technion - electrical engineering faculty - em structures laser … · 2008. 3. 9. · em...

24
EM Structures EM Structures & & Laser Acceleration Laser Acceleration Levi Schächter Department of Electrical Engineering Department of Electrical Engineering Technion Technion - - Israel Institute of Technology Israel Institute of Technology Haifa 32000, ISRAEL Haifa 32000, ISRAEL

Upload: others

Post on 31-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

EM Structures EM Structures &&

Laser Acceleration Laser Acceleration

Levi Schächter

Department of Electrical EngineeringDepartment of Electrical EngineeringTechnion Technion -- Israel Institute of TechnologyIsrael Institute of Technology

Haifa 32000, ISRAELHaifa 32000, ISRAEL

Page 2: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

OutlineOutline

Constraints on optical structuresOptical structuresFour acceleration configurationsComments on luminosity & power

Page 3: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Constraints Constraints

GradientGradient: order of 1[GV/m] or higher.EfficiencyEfficiency: limited by radiation source and acceleration scheme

# Lasers anticipated efficiency of wall-plug to light 10% → 30%?!

# Efficiency of acceleration scheme – major difficultydifficulty

BreakdownBreakdown: at optical wavelengths dielectricsdielectrics sustain higherfields comparing to metals.

ManufacturingManufacturing constraints favor planar structures – consistentwith luminosity constraints.

Single ModeSingle Mode: width of vacuum tunnel 0.3λ - 0.8λMachining toleranceMachining tolerance: 1µm at 3 cm wavelength. Four orders ofmagnitude difference difficult to be preserved at λ=1µm (poster).

Page 4: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Optical structuresOptical structures

Planar Bragg StructurePlanar Bragg StructureCylindrical Bragg StructureCylindrical Bragg Structure

Longitudinal PBGLongitudinal PBGTransverse PBGTransverse PBG

int 19.5 @ 1Z mµ= Ω

E. Lin, PR STAB, 2000 B. Cowan, PR STAB, 2003

A. Mizrahi & L. Schachter, Phys. Rev. E, 2004

Talk in EM structures WG

Page 5: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Structure parameters Structure parameters

Planar Bragg StructurePlanar Bragg StructureCylindrical Bragg StructureCylindrical Bragg Structure

Longitudinal PBGLongitudinal PBGTransverse PBGTransverse PBG

int

intgr

acc

max

2.1, 1.5[ ]

250 20[ ]

0.55 1.25 0.2 0.6

0.35 0.15

y

m

ZD

EE

ε λ µ

λβ

λ=

∆÷ Ω

= ÷ ⇒ ÷ ÷

E. Lin, PR STAB, 2000 B. Cowan, PR STAB, 2003

A. Mizrahi & L. Schachter, Phys. Rev. E, 2004

intint

acc

max1 22.1, 4, 1[ ]

268 37[ ]0.3 0.8 0.41 0.48

0.73 0.37

gr

m

ZR

EE

ε ε λ µ

βλ

= = =

÷ Ω÷ ⇒ ÷ ÷

int

intgr

acc

max1 22.1, 4, 1[ ]

147 25.7[ ]

0.3 0.8 0.42 0.53

0.47 0.20

y

m

ZD

EE

ε ε λ µ

λβ

λ= = =

∆÷ Ω

= ÷ ⇒ ÷ ÷

intint

acc

max

2.1, 1[µm]

19.5[ ]0.68 0.58

0.5

gr

ZR

EE

ε λ

βλ=

Ω⇒

Page 6: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

ConfigurationsConfigurations

Active Medium

Active Medium

Traveling-wave Acceleration

Module

Active Medium

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

Active Medium

Active Medium

Traveling-wave Acceleration

Module

Active Medium

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

• High efficiency

• Low # of electrons

• High efficiency

• Large # of electrons

Train of microTrain of micro--bunches & feedbackSingle bunch & feedback

Train of microTrain of micro--bunches & no feedbackSingle bunch & no feedback

Traveling-wave Acceleration

Module

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

External Laser

Traveling-wave Acceleration

Module

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

• Low efficiency

• Low # of electrons

• Moderate efficiency

• Large # of electrons

bunches & no feedbackSingle bunch & no feedback

Single bunch & feedback bunches & feedback

Page 7: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

••Wake parameter:Wake parameter:

Decelerating field for a given charge …………

••BeamBeam--loading parameterloading parameter:

