tasi2010 nielsen 4 - physics learning laboratories · • only!afrac:on!of! dijet!...

20
LHC Experiments: Searches for Higgs Bosons Jason Nielsen Santa Cruz Ins>tute for Par>cle Physics University of California, Santa Cruz Theore>cal Advanced Studies Ins>tute Boulder, Colorado June 2010

Upload: doandieu

Post on 01-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

LHC  Experiments:    Searches  for  Higgs  Bosons    

Jason  Nielsen  Santa  Cruz  Ins>tute  for  Par>cle  Physics  University  of  California,  Santa  Cruz  

Theore>cal  Advanced  Studies  Ins>tute  Boulder,  Colorado  

June  2010  

Standard  Model  Higgs:  What  is  Known?    •  Know  couplings  to  all  SM  par:cles  for  a  given  value  of  the  Higgs  boson  mass  

•  Precision  measurements  of  mW  and  mt  constrain  Higgs  loop  contribu:ons  

•  LEP  searches  rule  out  mH<114  GeV  (strongly)  

•  Tevatron  searches  rule  out    163<mH<166  GeV  

80.3

80.4

80.5

150 175 200

mH !GeV"114 300 1000

mt !GeV"

mW

!G

eV"

68# CL

LEP1 and SLDLEP2 and Tevatron (prel.)

August 2009

J.Nielsen   TASI  2010   2  

Higgs  Produc:on  Mechanisms  at  LHC  

J.Nielsen   TASI  2010   3  

Kunszt et al.

Branching  Frac:ons  for  SM  Higgs  1

0.1

10-2

10-3

bb_

WW

!! gg ZZ

cc_

Z"""

120 140 160 180 200100mH (GeV/c2)

SM Higgs branching ratios (HDECAY)

J.Nielsen   TASI  2010   4  

•  Fixed  par:al  widths  found  in  textbooks,  but  the  frac:on  of  the  total  width  changes  quickly  with  mH  as  phase  space  for  new  decay  channels  opens  

•  Note  ra:o  of  WW  to  ZZ,  as  required  by  Lagrangian  term  

L ! (2M2W HW

+µ W

+M2ZHZµZ

µ)Plot by J. Conway

General  Overview  of  Search  Strategy  •  We  look  not  only  for  a  discrepancy  with  respect  to  (non-­‐Higgs)  SM,  but  also  consistency  with  Higgs  produc:on  

•  Choose  specific  signature  of  Higgs  produc:on  (“channel”)  •  Develop  event  selec:on  to  reject  backgrounds  from  physics  processes  and  mismeasurements  in  the  signature  

•  Es:mate  the  contribu:on  to  the  data  sample  from  background  events  and  puta:ve  signal  event  – Goal  is  to  measure  the  contribu:ons  directly  from  data  to  avoid  theore:cal  bias  or  simula:on  bias  

•  Quan:fy  the  probability  observed  dataset  is  consistent  with  the  background+signal  or  background-­‐only  

J.Nielsen   TASI  2010   5  

Sta:s:cs  Interlude:  Poisson  Distribu:on  •  Suppose  we  expect  40  background  (SM)  events  and  have  a  model  that  predicts  10  new  physics  signal  events  

•  Employ  Central  Limit  Theorem  by  thinking  of  our  experiment  as  one  of  many  possible  experiments:  

J.Nielsen   TASI  2010   6  

•  If  we  observe  40  events,  can  we  exclude  the  model?  

•  If  we  observe  50  events,  can  we  exclude  the  Standard  Model?  

•  60  events?  

Entries 10000Mean 39.92RMS 6.395

Total number of observed events0 10 20 30 40 50 60 70 800

50

100

150

200

250

Entries 10000Mean 39.92RMS 6.395

40 Background Events

“Number  of  Sigma”  Discrepancies  

•  “Sigma”  is  ogen  a  shorthand  reflec:ng  probability  for  dataset  to  represent  SM,  instead  of  other  way  around  

•  Be  aware  of  one-­‐sided  vs.  two-­‐sided  defini:ons  of  α when  comparing  parameter  measurements  and  number-­‐coun:ng  experiments  

J.Nielsen   TASI  2010   7  

32. Statistics 23

Table 32.1: Area of the tails ! outside ±" from the mean of a Gaussiandistribution.

