Table   1).   We   calculated   relative   extra   volumes   for   a  

hypothetical  population  of  tardigrades  with  a  range  of  body  volumes  similar  to  the  Portuguese  

R.   cf.   oberhaeuseri   (i.e.   1.5-­‐27.5   ×   105   µm3,   see   Fig.   27).   Our  modelled   population   consisted  

therefore  of  27  tardigrades  (with  the  body  volume  increase  =  1  ×  105  µm3  per  individual),  each  

carrying  5.7   average   size   ciliates.  The   result   of   our   simulation   is  depicted  with   the   red   solid  

curve  with  red  data  points.  The  relative  additional  volume  imposed  on  hosts   is  exponentially  

negatively   correlated   with   the   tardigrade   body   size   (i.e.   the   relationship   has   an   asymptotic  

character).  To  recognise  how  profoundly  the  extra  relative  volume  imposed  by  P.  tardigradum  

changes  with  the  host’s  body  size,  lets  consider  three  tardigrades  (indicated  by  open  circles  on  

the  graph):  a  small  one  (1.5  ×  105  µm3),  a  medium  sized  one  (14.5  ×  105  µm3)  and  a  large  one  

(27.5  ×  105  µm3).   In  our  hypothetical  population  5.7  average  size  ciliates   impose  as  much  as  

Page 89: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 88  

79%  relative  extra  volume  on  the  small  tardigrade,  but  only  8%  on  the  medium  and  4%  on  the  

large   tardigrade.   The   difference   in   body   volume   between   the   small   and   medium   and   the  

medium  and  large  tardigrade  is  exactly  the  same  (i.e.  13  ×  105  µm3),  but  the  difference  in  extra  

relative  volume   imposed  on  the  small  and  medium  tardigrade   is  nearly  18  times  bigger   than  

the  difference  between  the  medium  sized  and  large  tardigrade  (71%  vs.  4%  of  the  difference,  

respectively).    

 

 

 

 

 

Figures   4-­‐6   -­‐   Pyxidia   attached   to  tardigrades  –  4  –  R.  cf.  oberhaeuseri  from  Portugal   with   35   protozoans   (=   53%  extra   relative   volume),   5-­‐6   –  Macrobiotus   sp.   from   Poland   with   10  ciliates   (5  –  dorsal   view,  6  –   later  view,  arrowheads   indicate   empty   feet   and  stalks   to   which   P.   tardigradum   cells  were   previously   attached).   Note   that  ciliates  are  attached  dorso-­‐laterally  with  higher   densities   on   the   caudal   part   of  the  tardigrade  body.  (4  –  DIC,  5-­‐6  –  SEM;  scale  bars  in  µm)    

 

 

 

 

 

 

 

Page 90: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  89  

P.  tardigradum  cells  were  all  oval  and  did  not  vary  significantly  in  size  and  shape  either  within  

or  between  analysed  populations  (Figs  4-­‐8,  14,  18-­‐26).  Measurements  of  ten  randomly  chosen  

Portuguese  cells  are  given  in  Table  1.  Given  that  peristomes  were  contracted  on  all  protozoans  

prepared  for  SEM,  both  the  cytostome  and  the  oral  cilia  were  not  visible  in  SEM.  The  pellicle  is  

ribbed  perpendicularly  to  the  stalk  axis  (Fig.  8)  with  uniformly  distributed  pores  (Figs  9-­‐11).  

Since  the  pores  were  only  ca.  0.06  µm  in  diameter,  it  was  not  possible  to  observe  them  under  

Light  Microscope.  The  number  of  cortical  ribs  was  similar  in  all  three  populations.  The  number  

of  ribs  between  the  anterior  end  of  the  cell  and  the  anlage  of  the  ciliary  wreath:  Kirghizia:  69-­‐

70,  Poland:  65-­‐70,  Portugal:  64-­‐68  (p=0.079,  H2=4.952,  N=13).  Ribs  from  the  ciliary  wreath  to  

the  stalk:  Kirghizia:  12-­‐14,  Poland:  10-­‐13,  Portugal:  10-­‐12  (p=0.087,  H2=4.718,  N=13).  Totals:  

Kirghizia:   82-­‐84,   Poland:   75-­‐83,   Portugal:   74-­‐80   (p=0.015,  H2=7.060,   N=13).   Thus,   only   the  

total   number   of   ribs   differed   significantly   between   the   populations   (at   adjusted   pBH<0.017).  

Moreover,  the  significance  was  driven  by  the  difference  between  the  Asian  and  both  European  

samples.  However,  given  the  low  sample  sizes,  the  data  do  not  allow  to  determine  whether  the  

difference  has  a  biological  meaning.  Cilia  were  restricted  to  the  peristome  only.  A  distinct,  C-­‐

shaped  macronucleus  was   visible   in   all   live   and   permanently  mounted   specimens   (Fig.   12),  

however  micronuclei  were  not  detected  in  any  of  the  observed  ciliates.  

 TABLE 1 - Basic statistics for lengths, widths and volumes of 10 random P. tardigradum cells (stalks excluded) from the Portuguese population (MIN and MAX = the lowest and the highest measurements among all individuals, SE = standard error of the mean). Cell dimension MIN MAX MEAN SE

Length (height) [µm] 40.0 52.5 46.7 1.4

Width [µm] 24.3 32.2 28.9 0.7

Volume [× 104 µm3] 1.24 2.85 2.08 0.15

 

Morphology    

Stalks  were  wrinkled  (visible  in  SEM  only),  usually  shorter  than  the  cell  length  and  somewhat  

flexible  (Fig.  13-­‐17).  Even  though  stalks  seemed  to  be  non-­‐contractile,  the  ciliates  were  able  to  

squat  by  contracting  the  cell  base  and  pulling  the  stalk  inside  (compare  the  same  live  individual  

on  Figs  20  and  21).  Most   stalks  bared  only   single   cells,  however  we  also  observed  branched  

stalks  with  two  cells  (Fig.  13)  and  stalks  with  three  attachment  points  (Fig.  14).  The  squatting  

is   probably   reduced   in   branched   ciliates,   since   none   of   the   clonal   cells   is   able   to   pull   the  

colonial  stalk  inside.  

Page 91: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 90  

Feet   are   round   and   do   not   seemed   to   penetrate   tardigrade   cuticles   (Figs.   15-­‐17),   however  

Transmission   Electron   Microscopy   observations   are   needed   to   reveal   the   nature   of   the  

attachment  (i.e.  how  the  foot  is  attached  to  the  host’s  cuticle,  and  if  the  cuticle  is  damaged  by  

the  ciliate).  

 

 

Figures  7-­‐12  -­‐  7  –  A  closer  look  at  the  caudal  part  of  the  dorso-­‐lateral  cuticle  of  the  Polish  tardigrade  shown  on  Figs  5-­‐6;  8  –  a  single  P.  tardigradum  cell  (Kirghizia);  9  –  contracted  peristome  with  a  cytostome  (Kirghizia);  10  –  topical   pellicle   (Poland);   11   –   lateral   pellicle   (Kirghizia);   12   –   macronucleus   of   a   Portuguese   P.   tardigradum.  Arrowheads  on  Fig.  7   indicate  empty   feet   to  which  P.   tardigradum  cells  were  attached  and  arrows  on  Figs  8-­‐11  indicate  pores  in  the  pellicle.  (7-­‐11  –  SEM,  12  –  DIC;  scale  bars  in  µm)  

Page 92: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  91  

Observations  of  live  specimens  and  feeding  behaviour  

All   live   protozoans   showed   similar   behaviour.   Cilia   were,   at   times,   retracted   by   peristome  

contraction  and  then  extended  outside  the  cell,  causing  a  water  flow  by  a  rotatory  movement  

(Figs  18-­‐21)  and,  in  the  effect,  bringing  food  to  the  cytostome.    

Food   (most   likely   bacteria   and   maybe   also   some   organic   particles)   passed   through   the  

cytopharynx,   a   funnel-­‐like   structure   connected   to   a   forming   vacuole   (Figs   20-­‐21).   When   a  

vacuole  reached  a  certain  volume,  it  circulated  within  the  cell  (Figs  22-­‐26).  A  new  food  vacuole  

soon  started  to  form.  At  least  five  such  vacuoles  were  seen  simultaneously  in  a  single  cell.    

 

Figures  13-­‐17  -­‐  13-­‐14  –  Branched  stalks:  13  –  a  stalk  with  two  cells  (Kirghizia),  14  –  a  stalk  with  currently  one  cell   attached,   but   note   additional   attachment   points   (arrowheads)   where   two   other   Pyxidium   cells   used   to   be  (Portugal);  15-­‐17  –  Pyxidium  feet:  15-­‐16  –  external  appearance  (Kirgizia),  17  –  mid-­‐section  showing  no  evidence  of   that   the   ciliate   penetrates   tardigrade   cuticle,   c   –   tardigrade   cuticle   surface,   f   –   Pyxidium   foot,   p   –   Pyxidium  pellicle  surface,  s  –  Pyxidium  stalk,  t  –  tardigrade  body  cavity  (Poland).  (13,  15-­‐16  –  SEM,  14  –  DIC,  17  –  PCM;  scale  bars  in  µm)  

Page 93: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 92  

 

 

Figures  18-­‐26  -­‐  P.  tardigradum  feeding  behaviour.–  18-­‐21  –  arrows  indicate  the  process  of  extending  the  cilia  and  initiating  the  rotatory  movement  (18  –  cilia  are  almost  completely  retracted  and  the  stalk  is  pulled  inside  the  cell,  21  –  peristome  with  cilia   is   fully  craned  and  the  cell   is   floating  freely  on  the  flexible  stalk),  20-­‐26  –  arrowheads  indicate  the  formation  (20-­‐21)  and  migration  (22-­‐26)  of  a  food  vacuole.  Time  (seconds  :  centiseconds)  is  shown  in  the  bottom-­‐left  corner  of  each  photograph,  scale  bars  in  µm.  Food  available  to  the  protozoans  consisted  of  bacteria  and  organic  debris  present  in  the  lichen  sample.  No  additional  food  source  was  provided.  (Portugal,  CF)    

 

 

 

Page 94: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  93  

Discussion  

The   dorsal   and   dorso-­‐lateral   positioning   of   most   Peritrichids   observed   in   this   study   is   in  

accordance   with   previous   literature   (Morgan,   1976;   Marley   &  Wright,   1994).   A   few   ciliates  

were  however  attached  to  an  anterior  area,  but  never  beyond  the  level  of  the  first  pair  of  legs.  