Beam-loading of the accelerating mode ……….. ( )dec 1

FE qκ≡

decE qκ≡

( ) ( )1

1

( 0, / ) cos 2

1

z n nn

nn

E r t z c q W h

W

τ κ ω τ τ∞

=

=

= = −

=

∑1 1Wκ κ≡

gr int1 2

gr 00 01 4/Zβ πκ

β πε λµ ε=

Traveling-wave Acceleration

Module

External Laser

022 / 4 Rκ πε=

Single bunch & no feedback Single bunch & no feedback

Contribution of the fundamental Contribution of the fundamental to the total deceleration Stupakov & Bane, PR STAB, 2003to the total deceleration

Page 8: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Acc. Structure

d

c

EMτ

Traveling-wave Acceleration

Module

External Laser Single bunch & no feedbackSingle bunch & no feedback

Acc. Structure

c

grcβ

EMτ

Laser pulse length for full overlap

dTime it takes the micro-bunch to traverse thestructure

1 1EM grEM

gr gr

d cd dc c c

τ βτ

β β −

= ⇒ = −

Page 9: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

( )0KIN accmax opt 02

EM 0

1 12

42

qU Eq qU q

q qη η

κ−∆

≡ = ⇒ = ≡

1max

κηκ

=

eff acc dec accE E E E qκ≡ − = −

Traveling-wave Acceleration

Module

External Laser

Single bunch & no feedback Single bunch & no feedback

• Loaded gradient:

• Kinetic energy:

• EM energy:

KIN effU qE d∆ ≡

EM Laser grgr

(1 / )dU P V cV

≡ −

Zero force chargeZero force charge

Maximum efficiency is set by the projection of the Maximum efficiency is set by the projection of the total deceleration on the fundamental !!total deceleration on the fundamental !!

Page 10: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Planar Bragg StructurePlanar Bragg StructureCylindrical Bragg StructureCylindrical Bragg Structure

Longitudinal PBGLongitudinal PBGTransverse PBGTransverse PBG

[ ]

[ ]

int

Laser

int4

opt

max acc

0.682.1, 1.0[µm] 50 kW

19.5[ ] 6%0.58 7 102[GV/m] 1 GV/m

gr

RP

Zq e

E E

λε λ

ηβ

= Ω ⇒ ×

[ ]

[ ][ ]

int

Laser

int 4opt

accmax

0.552.1

2.3 kW/ m1.5[µm]36%/ 250[ ]5 10 /µm0.20.6 GV/m2[GV/m]

y

gr

D

P

Zq e

EE

λε

µληλ

β

= ⇒∆ Ω ×

[ ]

[ ]

int

1 2Laser

int 4opt

accmax

0.682.1, 4

18 kW1[µm]

9%56.4[ ]

7 100.581 GV/m2[GV/m]

gr

R

P

Zq e

EE

λε ελ

η

β

= = ⇒Ω ×

[ ]

[ ]

int

1 2Laser

int 4opt

accmax

0.552.1, 4

5.3 kW/ m1[µm]8%/ 57[ ]3.3 10 [ / m]0.480.56 GV/m2[GV/m]

y

gr

D

P

Zq e

EE

λε ε

µληλ

µβ

= = ⇒∆ Ω ×

E. Lin, PR STAB, 2000 B. Cowan, PR STAB, 2003

A. Mizrahi & L. Schachter, Phys. Rev. E, 2004

Single bunch & no feedback Single bunch & no feedback

Page 11: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Traveling-wave Acceleration

Module

External Laser

Single bunch & no feedback Single bunch & no feedback Maximum efficiency is set by the Maximum efficiency is set by the

projection of the total deceleration on projection of the total deceleration on the the fundamental

1max

κηκ

=

fundamental

By By splitting the bunchsplitting the bunch into a train of microinto a train of micro--bunches, the projection bunches, the projection of the wake on the fundamental remains the same, but of the wake on the fundamental remains the same, but higher higher frequencies arefrequencies are suppressedsuppressed

12 2

1

1

2

sinc( ) ( )

sinc

nM

nn n

MP M q c W q c M

ωπω

κ κωπω

=

= =

1 1max

1 2( ) ( ) ....M Mκ κη

κ κ κ= =

+ +

??0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Nor

mal

ized

Coe

ffic

ient

M

Rb / R

ext= 0.7

Rb / R

ext= 0.5

Rb / R

ext= 0.3

Page 12: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Train of bunches & no feedbackTrain of bunches & no feedback

What is the efficiency in case of a train of microWhat is the efficiency in case of a train of micro--bunches? bunches?