! " ! "

0.3173 1# 0.2 1.28#

4.55 !10!2 2# 0.1 1.64#

2.7 !10!3 3# 0.05 1.96#

6.3!10!5 4# 0.01 2.58#

5.7!10!7 5# 0.001 3.29#

2.0!10!9 6# 10!4 3.89#

The relation (32.53) can be re-expressed using the cumulative distribution function forthe $2 distribution as

! = 1 " F ($2; n) , (32.54)

for $2 = ("/#)2 and n = 1 degree of freedom. This can be obtained from Fig. 32.1 on then = 1 curve or by using the CERNLIB routine PROB or the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates !! = (!%1, . . . , !%n), onerequires the full covariance matrix Vij = cov[!%i, !%j ], which can be estimated as describedin Sections 32.1.2 and 32.1.3. Under fairly general conditions with the methods ofmaximum-likelihood or least-squares in the large sample limit, the estimators will bedistributed according to a multivariate Gaussian centered about the true (unknown)values !, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (!%i, !%j) is shown in Fig. 32.5, correspondingto a contour $2 = $2

min + 1 or ln L = lnLmax " 1/2. The ellipse is centered about theestimated values !!, and the tangents to the ellipse give the standard deviations of theestimators, #i and #j . The angle of the major axis of the ellipse is given by

tan 2& =2'ij#i#j

#2j " #2

i

, (32.55)

where 'ij = cov[!%i, !%j ]/#i#j is the correlation coe!cient.The correlation coe!cient can be visualized as the fraction of the distance #i from the

ellipse’s horizontal centerline at which the ellipse becomes tangent to vertical, i.e., at thedistance 'ij#i below the centerline as shown. As 'ij goes to +1 or "1, the ellipse thinsto a diagonal line.

It could happen that one of the parameters, say, %j , is known from previousmeasurements to a precision much better than #j , so that the current measurementcontributes almost nothing to the knowledge of %j . However, the current measurement of%i and its dependence on %j may still be important. In this case, instead of quoting bothparameter estimates and their correlation, one sometimes reports the value of %i, which

January 28, 2010 12:02

Sta:s:cal  vs.  Systema:c  Uncertain:es  •  Sta:s:cal  uncertainty  reflects  fluctua:ons  in  the  observed  dataset  that  affect  the  measured  parameter  

•  Systema:c  uncertainty  reflects  the  inherent  uncertainty  in  an  input  parameter,  e.g.,  background  es:mate  

•  Two  uncertain:es  are  quoted  separately:  stat.  can  be  expected  to  scale  as                                                                ,  while  syst.  may  not  scale  predictably  (if  at  all)  

J.Nielsen   TASI  2010   8  

!stat ! N!1/2

Uncertainty in the background estimate can thwart the search just as surely as low integrated luminosity

Nsignal = Nobserved ! nbkg = XX ± Y Y (stat) ± ZZ(syst)

Maximum  Likelihood  Techniques  •  Find  signal  value  with  likelihood  of  Poisson  probabili:es:  

•  The  MLE  occurs  for    

•  Maybe  this  seems  obvious,  but  ask  yourself:  – How  might  we  put  in  uncertain:es  on  s  and  b?  – What  happens  if  the  observed  n  <  b?  

J.Nielsen   TASI  2010   9  

Binned  Likelihood  Techniques  

J.Nielsen   TASI  2010   10  

Binned  likelihood  works  in  the  same  way  as  unbinned  likelihood,  but  the  probability  treats  bins  and  their  contents  instead  of  individual  data  points  

Some  informa:on  is  lost  due  to  the  bin  widths;  OK  as  long  as  the  bin  widths  are  much  narrower  than  any  features  

Uncertain:es  on  Likelihood  Parameters  •  Again,  when  N  is  large,  the  likelihood  becomes  Gaussian  

•  The  Taylor  expansion  gives  

•  Iden:fy  Δα2  as  

•  Now  if  we  write      –  Then      

•  Each  unit  of  2  ln  L  is  taken  to  be  “1  sigma,”  in  the  spirit  of  our  table  rela:ng  probability  and  Gaussian  “sigma”  

J.Nielsen   TASI  2010   11  

Hypothesis  Tes:ng  •  Typically  we  are  interested  in  tes:ng  two  hypotheses:  

–  background-­‐only  produc:on  (s=0)  –  signal+background  produc:on  (s>0)  

•  If  the  data  favor  the  laqer  hypothesis  and  strongly  disfavor  the  former,  then  we  have  a  discovery!  