Such   pattern   exists   probably   because  P.   tardigradum   attached   too   close   to   the   host’s  mouth  

would   negatively   affect   the   tardigrade   ability   to   feed,   and   eventually   induce   death.   It   is   also  

possible   that   Pyxidia   that   attached   randomly   and   happened   to   be   present   on   the   anterior  

cuticle  were  removed  by  the  host  or  were  lost  as  a  consequence  of  host’s  movements  in  dense  

moss   or   lichen   environment.   In   this   case   the   selection   would   also   favour   ciliates   with   a  

preference   to   attach   caudally.   It   is   worth   noting,   however,   that   five   Pyxidium   cells   were  

observed  attached  to  an  exuvium.  This,   though,  may  be  simply  because  a   tardigrade  had   just  

moulted  and  Pyxidia  can  survive  some  time  with  no  locomotion  provided  by  the  host  or  maybe  

non-­‐mobility   does   not   shorten   the   lifespan   of   ciliates   at   all,   affecting   (negatively)   the   cell  

division  rate  only.  It  would  be  interesting  to  observe  ciliates  attached  to  exuvia  and  establish  

whether   they   can   detach   from   the   cuticle   and   find   a   new   host   or   once   attached   they   are  

permanently  associated  with  a  specific  animal.  The  latter  would  imply  a  very  short  lifespan  of  

P.  tardigradum,  since  tardigrades  moult  every  few  days,  e.g.  in  M.  tardigradum  first  and  second  

moults  occur   at   intervals  of  4-­‐5  days   and   subsequent  moults  occur   at   intervals  of  6-­‐10  days  

when  the  life  cycle  is  not  elongated  by  anabiosis  (Suzuki,  2003).  

Given  that  P.  tardigradum  has  always  been  considered  simply  a  eutardigrade  symphoriont,  the  

nature  of  the  ciliate-­‐tardigrade  relationship  has  never  been  defined  in  terms  of  benefits/costs  

received/paid   by   the   host.   Since   the   protozoan   neither   does   seem   to   penetrate   the   host’s  

cuticle  nor  it  does  feed  on  the  host,  it  could  be  concluded  that  it  does  not  inflict  a  direct  harm.  

Therefore,  the  ciliate-­‐tardigrade  relationship  could  be  described  as  commensalism  (we  assume  

that   phoresy   is   advantageous   to   the   peritrichid).   However,   it   is   worth   considering   that   P.  

tardigradum   may   decrease   the   host’s   fitness   in   other   ways   than   by   cuticle   damage   or   by  

feeding  on  tardigrades.  In  the  Portuguese  population,   infested  tardigrades  carried  6  Pyxidium  

cells  on  average  which  translated  to  extra  14%  of  the  host’s  volume.  Thus,  it  seems  reasonable  

to  expect  that  for  a  tardigrade  even  a  few  protozoans  could  be  a  significant  load  that  imposes  

considerable   extra   energy   costs   related   to   locomotion.   Also,   locomotion   itself   could   be  

impaired   making   it   more   difficult   for   tardigrades   to   forage   as   well   as   to   avoid   predators.  

Locomotion   impairment   can  be   caused  not  only  by   increased  body  weight   and  difficulties   in  

Page 95: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 94  

moving  in  dense  moss/lichen  cushions  but  it  can  be  also  generated  by  rotary  cilia  movements  

that   may   pull   the   host’s   body   in   many   directions.   Moreover,   in   case   of   bisexual   tardigrade  

populations,   infestation   may   have   a   negative   effect   on   sexual   attractiveness   of   an   infested  

animal   as   well   as   it   can   be   a   physical   obstacle   for   mating.   Therefore,   in   our   opinion,   P.  

tardigradum   should  probably   be   considered   as   a   parasite,   as   it   appears   possible   that   it  may  

decrease   the   fitness   of   its   host   in   many   ways.   Even   though   there   is   no   strong   empirical  

evidence  to  support  this,  parasitism  seems  much  more  likely  than  commensalism  or  symbiosis  

when  considering  the  tardigrade-­‐Pyxidium  relationship.  

If   the   assumption   that   the   number   of   protozoans   attached   to   the   host   negatively   affects   the  

host’s   fitness   is   correct,  we   can   expect   that  Pyxidia   should  do  better  when   a   single   or   a   low  

number  of  parasites  are  attached  to  a  tardigrade.  We  observed  such  pattern  in  the  Portuguese  

population,  where  the  highest  number  of   infested  tardigrades  had  a  single  Pyxidium  attached  

(29%   of   all   affected   individuals).   Over   a   half   (52%)   of   infested   individuals   carried   only   1-­‐3  

ciliates  (see  Fig.  1)  and  further  23%  4-­‐6  protozoans,  leaving  only  26%  of  tardigrades  with  7  or  

more   Pyxidia   attached.   However,   this   pattern   can   also   be   explained   by   an   early   stage   of  

infestation   in   the   observed   population.   This   simple   explanation   could   be   satisfactory,   given  

that  the  short  inter-­‐moulting  time  in  live  tardigrades  forces  the  protozoans  to  find  a  new  host  

before  they  manage  to  multiply  to  high  numbers  and  become  lethal  to  the  host  (i.e.  their  host  

will  stop  moving  anyway  –  it  will  either  moult  or  die).  However,  the  mere  presence  of  Pyxidia  

attached   to   an   animal   may   elongate   the   inter-­‐moulting   time   by   impairing   locomotion   and  

therefore  causing  a  lower  food  intake  and  a  slower  growth  of  the  host.  The  implications  of  such  

relationship  could  be  two-­‐fold  for  Pyxidium.  Elongating  the  inter-­‐moulting  time  (but  not  killing  

the  host)  would   increase  the   fitness  of  P.   tardigradum,  but   it  would  also  allow  more  time  for  

other  ciliates  to  attach  and  as  a  consequence  induce  the  host’s  death  when  it  could  still  provide  

locomotion.  This  may  lead  to  some  kind  of  inter-­‐specific  competition  between  Pyxidia  if  cells  on  

a  single  host  are  not  clonal  and/or  they  are  not  capable  of  kin-­‐recognition.  

The   costs   imposed  on   the   invertebrate   by  P.   tardigradum   decreases   rapidly  when   small   and  

medium   size   tardigrades   are   compared.  However,  when  we   compare   extra   relative   volumes  

imposed  on  medium  and  big  tardigrades  the  differences  become  much  smaller  (Fig.  27).  Such  

asymptotic  relationship  between  the  imposed  cost  and  body  size  of  the  host  means  also  that  an  

additional  Pyxidium  cell  is  going  to  ballast  a  small  host  significantly,  whereas  it  is  not  going  to  

have  a   considerable  effect  on  a  big  or  even  a  medium  size   tardigrade.  This  principle  may  be  

Page 96: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  95  

very   important   from   the   ciliate’s   point   of   view.   If   Pyxidia   replicate   more   frequently   than  

tardigrades   moult,   and   if   daughter   cells   stay   on   the   same   host   even   for   a   limited   time  

(branched   stalks   found   in   our   study   suggest   that   it   is   so),   it   would   be   beneficial   for   the  

protozoan  (assuming  that  the  tardigrade  fitness  is  positively  correlated  with  the  symphoriont’s  

fitness)  to  be  attached  to  a  big  host,  since  an  increase  in  Pyxidium  colony  size  would  not  reduce  

the   invertebrate   fitness   considerably.  Thus,   it   should  be  expected   that  P.   tardigradum  would  

attach  to  bigger  tardigrades  more  often  than  to  smaller  animals.  Indeed,  we  found  such  pattern  

(Fig.  2)  which  seems  to  support  our  prediction.  It  can  be  argued  though,  that  the  same  pattern  

could  be  simply  a  result  of  Pyxidia  attaching  to  tardigrades  randomly.  In  other  words,  ciliates  

would  be  more  likely  to  attach  to  bigger  tardigrades  given  that  their  cuticle  surface  is  greater.  

However,  if  this  was  true,  we  should  also  expect  a  positive  correlation  between  the  number  of  

ciliates  and  the  host  size  among  infested  tardigrades.  Yet  we  did  not  find  such  relationship  (Fig.  

3).  Therefore,  we  conclude   that  P.   tardigradum  prefers  bigger   tardigrades  over  smaller  ones.  

Random  attachment  to  hosts  above  a  size  threshold  can  be  easily  explained  if  we  assume  that  

the   ciliate   fitness   increases  asymptotically  with  host   size,   i.e.  when   the   relationship  between  

the  protozoan  fitness  and  tardigrade  body  size  is  described  by  a  mirror  image  of  the  imposed  

costs   asymptote   (Fig.   27).   Thus,   the   ciliate   can   gain   a   lot   when   choosing   the  medium   sized  

tardigrade   over   the   small   one,   but   not   when   choosing   between   the   medium   and   the   large  

tardigrade.   In   other   words,   above   a   certain   host   size   the   fitness   gain   is   not   significant   and  

therefore  it  is  not  advantageous  for  the  peritrichid  to  be  choosy  to  any  further  extent.  

The   threshold   may   depend   on   a   number   of   factors,   one   of   them   could   be   the   invertebrate  

population  size.  In  a  small  tardigrade  population  the  choice  of  hosts  is  limited  and  there  are  not  

many   larger   tardigrades   available,   thus   the   threshold   should   be   low.   In   a   large   population,  

however,   ciliates   can   afford   to   be   more   selective   and   the   threshold   is   expected   to   be   high.  