For an answer, one needs to make two observations:For an answer, one needs to make two observations:

a) The laser pulse duration ought to be a) The laser pulse duration ought to be longer longer in order to in order to account for the macroaccount for the macro--bunch length.bunch length.

b) The envelope of the laser pulse must be b) The envelope of the laser pulse must be tapered, tapered, in order to in order to compensate for beam loading.

Traveling-wave Acceleration

Module

External Laser

compensate for beam loading.

Page 13: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Still we have a problem: wake propagates at cwhereas laser’s envelope propagates at cβgr.

Solution: Mλ=d

Uniform laser pulse Uniform & loading Tapered laser pulse Tapered & loading

⇒ ⇒ ⇒

Tapered laser pulseTapered laser pulse

Traveling-wave Acceleration

Module

External Laser Train of bunches & no feedbackTrain of bunches & no feedback

Laser tapered pulse tapered pulse necessary to compensatecompensate for the beam loading in order to ensure uniformuniform acceleration of allall micro-bunches

1000 200 300 400 5000.0

0.2

0.4

0.6

0.8

1.0

Norm

alize

d Env

elope

of th

e Wak

e

dM =λ

dM <λ

dM >λ

λτ /c

1M

Page 14: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

( ) ( )

( ) ( )

1gr 0

221 1

0gr

02gr gr 2 2 2

0 gr

12 1

1 13 1

12 1 .3

q q q

q q q qM

q q qq q

κβκη

κ κκ β κ

β ββ

− − = − + + +

−−

+

20 02

13 1 13opt gr

gr

q q qβ ξβ

+ − ≡

( ) ( )2max 2 2

112 1

3gr grgr

ξ ξη β β

ξ β−

−+

Traveling-wave Acceleration

Module

External Laser Train of bunches & no feedbackTrain of bunches & no feedback

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

Max

imum

Eff

icie

ncy

grβ

0/q

q opt

»1M11, 1M κκ

In spite of splitting the macro-bunch, there still is 50% waste of the laser energy feedback loop.

Page 15: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Traveling-wave Acceleration

Module

Active Medium

External Laser

• External laser field: EL

• Input to acceleration module : Ein=EL+EFB

• Output of the acceleration module : Eout=Ein – Ew

Single bunch & feedbackSingle bunch & feedbackFundamental

mode

2κ1q

• Feedback loop: EFB= Γ Eout

• Dynamics:

( ) ( ) ( )( )out out gr gr( ) / /F

rr L WE t E t T E t d c E t d cβ β=Γ − + − − −

overall gain loss coefficientgain

21 1/

g e

e Q

ψ

ψ

Γ =

− =

Acceleration Module

FBE

outE

Active Medium&

Loss

LE

( )FWE

( )HWE

e- e-inE

Page 16: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

• External energy injected into the system:( ) ( ) ( ) ( ) 22

acc 12 2Laser EM ACTIVE OUT EM

int int

2, 1 1L E qE

U U g U gZ Z

λ κλτ τ

− = = − = −

Traveling-wave Acceleration

Module

Active Medium

External Laser

Single bunch & feedbackSingle bunch & feedback

• In steady state it compensates energy which leaves: ∆UKIN and ULOSS=UOUT/Q 1

11

KIN KIN

OUTLASER ACTIVE KIN LOSS

KIN

U UUU U U U

Q U

η ∆ ∆= = =

+ ∆ + +∆

opt 0 max 1

1

1 11 1, 12 11

Qq q

Q

Q

η κκκ

κ

=

→+

High efficiency but,

small number of electrons train of bunches and feedback loop

Page 17: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Train of bunches & feedbackTrain of bunches & feedback

Traveling-wave Acceleration

Module

Active Medium

External Laser

Traveling-wave Acceleration

Module

Active Medium

External Laser

Ensure that output & feedback are consistent with the necessary input !!