•  Construct  a  likelihood  ra:o:  how  ogen  can  certain  value  can  be  expected  from  experiment  in  presence  of  signal?  

–  For  a  discovery,  we  usually  talk  about  excluding  the  background  hypothesis  at  >5σ.    This  is  Pb<10-­‐7  

–  For  “evidence,”  the  standard  is  lower:  just  3σ  

J.Nielsen   TASI  2010   12  

Search  for  H→ZZ  •  Usual  clean  signature  for  Z  decay  to  leptons  (e/µ);  require  lepton  pairs  have  invariant  mass  near  mΖ

•  Produc:on  details  are  not  important  since  signature  is  so  clean;  background  is  just  ZZ!  

•  “Golden”  channel  for  high-­‐mass  Higgs  searches  

J.Nielsen   TASI  2010   13  

ATLAS CSC Book

mH=180 mH=300

Search  for  H→γγ

J.Nielsen   TASI  2010   14  

CMS, 1 fb-1 @ 14 TeV

Search  for  H→ττ

•  Branching  frac:on  for                                                    is  roughly  10%  •  Select  2  τ  candidates:  both  leptonic  or  leptonic+hadronic  •  Measure  MET  to  es:mate  total  energy  taken  by  all  ν’s  •  Use  kinema:c  reconstruc:on  trick  (τ  momentum  is  approximately  the  ν  momentum)  to  appor:on  the  MET  

J.Nielsen   TASI  2010   15  

mH ! 2mW

•  May  be  necessary  to  include  other  produc:on  mechanisms  like  vector  boson  fusion  (VBF)  for  cleaner  signature  

Search  for  H→WW  •  Pros:  rate  is  large,  decay  to  leptons  is  clean  •  Cons:  2  high-­‐ET  neutrinos  mean  no  invariant  mass  peak  •  S:ll  possible  if  the  enhanced  rate  of                                can  be  combined  with  change  in  distribu:ons  

J.Nielsen   TASI  2010   16  

2!+ !ET

•  Direct  WW  produc:on  and  top  quark  pairs  have  similar  signatures  

•  No  need  to  veto  on  Drell-­‐Yan  produc:on  if  the  mass  distribu:on  is  included  

Spin  Considera:ons  for  WW  Final  State  •  One  subtle  advantage:  background  from  WW  produc:on  has  different  spin  distribu:on  from  h→WW    –  Background:  leptons  tend  to  go  in  opposite  direc:ons  –  Signal:  leptons  tend  to  go  in  same  direc:on  

J.Nielsen   TASI  2010   17  

•  Higgs  spin  0  ⇒  two  Ws  have  opposite  spin  

•  W±  couples  to  Right/Leg-­‐handed     CMS TDR

H ! WW ! 2µ+ "ET

Search  for  H→bb:  Mission  Impossible?  •  Compare  produc:on  σbb=39µb  to  σH=30  pb  

•  Only  a  frac:on  of  dijet  events  are  accepted  by  trigger,  and  we  cannot  tell  b  from  udsg  in  Level  1  trig  

•  Unlike  γγ,  bb  invariant  mass  resolu:on  is  poor  –  Signal  is  spread  over  many  bins  in  likelihood  

•  Requiring  associated  W,  Z  or            reduces  background  

J.Nielsen   TASI  2010   18  

bb̄ invariant mass

ATL-PHYS-PUB-2006-006

tt̄

Finding  Higgs  in  Boosted  Jets  •  Restrict  the  WH/ZH  search  to  region  of  phase  space  in  which  vector  boson  has  large  transverse  momentum:                                                                                      system                                is  boosted  into  a  single  fat  jet  