Another  factor  that  may  influence  the  threshold  could  be  the  P.  tardigradum  population  size.  In  

this  case,  though,  the  threshold  should  be  negatively  correlated  with  the  ciliate  population  size,  

e.g.   with   time,   when   Pyxidia   multiplied   the   threshold   should   be   lowered   as   the   result   of   a  

higher  competition  between  protozoans  (i.e.  less  non-­‐infested  tardigrades  available).  

The   proximate   mechanism   of   how   P.   tardigradum   could   differentiate   between   small   and  

medium-­‐big   tardigrades   is   unknown.   However,   given   that  P.   tardigradum   seems   to   be   host-­‐

specific,   we   should   expect   a   tight   co-­‐evolutionary   parasite-­‐host   race   that   could   result   in  

sophisticated  adaptations  in  the  ciliate  and  tardigrades.  

Page 97: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 96  

Both   tardigrade-­‐ciliate   and   ciliate-­‐ciliate   interactions   may   be   very   complex   and   more  

observations,  measurements  and  possibly  also  laboratory  experiments  are  required  for  further  

testing  of  our  hypotheses  described  above.  

Lackey  (1938)  stated  that  despite  the  apparent  cosmopolitan  distribution  of  some  protozoans,  

their   occurrence   should  be  determined  by   ecological   factors   such   as   associations  with   other  

organisms.   It   seems   that   the   occurrence   of  P.   tardigradum   can   be   explained   by   this   kind   of  

ecological   association,   since   its   presence   appears   to   be   correlated   with   the   occurrence   of  

eutardigrades.   Moreover,   no   P.   tardigradum  were   ever   found   attached   to   any   other   moss-­‐

/lichen-­‐dwelling  animal   taxa   such  as   rotifers,  nematodes  or   acari,   even   though   rotifers  were  

present   in  much   greater   numbers   than   tardigrades   in   the   Portuguese   sample.   This   strongly  

suggests   that  P.   tardigradum   is   indeed   a   specific   tardigrade   symphoriont.   It   is   possible   that  

hosts   specificity   is   caused   by   Pyxidium   requirements   regarding   both   the   host’s   cuticle   and  

locomotion  type.  The  first  requirement  could  explain  the  lack  of  records  on  heterotardigrades,  

the  latter  would  explain  no  observations  of  the  ciliate  on  rotifers.  

 

 

Figure  27  -­‐  The  relative  additional  volume  imposed  on  infested  invertebrates  depends  on  both  the  total  volume  of  ciliates  attached  to  the  tardigrade  and  the  host’s  body  size  (the  solid  red  curve).  The  dashed  blue  curve  (with  the  small,  medium  and   large   tardigrades   indicated)  shows  a  hypothetical   fitness  curve  of  P.   tardigradum  when   it   is  ideally  negatively  correlated  with  the  costs  imposed  on  the  host  (i.e.  when  y  =  –x).  

Page 98: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Observations  on  Pyxidium  tardigradum    

  97  

The   first   ever   SEM   observations   of   P.   tardigradum   revealing   some   aspects   of   the   external  

ultrastructure  are  described   in   this  study.  Observed   feeding  behaviour   is   consistent  with   the  

one  described  by  Van  der  Land  (1964).  Cell  measures  are  also  consistent  with  previous  reports  

(Van   der   Land,   1964;  Dastych,   1984;  Marley  &  Wright,   1994).   No  morphological   differences  

were   found   between   European   and   Asian   populations   even   though   they   are   as  much   as   ca.  

7000  km  apart.  However,  in  order  to  establish  whether  they  belong  to  one  species,  more  SEM  

studies  and  preferably  also  molecular  analyses  are  needed.  

Contrary  to  earlier  predictions  by  Van  der  Land  (1964)  and  Kudo  (1966)  we  observed  many  

branched,  colonial  stalks  (mainly   in   the  Portuguese  population).  The  vast  quantity  of   ‘empty’  

stalks  may   suggest,   as   predicted   by  Westphal   (1976),   the   existence   of   a   swarmer   form   that  

detaches  from  the  stalk  in  search  for  a  new  host.  

 

Acknowledgements  

The   kind   help   of   Dr.   Gabriel   Martins   (University   of   Lisbon)   in   obtaining   pictures   of   live  

specimens   is   greatly   appreciated.  We   are   also   grateful   to   Dr.   Matt   Gage   (University   of   East  

Anglia)  for  the  valuable  comments  on  the  manuscript.  

The  study  was  partially  supported  by  a  grant  to  ŁM  &  ŁK  from  the  European  Commission’s  (FP  

6)  Integrated  Infrastructure  Initiative  programme  SYNTHESYS  (grant  no.  DK-­‐TAF-­‐2576).  Parts  

of  this  paper  describing  the  first  SEM  observations  of  P.  tardigradum  were  presented  by  ŁM  &  

ŁK  at  the  10th  International  Symposium  on  Tardigrada  in  Catania,  Italy,  18th-­‐23rd  June  2006.  

 

References  

Benjamini,   Y.   &   Hochberg,   Y.   (1995)   Controlling   the   False   Discovery   Rate:   a   Practical   and  

Powerful  Approach   to  Multiple  Testing.   Journal  of   the  Royal  Statistical  Society  B,  57:  289-­‐

300.  

Corliss,   J.   O.   (2002)   Biodiversity   and   biocomplexity   of   the   protists   and   an   overview   of   their  

significant  roles  in  maintenance  of  our  biosphere.  Acta  Protozoologica,  41:  199-­‐219.  

Dastych,  H.  (1984)  The  tardigrade  from  Antarctic  with  description  of  several  new  species.  Acta  

Zoologica  Cracoviensia,  27:  377-­‐436.  

Page 99: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Paper  5    

 98  

Hallas,  T.  E.   (1977)  Survey  of   the   tardigrades  of  Finland.  Annales  Zoologici   Fennici,   14:  173-­‐

183.  

Iharos,  G.  (1966)  A  Bakony-­‐hegyseg  Tardigrada-­‐faunaja.  III.  Állattani  Közlemények,  53:  69-­‐78.  

Jennings,  P.   (1976)  The  Tardigrada  of  Signy   Island,  South  Orkney   Islands,  with  a  note  on   the  

Rotifera.  British  Antarctic  Survey  Bulletin,  44:  1-­‐25.  

Kudo,  R.  R.  (1966)  Protozoology.  Fifth  edition.  Thomas,  USA,  1174  pp.  

Lackey,   J.  B.   (1938)  A   study  of   some  ecological   factors  affecting   the  distribution  of  protozoa.  

Ecological  Monographs,  8(4):  501-­‐528.  

Marley,   N.   J.   &  Wright,   D.   E.   (1994)   Pyxidium   tardigradum   van   der   Land,   a   rarely   recorded  

symphoriant  on  waterbears  (Tardigrada).  Quekett  Journal  of  Microscopy,  37:  232-­‐233.  

Morgan,   C.   I.   (1976)   Studies   on   the   British   tardigrade   fauna.   Some   zoogeographical     and  

ecological  notes.  Journal  of  Natural  History,  10:  607-­‐623.  

Suzuki,   A.   C.   (2003)   Life   history   of   Milnesium   tardigradum   Doyère   (Tardigrada)   under   a  

Rearing  Environment.  Zoological  Science,  20:  49-­‐57.  

Van  der  Land,  J.  (1964)  A  new  peritrichous  ciliate  as  a  symphoriont  on  a  tardigrade.  Zoologiche  

Mededeelingen,  39:  85-­‐88.  

Westphal,  A.  (1976)  Protozoa.  Blackie,  First  edition,  UK,  325  pp.  

Wright,   J.   C.   (1991)   The   significance   of   four   xeric   parameters   in   the   ecology   of   terrestrial  

Tardigrada.  Journal  of  Zoology,  224:  59-­‐77.  

 

Page 100: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

 

 

 

 

 

 

 

 

 

 

Page 101: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia
Page 102: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!

!

!

!

!

!

!

!

"#$%&!'!

!

(! $)*+,-%.%/01! 2/34*! ,.! !"#$%$&'( )*+%$,+*%&'! 5"%&0/&01)0#6!7$%&13+#&004#86!#.!%$09,01!$&,/,9,#.!,.!%3/#&40-&#4%2!!

:0+0$%!;01%./%6!<01)%+%!=%2#&06!(&/3&!>%&&#.,6!?,@%&/,!A%&/,+#.0!

B)%!C,3&.#+!,D!E3F#&*,/01!<01&,@0,+,-*!50.!$&%$#&#/0,.8!

! !

Page 103: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

Page 104: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

-(./"01,232)$4(5)&%"(13(!"#$%$&'()*+%$,+*%&'!(

! "#$!

!

"#$%&'()$*&#!

!"#$%$&'( )*+%$,+*%&'! ;#.! 4%&! G#.46! HI'J! 02! #! 10+0#/%! $&,/,9,#.! /)#/! +0K%2! #//#1)%4! /,!

%3/#&40-&#4%2L! M/! 02! #!N%N@%&! ,D! /)%! 23@1+#22! "%&0/&01)0#L! "%&0/&01)042! #&%! 4%D0.%4! @*! )#K0.-!

O%++! 4%K%+,$%4! ,&#+! 10+0#! #.4! #! 2,N#/01! 20+0#/3&%! &%431%4! /,! #! /%+,/&,1)#+! @#.4! 5<0#,( 2)( *0L6!

PQQJR! S/9! 2)( *0L6! PQHQ8L! T,! !6( )*+%$,+*%&'( )#2! %K%&! @%%.! &%$,&/%4! #//#1)%4! /,! #.!