Page 18: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Traveling-wave Acceleration

Module

Active Medium

External Laser

output2.0=αcvgr 4.0=

input

laser

EMt τ/

Nor

mal

ized

Fie

ld

output

input

laser

output

input

laser

2.0=αcvgr 5.0=

2.0=αcvgr 6.0=

-1.0 0.0 1.0 2.0 3.0-0.2

0.0

0.2

0.4

0.6

0.8

1.0

EMt τ/-1.0 0.0 1.0 2.0 3.0

EMt τ/-1.0 0.0 1.0 2.0 3.0

M dλ =

Active enhancement of the quality factor

Train of bunches & feedbackTrain of bunches & feedback

Laser pulse shapingLaser pulse shaping

Talk in Exotic schemes WG

Conditions for self-consistent field:

(I) Amplifier compensates for all radiation lossradiation loss

(II) External laser compensates for beambeam--loadingloading

111

KIN

OUTLASER ACTIVE

KIN

UUU U

Q U

η ∆= =

+ +∆

Page 19: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Traveling-wave Acceleration

Module

Active Medium

External Laser

0.2

0.4

0.6

0.8

1.0

0/ qq

5.0=grβ( ) 0.1/ =κκ F25=Q

5=Q

1=Q

Effic

ienc

y

0.00.0 0.2 0.4 0.6 0.8 1.0

0/ qq0.0 0.2 0.4 0.6 0.8 1.0

0/ qq0.0 0.2 0.4 0.6 0.8 1.0

9.0=grβ

5.0=grβ5=Q

.5.0=grβ5=Q

1.0=grβ

( ) 0.1/ =κκ F

( ) 5.0/ =κκ F

( ) 0.1/ =κκ F

( ) 1.0/ =κκ F

High Q: (I) High efficiency (II) Reduced sensitivity

- Peak efficiency independent of κ1/κ

- Sensitivity

- Peak efficiency dependent on βgr

- Sensitivity

Train of bunches & feedbackTrain of bunches & feedback

Page 20: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

frr

Nel

microNzσ

,x yσ

NLC:

el posrr micro 4 D

x y

N NL f N H

πσ σ=

Luminosity Luminosity

microN

Optical Acc.:

Nel

( )( )el micro pos microrr 4

1x y

N N N NL f

πσ σ= × ×

frr Assumption:

Ignore structure of the macro-bunch

Page 21: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Luminosity Luminosity

80808080444(4(--3)3)13.713.7Beam power [MW]

1.2(36)1.2(36)1.2(34)1.2(34)3(30)3(30)3(25)3(25)2(34)2(34)L[cm-2sec-1]

1.01.01.01.01.4HD

4

24.5

0.27

0.3

4

245

2.7

1.4

4

24.5

0.27

0.8

4

245

2.7

3.8

0.11(6)

245

2.7

2.1

σz [nm]σx [nm] σy [nm]n-1/3 [Å]

1(6)

1(3)

1(6)

Train & FB

1(6)5(4)5(4)0.75(10)Nel

1(3)11190Nmicro

1(6)1(9)1(6)120frr [Hz]

Train & FB

Single no FB

Single no FB

NLC

Fluence

Density !

Page 22: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Summary: Dielectric StructuresSummary: Dielectric Structures

Planar Bragg StructurePlanar Bragg StructureCylindrical Bragg StructureCylindrical Bragg Structure

Longitudinal PBGLongitudinal PBGTransverse PBGTransverse PBG

int 19.5 @ 1Z mµ= Ω

Dielectric periodic structures may confine an accelerating mode and allow high order modes to leak out.

Train of micro-bunches contributes to suppression of high frequency wakes.

Page 23: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Summary: ConfigurationsSummary: Configurations

Active Medium

Active Medium

Traveling-wave Acceleration

Module

Active Medium

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

Active Medium

Active Medium

Traveling-wave Acceleration

Module

Active Medium

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

• High efficiency

• Low # of electrons

• High efficiency

• Large # of electrons

Train of microTrain of micro--bunches & feedbackSingle bunch & feedback

Train of microTrain of micro--bunches & no feedbackSingle bunch & no feedback

Traveling-wave Acceleration

Module

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

External Laser

Traveling-wave Acceleration

Module

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

• Low efficiency

• Low # of electrons

• Moderate efficiency

• Large # of electrons

bunches & no feedbackSingle bunch & no feedback

Single bunch & feedback bunches & feedback

Page 24: Technion - Electrical Engineering Faculty - EM Structures Laser … · 2008. 3. 9. · EM Structures & Laser Acceleration . Levi Schächter. Department of Electrical Engineering

Summary: Efficiency & LuminositySummary: Efficiency & Luminosity

Active Medium

Active Medium

Traveling-wave Acceleration

Module

Active Medium

External Laser

External Laser

External Laser

Traveling-wave Acceleration

Module

Traveling-wave Acceleration

Module

(I) Amplifier compensates for all radiation loss radiation loss (active enhancement of the Q—factor) facilitated by the wake being “quasi-coherent”

(II) External laser compensates for beambeam--loading loading (tapered pulse)

(III) Luminosity

Talk in Exotic schemes WG