– High-­‐mass  jet  substructure  is  nearly  unique  to  Higgs  decay,  so  background                                  is  reduced  

J.Nielsen   TASI  2010   19  

2

b Rbb Rfilt

Rbbg

bR

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgsneighbourhood within it by undoing the clustering (e!ectively shrinking the jet radius) until the jet splits into two subjetseach with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardestsubjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,updates the set of distances and repeats the procedureuntil all objects are separated by a !Rij > R, where Ris a parameter of the algorithm. It provides a hierarchicalstructure for the clustering, like the K!algorithm [9, 10],but in angles rather than in relative transverse momenta(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, wethen use the following new iterative decomposition proce-dure to search for a generic boosted heavy-particle decay.It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its laststage of clustering. Label the two subjets j1, j2 suchthat mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <µmj, and the splitting is not too asymmetric, y =min(p2

tj1,p2

tj2)

m2

j

!R2j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.Note that y ! min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go backto step 1.

The final jet j is to be considered as the candidate Higgsboson if both j1 and j2 have b tags. One can then identifyRbb̄ with !Rj1j2 . The e"ective size of jet j will thus bejust su#cient to contain the QCD radiation from theHiggs decay, which, because of angular ordering [12, 13,14], will almost entirely be emitted in the two angularcones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-pendently of the Higgs mass and pT . Taking µ ! 1/

"3

ensures that if, in its rest frame, the Higgs decays to aMercedes bb̄g configuration, then it will still trigger themass drop condition (we actually take µ = 0.67). The cuton y ! min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-metric configurations that most commonly generate sig-nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, thatused to calculate the splitting scale in [5, 6], which takes the jetpT as the reference scale rather than the jet mass.

Jet definition !S/fb !B/fb S/!

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K!, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets backgroundin the leptonic Z channel for 200 < pTZ/GeV < 600 and110 < mJ/GeV < 125, with perfect b-tagging; shown forour jet definition, and other standard ones at near optimal Rvalues.

soft gluon divergence. It can be shown that the maxi-mum S/

"B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ! 0.15. Since wehave mixed tagged and mistagged backgrounds, we use aslightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimalfor LHC at the transverse momenta of interest, pT #200 $ 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT isstill quite large and the resulting Higgs mass peak is sub-ject to significant degradation from the underlying event(UE), which scales as R4

bb̄[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. Thisinvolves resolving it on a finer angular scale, Rfilt < Rbb̄,and taking the three hardest objects (subjets) that ap-pear — thus one captures the dominant O (!s) radiationfrom the Higgs decay, while eliminating much of the UEcontamination. We find Rfilt = min(0.3, Rbb̄/2) to berather e"ective. We also require the two hardest of thesubjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-lustrate its e"ectiveness by showing in table I (a) thecross section for identified Higgs decays in HZ produc-tion, with mh = 115 GeV and a reconstructed mass re-quired to be in an moderately narrow (but experimen-tally realistic) mass window, and (b) the cross sectionfor background Zbb̄ events in the same mass window.Our results (C/A MD-F) are compared to those for theK!algorithm with the same ycut and the SISCone [16]algorithm based just on the jet mass. The K!algorithmdoes well on background rejection, but su"ers in massresolution, leading to a low signal; SISCone takes in lessUE so gives good resolution on the signal, however, be-cause it ignores the underlying substructure, fares poorlyon background rejection. C/A MD-F performs well both

Butterworth et al. 0802.2470v2

H ! bb̄

gg ! bb̄

Proof  of  Principle  in  (W/Z)H→lνbb  Channel  •  Specific  event  selec:on  

–  pT(V,H)  >  300  GeV  –  R  =  0.7  –  beff/fake  =  70%/1%  

•  ZZ  produc:on  is  an  irreducible  background,  but  also  a  calibra:on  sample  with  clear  peak  

•  Basic  concepts  of  jet  substructure  need  to  be  tested  with  early  data  

J.Nielsen   TASI  2010   20