)%/%&,/#&40-&#4%R!/)02!02!$&,@#@+*!43%!/,!/)%!%U02/%.1%!,D!4,&2#+!$+#/%2!O0/)!0&&%-3+#&!23&D#1%6!

D,+42!#.4!.,/1)%26!#.4!#+2,!,D!4,&2#+!2$0.%2!#.4!D0+#N%./2!/)#/!N#F%!#//#1)N%./!0N$,220@+%!D,&!

/)%!$&,/,9,#.V2!@#2#+!4021L!>0.1%!%3/#&40-&#4%2!)#K%!2N,,/)!4,&2#+!13/01+%6!/)%*!)#K%!@%1,N%!

/)%!04%#+!),2/L!A0.40.-!02!$&%4,N0.#./+*!4,.%!,.!#.0N#+V2!&%#&!4,&2#+!#&%#!5:0-L!H86!#2!#DD%1/0.-!

/)%!#./%&0,&!,&!K%./&#+!$#&/2!O,3+4!)#K%!.%-#/0K%!0N$#1/2!0.!/#&40-&#4%V2!1#$#10/0%2!/,!D%%4!#.4!

N,K%6! O)01)! O,3+4! 3+/0N#/%+*! 0.431%! 4%#/)L! (11,&40.-! /,! ;01%./%! 2)( *0L! 5PQQW8! 0.D%2/#/0,.!

+%K%+2!1#.!&%#1)!3$!/,!HX'Y!,D!%U/&#!@,4*!O%0-)/6!O)01)!0N$+0%2!20-.0D01#./!4%/&0N%./#+!%DD%1/2!

,K%&!#.0N#+V2!D0/.%226!/)32!23--%2/0.-!!6()*+%$,+*%&'(/,!@%!#!%3/#&40-&#4%!$#&#20/%L!

!

!

+*,(%-!.!/!76(486(7*'*991))$&5!0.D%2/%4!O0/)!!6()*+%$,+*%&'(5@#&Z[Q\N8L!!!

B)%!N#],&0/*!,D!$&,/,9,#.2!#&%!20.-+%!2/#+F%46!@3/!1,+,.0%2!)#K%!@%%.!,@2%&K%4!5;01%./%!2)(*0L6!

PQQW8L! B)%&%! #&%! D%O! &%1,&42! ,D! !6( )*+%$,+*%&'( #22,10#/%4! /,! /#&40-&#4%2! D&,N! E3&,$%#.!

,&0-0.2!5M)#&,26!HI''R!<,&-#.6!HI^'R!_#++#26!HI^^R!`&0-)/6!HIIH!#.4!<#&+%*!#.4!`&0-)/6!HIIJ8!

,&! D&,N! @,/)! E3&,$%#.! #.4! (20#.! ,&0-0.2! 5;01%./%! 2)( *0L6! PQQW8L! (440/0,.#++*6! @,/)! C%..0.-2!

5HI^'8!#.4!a#2/*1)!5HIWJ8!)#K%!&%$,&/%4!20N0+#&!%$09,01!$&,/,9,#!#//#1)%4!/,!%3/#&40-&#4%26!

0.!/)%!(./#&1/016!@3/!,.!.%0/)%&!1#2%!)#2!/)%!2$%10%2!@%%.!04%./0D0%4!#2!!6()*+%$,+*%&'L!!

Page 105: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!*.2+(:!!

!"#%!

!

(.#+*20.-! /)%!$&,/,9,#.V2!N,&$),+,-*6!;01%./%!2)(*0L! 5PQQW8! D,3.4!.,!$)*201#+!4021&%$#.10%2!

#N,.-!(20#.!#.4!E3&,$%#.!$,$3+#/0,.2!.,&!@%/O%%.! /)%! /O,!E3&,$%#.!$,$3+#/0,.2!2/340%46!

O)01)! 23--%2/! /)#/! !6( )*+%$,+*%&'! 02! #! 1,2N,$,+0/#.! 2$%10%2L! _,O%K%&6! 0.4%$%.4%./! 4#/#!

O,3+4!@%!&%b30&%4!/,!1,.D0&N!/)02L!B,!4#/%6!/)%&%!#&%!.,!-%.%/01!4#/#!#K#0+#@+%!,.!/)%!2$%10%2L!

`%! $&%2%./! #! $)*+,-%.%/01! $,20/0,.0.-! D,&!!6( )*+%$,+*%&'! #2!O%++! #2! #! 2/34*! ,.! /)%! -%.%/01!

402/#.1%2!#N,.-!/O,!$,$3+#/0,.26!@#2%4!,.!.%O+*!,@/#0.%4!aT(!4#/#L!!

!

01$-%*12!1#'!0-$3&'4!

;*'.0$3,(

<,22!#.4!+01)%.!2#N$+%2!O%&%!1,++%1/%4!#/!c30./#!4,!=,.4%6(",&/3-#+!5XWd!XJV!HIVV!TR!Id!PV!J[VV!

`86!<,4%.#6!M/#+*!5JJd!X^V!PPVV!TR!HQd!['V!XPVV!E8!#.4!=+#&%!M2+#.46!M&%+#.4!5[Xd!PWV![WVV!TR!Id!XJV!

WVV8L! >#N$+%2! O%&%! +%D/! /,! #0&! 4&*! #/! &,,N! /%N$%&#/3&%6! O%0-)%4! #.4! /%2/%4! D,&! #.0N#+2! @*!

2,#F0.-! D,&! #/! +%#2/! XQ!N0.! #.4!O#2)%4! /)&,3-)! 1,.2%13/0K%! [QQ! eN! #.4! XW! eN! 20%K%2L! (++!

#.0N#+2!$&%2%./!0.!20%K%4!2#N$+%2!O%&%!N#.3#++*!2%+%1/%4!3.4%&!#!2/%&%,N01&,21,$%L!(DD%1/%4!

#.0N#+2!O%&%!2%$#&#/%4!#.4!0.40K043#+!$&,/,9,#!O%&%!4%/#1)%4!D&,N!),2/2!@*!320.-!/3.-2/%.!

.%%4+%2L!!

!

<=-(2#)+*4)$13(*3%(52>&234$3,!

aT(!%U/&#1/0,.!D&,N!20.-+%!2$%10N%.2!O#2!1#&&0%4!,3/!D,++,O0.-!=%2#&0!2)(*06(5PQQI8!$&,/,1,+L!

B)%!HW>! /#&-%/! 2%b3%.1%!O#2!#N$+0D0%4!320.-!3.0K%&2#+!$&0N%&2!E3F(! 5[Vf((=!=Bg!gBB!g(B!

==B!g==!(gBfXh8!#.4!E3FA!5[VfBg(!B==!BB=!Bg=!(gg!BB=!(==!B(=fXV8L!=*1+0.-!$#&#N%/%&2!

O%&%!#4#$/%4!D&,N!T,&D!i!:,022.%&!5PQHQ8j!H!1*1+%!5P!N0.!#/!I[!d=8R!XQ!1*1+%2!5XQ!2!#/!I[!d=R!

XQ! 2! #/! [P! d=R! J[2! #/! ^P! d! =8R! #.4! H! 1*1+%! 5'!N0.! #/! ^P! d=8L! B)%! MB>Hf[LW>fMB>P! &%-0,.!O#2!

#N$+0D0%4!320.-!/)%!D,++,O0.-!$&0N%&2j!MB>f:!5[VfgBB!===!=BB!g((!=g(!gg(!(BB!=fXV8!#.4!MB>f

?!5[VfB(=!Bg(!B(B!g=B!B((!gBB!=(g!=ggfXV8!#.4!1*1+0.-!$#&#N%/%&!#4#$/%4!D&,N!>3.!2)(*0L!5!

PQHQ8j!H!1*1+%!5[!N0.!#/!IJ!d=8R!XQ!1*1+%2!5H[!2!#/!IJ!d=R!XQ!2!#/!J'!d=R!H!N0.!#/!^P!d=8R!#.4!H!

1*1+%!5[!N0.!#/!^Pd=8L!B)%!#N$+0D0%4!$&,431/2!O%&%!-%+!$3&0D0%4!320.-!/)%!`09#&4!g%+!#.4!"=?!

1+%#.0.-! 5"&,N%-#8! F0/L! T31+%,/04%! 2%b3%.1%2! O%&%! #+0-.%4! O0/)! /)%! <321+%! #+-,&0/)N!

0N$+%N%./%4!0.!<Eg([!K%&20,.![!5B#N3&#!2)(*0L6!PQHH8!320.-!4%D#3+/!$#&#N%/%&2!#.4!1)%1F%4!

@*!K023#+!0.2$%1/0,.L!!

Page 106: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

-(./"01,232)$4(5)&%"(13(!"#$%$&'()*+%$,+*%&'!(

! "#&!

(!/"01,232)$4(*3*0"5$5(

B)%!@,3.4#&0%2!@%/O%%.![LW>!#.4!MB>H!#.4!MB>P!&%-0,.2!O%&%!4%/%&N0.%4!@*!1,N$#&02,.!O0/)!

,/)%&! 2%b3%.1%2! #K#0+#@+%! D&,N! g%.A#.F! #.4! @*! 320.-! /)%! ?D#N! O%@/,,+! #K#0+#@+%! D&,N!

)//$jkk&D#NL2#.-%&L#1L3Fk! 5g&0DD0/)2fC,.%2! %/! #+L! PQQ[8L! (440/0,.#++*! /,! /)%! .%O! HW>! #.4! [LW>!

2%b3%.1%2! ,@/#0.%4! @*! 32! 5B#@+%! H86! #++! ,/)%&! #.#+,-,32! 2%b3%.1%2! #K#0+#@+%! 0.! g%.A#.F6!

$%&/#0.0.-! /,! "%&0/&01)0426! O%&%! 0.1+34%4! 0.! /)%! #.#+*202! 52%%! #11%220,.! .3N@%&2! 0.!

4%.4&,-&#N28L!

:,&! HW>! -%.%! #.#+*2026! @%2/! D0//0.-! N,4%+! %K#+3#/0,.2! O%&%! $%&D,&N%4! /#F0.-! 0./,! #11,3./!

(F#0F%! M.D,&N#/0,.! =&0/%&0,.! 5(M=8! #.4! A#*%2! M.D,&N#/0,.! =&0/%&0,.! 5AM=8! 5]<,4%+/%2/! QLQLHR!

",2#4#6! PQQW86! O)01)! 04%./0D0%4! /)%! gB?lg! N,4%+! /,! @%! N,2/! 230/#@+%L! (! $)*+,-%.%/01!

N#U0N3Nf+0F%+0),,4! /&%%! O#2! 1,.2/&31/%4! 320.-! ?(U<G! 5>/#N#/#F026! PQQ'8! O0/)! HQQ!

@,,/2/&#$! &%$+01#/%2L! (! A#*%20#.! 0.D%&%.1%! 4%.4&,-&#N! O#2! 1,N$3/%4! 320.-! /)%! $&,-&#N!

<&A#*%2!XLP! 5?,.b302/!2)(*066! PQHP8L!BO,! 0.4%$%.4%./! &3.26! %#1)!,D! D,3&!<%/&,$,+02f1,3$+%4!

<#&F,K! 1)#0.2! <,./%1#&+,! 5<=<=86! O%&%! +#3.1)%4! D,&! HQ! U! HQ'! -%.%&#/0,.26! /&%%2! O%&%!

2#N$+%4!%K%&*!HQQ!-%.%&#/0,.2L!>/#/0,.#&0/*!O#2!#22%22%4!@*!%U#N0.0.-!/)%!2/#.4#&4!4%K0#/0,.!

,D! 2$+0/! D&%b3%.10%2!#.4!@*!$+,//0.-! /)%!m+.!?!$%&!-%.%&#/0,.!320.-!B&#1%&!KHL[! 5?#N@#3/!#.4!

a&3NN,.46!PQQ^86!#.4!/)%!D0&2/!P[QQQ!/&%%2!-%.%&#/%4!@%D,&%!2/#/0,.#&0/*!O%&%!4021#&4%4!#2!

nn@3&.f0.oL!B)%!#.#+*2%2!O%&%!&3.!/)&%%!/0N%26!#++!,D!O)01)!&%23+/%4!0.!04%./01#+!/,$,+,-0%2L!

:,&! 1,N@0.%4! #.#+*202! 5HW>! #.4! [LW>! -%.%286! (F#0F%! M.D,&N#/0,.! =&0/%&0,.! 5(M=8! #.4! A#*%2!

M.D,&N#/0,.! =&0/%&0,.! 5AM=8! #-#0.! 04%./0D0%4! /)%! gB?lg! N,4%+! /,! @%! N,2/! 230/#@+%L! (!

$)*+,-%.%/01! N#U0N3Nf+0F%+0),,4! /&%%! O#2! 1,.2/&31/%4! 320.-! ?#U<G6! O0/)! HQQ! @,,/2/&#$!

&%$+01#/%6!O)0+%!#!A#*%20#.!0.D%&%.1%!4%.4&,-&#N!O#2!1,N$3/%4!320.-!/)%!$&,-&#N!<&A#*%2!

XLPL!BO,! 0.4%$%.4%./! &3.26!%#1)!,D! D,3&!<=<=!O%&%! +#3.1)%4! D,&!^!U!HQ'!-%.%&#/0,.26! /&%%2!

O%&%!2#N$+%4!%K%&*!HQQ!-%.%&#/0,.2L!>/#/0,.#&0/*!O#2!#22%22%4!320.-!B&#1%&!KHL[!5?#N@#3/!i!

a&3NN,.46! PQQ^86! #.4! /)%! D0&2/! H^[QQ! /&%%2! -%.%&#/%4! O%&%! 4021#&4%4! #2! @3&.f0.L! B)%!

#.#+*2%2!O%&%!&3.!/)&%%!/0N%26!#++!,D!O)01)!&%23+/%4!0.!04%./01#+!/,$,+,-0%2L!

!!1.&0*)$13(*3*0"5$5(

M.40K043#+2! $%&/#0.0.-! /,! /)%! 7$%&13+#&004#! ,&4%&! O%&%! #.#+*9%4! D,&! 0./&#2$%10D01! #.4!

0./%&2$%10D01! p0N3&#! Pf$#&#N%/%&2! 5pP"8! 402/#.1%2! @%/O%%.!)#$+,/*$%26! @*! 320.-!<Eg([!@*!

320.-!MB>H!#.4!MB>PL!! !

!!

Page 107: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!*.2+(:!!

!"#'!

5-4(2$4!

aT(! 2%b3%.10.-! O#2! 2311%22D3+! D,&! #! 2N#++! .3N@%&! ,D! 0.40K043#+! $&,/,9,#6! ,&0-0.#++*! D&,N!

/)&%%!E3&,$%#.!1,3./&0%26! M&%+#.46!",&/3-#+!#.4! M/#+*L!:,3&!2311%22D3+! 2%b3%.1%2! D,&!HW>!#.4!

/)&%%!D,&!MB>Hf[LW>fMB>P!O%&%!,@/#0.%4!5B#@+%!H8L!EK%.!/),3-)!/)02!N#F%2!D,&!#!1,.204%&#@+*!

2N#++! 2#N$+%6! /)%&%D,&%! O0/)! +0//+%! 2/#/02/01! &%+%K#.1%R! /)%! %3/#&40-&#4%! 7*'*991))$&5( 486(

1@2+/*2&52+$!O#2!/)%!N,2/!1,NN,.!),2/L!

!

6172-!.!/!>#N$+0.-!20/%26!),2/!2$%10%2!#.4!g%.A#.F!&%D%&%.1%2!D,&!HW>!#.4!MB>Hf[LW>fMB>P!2%b3%.1%2!,D!#++!!6()*+%$,+*%&'L!!

!"#$%&' !$&()#&#! *+("%),-! .+/,'/$&()&/'

=P^[[! A! =+#&%!M2+#.46!M&%+#.4! 7*'*991))$&5(486(1@2+/*2&52+$(=P^[[! =! =+#&%!M2+#.46!!M&%+#.4! 7*'*991))$&5(486(1@2+/*2&52+$!=XPJW! (!c=HfA! c30./#!4,!=,.4%6!",&/3-#+! 7*'*991))$&5(486(1@2+/*2&52+$!=XHQW! "P! <,4%.#6!M/#+*! A$0325$&'(486()*+%$,+*%&'!

!

B)%!/O,!HW>!0.D%&%.1%!/&%%2!5:0-2L!P!#.4!X8!2),O!1,.202/%./!&%23+/2j!#++!D,3&!!6()*+%$,+*%&'!#&%!

1+32/%&%4!/,-%/)%&6!2%$#&#/%!D&,N!#.*!,/)%&!-%.32L!7.!#!2+0-)/+*!O04%&!&#.-%6!/)%*!N#F%!D,&!#!

1,.202/%./!1+32/%&!/,-%/)%&!O0/)!#++!#K#0+#@+%!B.2+4&0*+$*!#.4!C*'.*3200*! 5,.+*!,.%!2%b3%.1%!

%U02/2! D,&! /)%! +#//%&8! #.4! 2,N%! &%$&%2%./#/0K%2! ,D! /)%! D.$5)"0$5! -%.32L! <#U0N3N! +0F%+0),,4!

0.D%&%.1%!/&%%!$,0./!/,!2,N%!0.4%D0.0/0,.!,D!/)%!E1+)$4200*(#.4!F11)/*'3$&'!-%.%&#6!O)0+%!/)%!

A#*%20#.!#.#+*202!1+%#&+*!2/#/%2!/)#/!D.$5)"0$5!02!.,/!N,.,$)*+%/01L!!!

:0-3&%2!J!#.4![!$&%2%./!A#*%20#.!#.4!<#U0N3N!+0F%+0),,4!0.D%&%.1%!/&%%2!D,&!#++!"%&0/&01)042!

O0/)!#K#0+#@+%!2%b3%.1%2!D,&!@,/)!HW>!#.4![LW>L!B)%2%!#.#+*2%2!O%&%!$%&D,&N%4!O0/)!@#202!,.!

@,/)! 10/%4! 2%b3%.1%26! /,-%/)%&L! A,/)! /&%%2! 2),O! 1,)%&%./! &%23+/2L! B)%! /)&%%! !6( )*+%$,+*%&'!

0.40K043#+2!1+32/%&!/,-%/)%&6!#2!4,!#++!,/)%&!-%.%&#6!O0/)!.,!43@0,32!20/3#/0,.26!%U1%$/0,.!N#4%!

D,&!D.$5)"0$5L!7.!/)%!<#U0N3N!+0F%+0),,4!/&%%6!D6(/23)54/20$! /#F%2!#.!0./%&0,&!$,20/0,.!O)0+%!D6(

4/+"52'"%$5!02!@#2#+R!,.!/)%!A#*%20#.!/&%%6!/)%!/O,!2$%10%2!#&%!2%$#&#/%46!%#1)!#$$%#&0.-!0.!,.%!

N#],&!1+#4%L!

!

!

Page 108: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

-(./"01,232)$4(5)&%"(13(!"#$%$&'()*+%$,+*%&'!(

! "#(!

!

+*,(%-!8!9!<#U0N3N!+0F%+0),,4!/&%%!,D!HW>!-%.%!D,&!#++!#K#0+#@+%!"%&0/&01)0#LL!A,,/2/&#$!K#+3%2!1,N$3/%4!#D/%&!HQQ!&%$+01#/%26!G2)+*/"'23*(*'2+$4*3$5!#.4!G+$4/1%$3*('&)*@$0$5!O%&%!32%4!#2!,3/-&,3$L!!B)%!/&%%!O#2!1,N$3/%4!,.!#!'XJ!@$!4#/#2%/L!

Page 109: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!*.2+(:!!

!"#)!

!

+*,(%-!:! 9!A#*%20#.! 0.D%&%.1%! /&%%! ,D! HW>! -%.%6! 1,N$3/%4!,.!HQQQQQQQ! -%.%&#/0,.2!O0/)! #! @3&.f0.! ,D! ! P[QQQ!-%.%&#/0,.26!D,&!#++!#K#0+#@+%!"%&0/&01)0#L!G2)+*/"'23*(*'2+$4*3$5!#.4!G+$4/1%$3*('&)*@$0$5!O%&%!32%4!#2!,3/-&,3$L!!B)%!/&%%!O#2!1,N$3/%4!,.!#.!'XJ!@$!4#/#2%/L!

Page 110: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

-(./"01,232)$4(5)&%"(13(!"#$%$&'()*+%$,+*%&'!(

! "#*!

!

!

+*,(%-!;!m!<#U0N3N!+0F%+0),,4!/&%%!@#2%4!,.!HW>l[LW>6!D,&!#++!#K#0+#@+%!"%&0/&01)0#L!A,,/2/&#$!K#+3%2!1,N$3/%4!#D/%&! HQQ! &%$+01#/%2L! G2)+*/"'23*( *'2+$4*3$5! #.4! G+$4/1%$3*( '&)*@$0$5! O%&%! 32%4! #2! ,3/-&,3$L! B)%! /&%%! O#2!1,N$3/%4!,.!#.!WQP!@$!4#/#2%/L!!

B)%! N,&%! K#&0#@+%! MB>H! #.4! MB>P! 2%b3%.1%2! O%&%! #+2,! ,@/#0.%4! D,&! /)&%%! !6( )*+%$,+*%&'!

2$%10N%.L!a02/#.1%!N#/&0U%2! 5B#@+%2!P!#.4!X8!O%&%!%2/0N#/%4!#N,.-! /)%!$&%K0,326! 0.1+340.-!

#+2,! ,/)%&! 7$%&13+#&004#%! 2$%10%2! O0/)! $3@+02)%4! MB>! 4#/#L! :,&! MB>H! 5B#@+%! P86! /)%! /O,! D6(

4/+"52'"%$56! /)%!/O,!M&02)!!6()*+%$,+*%&'6!#.4!,.%!C6(&'@200*+$*!O0/)(D6(,*02*!%#1)!2)#&%!/)%!

%U#1/!N#/1)0.-!)#$+,/*$%2!O0/)! 0/2! 1,.2$%10D01L!B)%! /O,!C6(&'@200*+$*! #&%!402/#.1%4!@*!HL^Y!

#.4! /)%! /O,! D6( /23)54/20$! @*! QLIYL! MB>H! -%.%/01! 402/#.1%! @%/O%%.! /)%! /O,! M&02)! #.4! /)%!

",&/3-3%2%!!6()*+%$,+*%&'!02!,D!'L'YL!B)02!+#/%!2$%10N%.!02!/)%!N,2/!02,+#/%4!,.%!0.!/)%!%./0&%!

N#/&0U6!O0/)!402/#.1%2!/,!,/)%&!-%.%&#!&#.-0.-!D&,N!J^L[Y!/,!'WLJYL!

!

Page 111: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!*.2+(:!!

!""#!

!

+*,(%-! <! 9! A#*%20#.! 0.D%&%.1%! /&%%! @#2%4! ,.! HW>l[LW>6! 1,N$3/%4! ,.! ^QQQQQQ! -%.%&#/0,.2! O0/)! #! @3&.f0.! ,D!!H^[QQ!-%.%&#/0,.26! ! D,&!#++!#K#0+#@+%!"%&0/&01)0#L!G2)+*/"'23*(*'2+$4*3$5!#.4!G+$4/1%$3*('&)*@$0$5!O%&%!32%4!#2!,3/-&,3$L!!B)%!/&%%!O#2!1,N$3/%4!,.!#.!WQP!@$!4#/#2%/L!!

:,&!MB>P!#!2N#++%&!N#/&0U!5B#@+%!X8!O#2!,@/#0.%46!#2!,.+*!/)&%%!2%b3%.1%2!O%&%!#K#0+#@+%!D&,N!

/)%!+0/%&#/3&%L!_%&%6!0./&#-%.%&01!-%.%/01!402/#.1%2!&#.-%!D&,N!H[LIY!@%/O%%.!/)%!/O,!D.$5)"0$5(

2$%10%26! /,! JWY! @%/O%%.! /)%! ",&/3-3%2%! !6( )*+%$,+*%&'! #.4! D6( 4/+"52'"%$5L! B)%! /O,!

$,$3+#/0,.2!,D!!6()*+%$,+*%&'!#&%!2%$#&#/%4!@*!XLIY!MB>P!@#2%4!-%.%/01!402/#.1%L!C32/! +0F%!0.!

O0/)!MB>P6!/)%!M&02)!!6()*+%$,+*%&'!0.40K043#+2!2)#&%!/)%!2#N%!)#$+,/*$%L!

!

Page 112: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

-(./"01,232)$4(5)&%"(13(!"#$%$&'()*+%$,+*%&'!(

! """!

!6172-! ! 8! 9!01$%*=! &>! ,-#-$*)! '*4$1#)-4! ?@8AB! &>! "6C! .! ,-#-! >&%! $3-!DE-%)(21%**'1-! ?721)FB! 1#'! 4$1#'1%'!-%%&%4!?72(-BG!714-'!&#!1!'1$14-$!&>!.8H!7EI!! ! H( P( X( J( [( '( ^( W( I( HQ( HH(H! gS[W'HW^!

D.$5)"0$5(4/+"52'"%$5(! Q6QQQ! Q6QXW! Q6QX'! Q6Q'^! Q6Q^I! Q6Q'^! Q6Q'I! Q6HH'! Q6HH'! Q6H'I!

P! (:JPIWW^!D.$5)"0$5(4/+"52'"%$5(

Q6QQQ! ! Q6QXW! Q6QX'! Q6Q'^! Q6Q^I! Q6Q'^! Q6Q'I! Q6HH'! Q6HH'! Q6H'I!

X! gS[W'HW'!D.$5)"0$5(/23)54/20$(

Q6HX^! Q6HX^! ! Q6QQI! Q6Q^Q! Q6QWX! Q6Q'I! Q6Q^P! Q6HHX! Q6HHX! Q6H[Q!

J! (:JPIWWI!D.$5)"0$5(/23)54/20$(

Q6HP'! Q6HP'! Q6QQI! ! Q6Q'W! Q6QWQ! Q6Q'^! Q6Q'I! Q6HQI! Q6HQI! Q6HJX!

[! (:JPIWWW!D.$5)"0$5(,*02*(

Q6XP'! Q6XP'! Q6XJW! Q6XXX! ! Q6Q^'! Q6QQQ! Q6QHP! Q6QII! Q6QII! Q6HPH!

'! (:JPIWIX!B.2+4&0*+$*('$4+1%$54&'(

Q6XI[! Q6XI[! Q6JHW! Q6JQH! Q6JQH! ! Q6Q^'! Q6QWQ! Q6HPP! Q6HPP! Q6H[H!

^! gS[W'HWW!C*'.*3200*(&'@200*+$*(

Q6XPP! Q6XPP! Q6XJJ! Q6XPI! Q6QQQ! Q6JQH! ! Q6QHP! Q6QI^! Q6QI^! Q6HH^!

W! (:JPIWW[!C*'.*3200*(&'@200*+$*(

Q6XX'! Q6XX'! Q6X[W! Q6XJJ! Q6QH^! Q6JXP! Q6QH^! ! Q6HQH! Q6HQH! Q6HPH!

I! =P^[[!A! Q6JIW! Q6JIW! Q6JIW! Q6J^'! Q6JH[! Q6JWW! Q6JQW! Q6JPW! ! Q6QQQ! Q6QXQ!HQ! =P^[[!=! Q6JIW! Q6JIW! Q6JIW! Q6J^'! Q6JH[! Q6JWW! Q6JQW! Q6JPW! Q6QQQ! ! Q6QXQ!HH! =XPJW!(!c=HA! Q6'WJ! Q6'WJ! Q6[WI! Q6['J! Q6JWJ! Q6'H'! Q6J^[! Q6JIW! Q6Q''! Q6Q''! !

!

6172-! :! 9!01$%*=! &>! ,-#-$*)! '*4$1#)-4! ?@8AB! &>! "6C! 8! ,-#-! >&%! $3-! DE-%)(21%**'1-! ?721)FB! 1#'! 4$1#'1%'!-%%&%4!?72(-BG!714-'!&#!1!'1$14-$!&>!8JH!7EI!

! ! H( P( X( J( [( '(H! gS[W'HW^!D.$5)"0$5(4/+"52'"%$5! ! Q6QXH! Q6Q[Q! Q6Q'I! Q6Q'I! Q6Q^Q!P! gS[W'HW'!D.$5)"0$5(/23)54/20$! Q6H[I! ! Q6QJ^! Q6Q[W! Q6Q[W! Q6Q'X!X! gS[W'HWW!C*'.*3200*(&'@200*+$*! Q6XH[! Q6PIH! ! Q6Q['! Q6Q['! Q6Q'W!J! =P^[[!A! Q6J'X! Q6XW'! Q6X[^! ! Q6QQQ! Q6QHJ![! =P^[[!=! Q6J'X! Q6XW'! Q6X[^! Q6QQQ! ! Q6QHJ!'! =XPJW!(!c=HA! Q6JWQ! Q6JPH! Q6JP'! Q6QXI! Q6QXI! !

!

K*4)(44*&#!

>311%22D3+!aT(!4#/#!O%&%!)#&4!/,!,@/#0.!D&,N!0.40K043#+!2$%10N%.2!,D!!6()*+%$,+*%&'6!43%!/,!

40DD013+/0%2!0.K,+K0.-!)#.4+0.-!,D!231)!2N#++!+0D%!D,&N26!#2!O%++!#2!/,!/)%!2N#++!#N,3./!,D!.31+%01!

#1042! $&%2%./! 0.! %#1)! 2$%10N%.L! B)%! -%.%/01! 4#/#! $&%2%./%4! )%&%! #&%! /)%! D0&2/! %K%&( ,.! !6(

)*+%$,+*%&'L!

B)%!HW>!#.#+*2%2!$+#1%!!6()*+%$,+*%&'( 0.!/)%!&%1%./+*!%&%1/%4!,&4%&!7$%&13+#&004#!5S/9!2)(*0L6!

PQHQ86! 3.4%&! /)%! 7$%&13+#&004#%! D#N0+*L! >31)! 1,.1+320,.!N#F%2! 2%.2%! D&,N! #!N,&$),+,-01#+!

$,0./!,D!K0%O6!20.1%! /)%2%!#&%!4%D0.%4!#2!2%220+%!1,+,.0#+!10+0#/%2!O0/)!&0-04!2/#+F2! 5C#.F,O2F06!

HIWQ86! #.4! !6( )*+%$,+*%&'! 1,+,.0%2! )#K%! @%%.! &%-02/%&%4! 5%L-L6! ;01%./%( 2)( *0L6! PQQW8L! A,/)!

A#*%20#.!#.#+*202!#.4!@,,/2/&#$!K#+3%2!0.401#/%!/)#/!D."5)"0$5!02!$,+*$)*+%/01L!(11,&40.-!/,!S/9!

2)( *0L! 5PQHQ86! /)%! D."5)"0$5! -%.32! N#*! #1/3#++*! &%$&%2%./! #! 2%/! ,D! @#2#+! 2$%10%2! &%/#0.0.-!

Page 113: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!*.2+(:!!

!""+!

#.1%2/&#+! 1)#&#1/%&2L! B)02! 02! 1,.202/%./! O0/)! ,3&! &%23+/2! D&,N! /)%! HW2l[LW2! 0.D%&%.1%2L! 73&!

HW2l[LW2! &%23+/2! 2/&,.-+*! 23$$,&/! /)%! /)&%%! %U02/0.-! D#N0+*! 1+#4%2! ,D! 7$%&13+#&004#%6!

;,&/01%++04#%!#.4!q,,/)#N.004#%L!!

M.4%$%.4%./!MB>H!#.4!MB>P!-%.%/01!402/#.1%!N#/&0U%2!2),O!1,)%&%./!&%23+/26!O0/)!K#+3%2!@%%.!

2+0-)/+*!+,O%&!D,&!/)%!MB>P6!1,N$#&#/0K%+*!/,!/)%!MB>HL!a02/#.1%2!,D!QY!@%/O%%.!0.40K043#+2!,D!

/)%!2#N%!2$%10%26!,D!HPfHXY!#N,.-2/!2$%10%2!,D!/)%!2#N%!-%.32!#.4!,D!X[f'WY!#N,.-!-%.%&#6!

N#F%! ,D! /)%2%! /O,! 2%b3%.1%2! -,,4! 1#.404#/%2! /,! 4%+0N0/! /)%! 2$%10%2! #.4! -%.32! @#&&0%&2! ,D!

"%&0/&01)42L!!

B)%! 0./&0-30.-!1#2%!,D!D6(,*02*!@%%.!2%$#&#/%4!@*!QfHL^Y! D&,N!C6(&'@200*+$*! 2/&%.-/)%.2! /)%!

$&%K0,32!2/#/%N%./2!0.!D#K,3&!,D!/)%!$,+*$)*+%/01!.#/3&%!,D!D."5)"0$56!#.4!1#++2!D,&!#!&%4%D0.0/0,.!

,D!/)%!-%.32L!!

=,.204%&0.-! /)%!)0-)%&!402/#.1%2! &%-02/%&%4!#N,.-!-%.%&#6! 0/! #$$%#&2! &%#2,.#@+%! /,! 2#*! /)#/!

XLIY!40DD%&%.1%!D,&!MB>P!#.4!'L'Y!D,&!MB>H!@%/O%%.!/)%!",&/3-3%2%!#.4!M&02)!$,$3+#/0,.2!,D!!6(

)*+%$,+*%&'! D#++2! ,.! /)%! 0.204%! ,D! /)%! 2$%10%2! +0N0/L! B)02! O,3+4! N#F%! 2%.2%! O0/)! /)%! .,.f

K%&0D01#/0,.!,D!N,&$),+,-01#+!4021&%$#.10%2!#N,.-!/O,!E3&,$%#.!$,$3+#/0,.2!#.4!#.!(20#.!,.%!

52%%!;01%./%( 2)( *0L6! PQQW8! #.4!O,3+4! /)32! 1,&&,@,&#/%! /)%! 232$010,.! /)#/!!6( )*+%$,+*%&'! 02! #!

1,2N,$,+0/#.!2$%10%2L!_,O%K%&6!/,!4#/%6!,.+*!/)%!+0N0/%4!#N,3./!,D!aT(!4#/#!$&%2%./%4!)%&%!

%U02/26! #.4! /)%2%! #&%! 1+%#&+*! 0.23DD010%./! /,!N#F%! 231)! #! 2/#/%N%./L!<,&%! -%.%/01! 2/34*0.-! 02!

.%%4%4!#.4!D&,N!#!23$%&0,&!.3N@%&!,D!2$%10N%.26!0.!,&4%&!/,!#113&#/%+*!4%/%&N0.%!/)%!+0N0/2!

,D!0./&#!$,$3+#/0,.!-%.%/01!K#&0#@0+0/*L!(440/0,.#++*6!4#/#!D&,N!#!O04%&!+02/!,D!,&0-0.2!O,3+4!@%!

&%b30&%4!/,!&%2$,.46!,.1%!#.4!D,&!#++6!/,!/)%!b3%2/0,.!#@,3/!O)%/)%&!,&!.,/!O%!#&%!4%#+0.-!O0/)!

#!3@0b30/,32!2$%10%2!,D!$&,/,9,#L!!!!!!

!

L)F#&M2-',-N-#$4!

B)02!O,&F!O#2!$#&/0#++*!D3.4%4!@*!/)%!",&/3-3%2%!H&3%*IJ1(.*+*(*(C$K34$*(2(*(G243101,$*!O0/)!

#! -&#./! 5>:?_kAakXIPXJkPQQ^8! /,! /)%! D0&2/! #3/),&L! B)%! &%2%#&1)! 02! #+2,! $#&/! ,D! /)%! $&,]%1/!

<,aT(!23$$,&/%4!@*!:,.4#90,.%!=#22#!40!?02$#&N0,!40!<,4%.#!5M/#+*8!#.4!/)%!S.0K%&20/*!,D!

<,4%.#!#.4!?%--0,!EN0+0#!5<,4%.#6!M/#+*8L!

!

!

Page 114: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

-(./"01,232)$4(5)&%"(13(!"#$%$&'()*+%$,+*%&'!(

! ""$!

!5->-%-#)-4!!

=%2#&06!<L6!A%&/,+#.06!?L6!?%@%11)06! GL!i!g304%//0L!?L! 5PQQI8!aT(!@#&1,40.-! 0.!B#&40-&#4#j! /)%!

D0&2/! 1#2%! 2/34*!,.!A*4+1@$1)&5('*4+14*0$#(A%&/,+#.0! #.4!?%@%11)0!HIIX! 5E3/#&40-&#4#6!

<#1&,@0,/04#%8L!A10(D410(725!Hj'IIm^Q'L!

a#2/*1)6!_L!5HIWJ8!B)%!/#&40-&#4%!D&,N!(./#&1/01!O0/)!4%21&0$/0,.!,D!2%K%&#+!.%O!2$%10%2L!-4)*(

F110(C+*41L!8OjX^^mJX'L!!

g&0DD0/)2fC,.%26! >L6! <,U,.6! >L6! <#&2)#++6! <L6! p)#..#6! (L6! E44*6! >L?L6! A#/%N#.6! (L! 5PQQ[8L! ?D#Nj!

#..,/#/0.-!.,.f1,40.-!?T(2!0.!1,N$+%/%!-%.,N%2L!=&4(-4$%5(725!XXjHPHfHPJL!!

_#++#26!BL!EL!5HI^^8!>3&K%*!,D!/)%!/#&40-&#4%2!,D!:0.+#.4L!-33(F110(H233!.;jH^XmHWXL!

M)#&,26!gL!5HI''8!(!A#F,.*f)%-*2%-!B#&40-&#4#fD#3.#]#L!MMML!-00*))(M190!<:j'Im^WL!

C#.F,O2F06! (L! `L! 5HIWQ8L! =,.2$%1/32! ,D! #! .%O! 2*2/%N! ,D! /)%! $)*+3N! =0+0,$),&#L! G+&%"(

F1101,$4/25N1,1(O35)$)&)*(?23$3,+*%!H;jHQX!mHPHL!

C%..0.-26!"L! 5HI^'8!B)%!B#&40-&#4#!,D!>0-.*! M2+#.46!>,3/)!7&F.%*! M2+#.426!O0/)!#!.,/%!,.! /)%!

?,/0D%&#L!P+(-3)*+4)(;&+L(P&00!;;jHmP[L!

<0#,6!`L6!:%.6!`L!>L6!r36!rL!_L6!q)#.-6!sL!rL!i!>)%.6!rL!:L!5PQQJ8!")*+,-%.%/01!?%+#/0,.2)0$2!,D!/)%!

>3@1+#22! "%&0/&01)0#! 57+0-,)*N%.,$),&%#6! =0+0,$),&#8! M.D%&&%4! D&,N!>N#++! >[email protected]/! &?T(!

g%.%!>%b3%.1%2L!Q(D&N*+"1)(A$4+1@$10!<.?8BjHWQmHW'L(

<#&+%*6! TL! CL6! `&0-)/6! aL! EL! 5HIIJ8! "*U0403N! /#&40-&#43N! K#.! 4%&! G#.46! #! &#&%+*! &%1,&4%4!

2*N$),&0#./!,.!O#/%&@%#&2!5B#&40-&#4#8L!R&2N2))(Q(A$4+154!:OjPXPmPXXL!

<,&-#.6! =L! ML! 5HI^'8! >/340%2! ,.! /)%! A&0/02)! /#&40-&#4%! D#3.#L! >,N%! 9,,-%,-&#$)01#+! #.4!

%1,+,-01#+!.,/%2L!Q(=*)(S$5)!.Jj'Q^m'PXL!

T,&D6! _L! i! :,022.%&6!`L! 5PQHQ8! (! T%O! :+#-2)0$! "%&0/&01)! 5=0+0,$),&#6! "%&0/&01)04#8! D&,N! /)%!

?0K%&!?)0.%6g%&N#.*j!-.14*+4/25$&'(*+3%)$!.L!2$L!Q(D&N*+"1)(A$4+1@$10!<O?:BjP[QmP'JL!

?#N@#3/6! (L! i! a&3NN,.46! (L! CL! 5PQQ^8L! B&#1%&! KHLJL! (K#0+#@+%! #/!

)//$jkk@%#2/L@0,L%4L#1L3FkB&#1%&L!

>3.6!"L6! =+#N$6! CL! =L!i!s36!aL! 5PQHQ8!(.#+*202!,D! /)%! 2%1,.4#&*! 2/&31/3&%!,D! MB>! /&#.21&0$/2! 0.!

$%&0/&01)! 10+0#/%2! 5=0+0,$),&#6! 7+0-,)*N%.,$),&%#8j! MN$+01#/0,.2! D,&! 2/&31/3&#+! %K,+3/0,.!

#.4!$)*+,-%.%/01!&%1,.2/&31/0,.L!A10(!/"01,23(DL10!<PjPJPmP[HL!

>/#N#/#F026!(L!5PQQ'8L!?(U<Gf;Mf_"=j!N#U0N3N!+0F%+0),,4f@#2%4!$)*+,-%.%/01!#.#+*2%2!O0/)!

/),32#.42!,D!/#U#!#.4!N0U%4!N,4%+2L!P$1$381+'*)$456!88jP'WWmP'IQL!

B#N3&#6! pL6! "%/%&2,.6! aL6! "%/%&2,.6! TL6! >/%1)+%&6! gL6! T%06! <L! i! p3N#&6! >L! 5PQHH8! <Eg([j!

N,+%13+#&! %K,+3/0,.#&*! -%.%/012! #.#+*202! 320.-! N#U0N3N! +0F%+0),,46! %K,+3/0,.#&*!

402/#.1%6!#.4!N#U0N3N!$#&20N,.*!N%/),42L!A10(P$10(DL10!8QjP^XHmP^XIL!

Page 115: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!*.2+(:!!

!""%!

S/96! GL! ?L! "L6! >0Nt,6! BL! GL! GL6! >#D06! GL! >L! GL! i! E0&090F6! EL! 5PQHQ8! EU$#.4%4! ")*+,-%.%/01!

?%$&%2%./#/0,.! ,D! g%.%&#! 7$%&13+#&0#! #.4! E$02/*+02! >)%42! G0-)/! ,.! /)%! EK,+3/0,.! #.4!

_0-)%&fG%K%+!B#U,.,N*!,D!"%&0/&01)!=0+0#/%2!5=0+0,$),&#j!"%&0/&01)0#8! Q(D&N*+"1)(A$4+1@$10!

<O?<BjJH[mJPQL!

`&0-)/6! CL! =L! 5HIIH8! B)%! 20-.0D01#.1%! ,D! D,3&! U%&01! $#&#N%/%&2! 0.! /)%! %1,+,-*! ,D! /%&&%2/&0#+!

B#&40-&#4#L!Q(F110!88;j[Im^^L!

;#.!4%&!G#.46!CL!5HI'J8!(!.%O!$%&0/&01),32!10+0#/%!#2!#!2*N$),&0,./!,.!#!/#&40-&#4%L(F110(A2%2%!

:HRW[mWWL!

;01%./%6! :L6! <01)#+19*F! uL6! p#19N#&%F! uL! i! A,#K04#! <L! CL! 5PQQW8! 7@2%&K#/0,.2! ,.! !"#$%$&'(

)*+%$,+*%&'!5=0+0,$),&#86!#!$&,/,9,#.!+0K0.-!,.!E3/#&40-&#4#j!0.D%2/#/0,.6!N,&$),+,-*!#.4!

D%%40.-!@%)#K0,&L!!*+*5$)10(725!.J:RHXPXmHXXHL!

Page 116: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

!

Page 117: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Concluding remarks    

 116  

Concluding  remarks  and  future  perspectives  

 If   I   had   to   find   a   metaphor   that   would   summarise   the  main   conclusions   of   this  

thesis,   it  would   be   the   famous   quote   by   Jacques   Cousteau:   “People   protect  what  

they   love,   and   they   love  what   they   understand”.    We   find   ourselves   in   a   time   in  

human   history   where   the   rate   at   which   biodiversity   is   being   lost   is   without  

parallel.  Climatic   changes   together  with   the  pressure  exerted  on  natural  habitats  

by   human   activities   are   accelerating   the   pace   at   which   living   species   disappear,  

mainly   in  consequence  of  habitat   loss.  This   is  a  mater  of   the  greatest   importance  

and  should  seriously  concern  all  of  those  who  care  about  the  future  of  life  on  this  

planet.  We  should  not  be  naïve.  Significant  loss  of  biodiversity  over  a  short  period  

of   time   will   most   likely   result   in   the   disruption   of   natural   balances   that   are  

guarantee  of  major  ecological  services.  Since  there  are  no  reversal  perspectives  of  

the   accelerated  process   of   biodiversity   loss   in   the   near   future,  we   should   expect  

consequences,   e.g.,   more   common   and   more   devastation   plagues   and   diseases  

affecting  both  human  population  as  well  as  crops.  

In   order   to   address   this  mater,   something   is   paramount,   and   that   is   knowledge.  

Until  we   do   not   fully   understand   a   problem,  we  will   not   be   able   to   properly   act  

upon   it.   It  has  been  shown  here   that   there  are   serious  gaps   in  our  knowledge  of  

conservational  statuses  of  a  major  slide  of  the  biodiversity  cake.  Tardigrades  have  

been   used   to   set   an   example   for   all   the   taxa   that   require   studying   under   the  

discipline  of  Conservation  Biology.  It  has  also  been  demonstrated  that  populations  

of   these  small  animals  are  negatively  affected  by  habitat  destruction,   in  a  similar  

way   to  macroscopic   fauna.  Hopefully,   this  will   have  been   the   first   of  many  more  

future   studies   alike,   focusing  on  other   groups  of   life   that  have   so   far  never  been  

considered  under  this  topic.  

Another   necessary   step   forward   in   the   path   for   a   sharper   understanding   of   the  

biodiversity  of  the  Phylum  Tardigrada  is  the  update  of  methods  used  for  describing  

new   taxa,   in   particular   (but   not   only)   species.   If   future   findings  make  use   of   the  

integrative   approach   that   I   have  made   a   case   for,   incorrect   descriptions   shall   be  

created  with  increased  rarity,  and  old  ones  may  fall  at  a  faster  rate.  I  believe  I  have  

Page 118: Tardigrada: a study on integrative taxonomy, impacts on ... › bitstream › 10451 › 8261 › 1 › ... · The present thesis was financed by Fundaçãopara a Ciência e a Tecnologia

Tardigrada: a study on integrative taxonomy, impacts on biodiversity and concerns with conservation

 

  117  

shown   the   advantages   of   integrative   taxonomy,   not   only   in   resolving   puzzling  

cases   involving   synonymous   species,   but   also   in   determining   the   actual  

phylogenetic   distances   between   morphologically   distinct   populations.   This   will  

help   determine   the   true   evolutionary   importance   of   morphological   characters.  

Making  use  of  only  traditional  taxonomy,  it  is  much  harder  or  even  impossible,  at  

times,  to  establish  the  line  that  separates  in-­‐species  morphological  variability  from  

intra-­‐species   differences.   It   is   my   strong   conviction   that   the   taxonomy   of  

tardigrades   will   meet   a   revolution   in   the   near   future   thanks   to   integrative  

taxonomy,   and   our   perspective   of   the   biological   diversity   of   these   animals   will  

change  significantly,  with  a  more  common  adoption  of  this  integrative  perspective,  

particularly  with  a  generalization  of  genetic  analysis.  

On   the   mater   of   the   eutardigrade   colonizer   Peritrichid   species,   considerable  

advances  have  been  made,  since  very  little  knowledge  existed  to  date  on  Pyxidium  

tardigradum.   The   first   ever   live   and   SEM   images  were   obtained,   its  morphology  

looked  into  in  detail,  its  feeding  behaviour  studied  and  registered,.  Infestation  rates  

were   measured   and   a   change   in   the   classification   of   the   animal-­‐protozoan  

relationship   was   proposed.   The   phylogenetic   position   of   this   species   was  

successfully   determined   and   the   first   insight   into  population’s   genetic   variability  

was   given.   Nevertheless,   much   is   left   to   be   done.   Proper   quantification   of   the  

detrimental  effects  imposed  on  eutardigrades  is  required.  Nothing  is  known  about  

the   way   in   which   the   protozoan   binds   to   eutardigrades’   cuticle;   or   if   some  

eutardigrade   species   are  more   affected   than   others   and   play   a  more   prominent  

role   in   dispersing   the   ciliate.   Finally,   only   a   superficial   look   was   given   to   P.  

tardigradum’s   genetic   richness   and   the   question   of   whether   it   is   a   true  

cosmopolitan  or  an  ensemble  of  closely  related  species  remain  unanswered.