technische universitÄt kaiserslautern dr. hans-jochen foth (dr. bernd schröder) fachkunde im...

53
TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde im STRAHLENSCHUTZ Die Inhalte dieser Vorlesung + Praktikum wurden vom Ministerium für Umwelt des Landes Rheinland-Pfalz als Basis für den Fachkundekurs für LehrerInnen offiziell anerkannt. Die Fachkunde-Bescheinigung ist bundesweit gültig.

Upload: ruperta-boes

Post on 05-Apr-2015

116 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/071

Fachkundeim

STRAHLENSCHUTZ

 

Die Inhalte dieser Vorlesung + Praktikum wurden vom Ministerium für Umwelt des Landes Rheinland-Pfalz als Basis für den Fachkundekurs für LehrerInnen offiziell anerkannt.

Die Fachkunde-Bescheinigung ist bundesweit gültig.

Page 2: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/072

Dr. Hans-Jochen Foth

Fachbereich Physik

Büro: 56/259

Tel.: 205-4983

E-Mail: [email protected]

Page 3: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/073

Zur Organisation

1. Vorlesung Termin Do 17.00 / 17.15 Uhr ggf. Alternative??

2. Praktikum: Physikalisch-messtechnisches Praktikum, ab Mitte Februar, 1 Nachmittag (4 h), nach Vereinbarung

3. Anwesenheit: Anwesenheitspflicht!! (Anwesenheitsliste) für Studierende, die eine offizielle Fachkunde- bescheinigung benötigen!

Anwesenheit + erfolgreicher Abschlusstest = Fachkundebescheinigung

4. Abschlusstest: MC-Klausur (mindestens 2/3 der erreichbaren Punkte!)

Page 4: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/074

Zur Organisation

5. Inhalt: s. Verzeichnis (ausführliche Information über naturwissenschaftliche Grundlagen, rechtliche Aspekte, praktische Auswirkungen u.a.m.) Problem: unterschiedliche Voraussetzungen

6. Ziele: Vermittelung der für die Tätigkeit im Strahlenschutz erforderlichen Fachkenntnisse und Fähigkeiten sowie des einschlägigen Gesetzes- wissens = Fachkunde im Strahlenschutz

Aber auch: Realistische Einschätzung diverser Strahlen-Expositios- Gefährdungen, Möglichkeiten des Strahlenschutzes sowie der Genauigkeit kernphysikalischer Messmethoden!!

7. Weiterführung: Grundkurse im StrlSch nach StrlSchV bzw. RöV (z.B. TAS-Kurs im März 2007)

Page 5: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/075

Fachkunde im Strahlenschutz für Lehrer

Lehrer, die im Unterricht selbständig mit Quellen ionisierenderStrahlung (radioaktive Präparate mit A > FG oder Röntgen-strahlquellen umgehen wollen, müssen gemäß Richtlinien derStrlSchV (Fachkundegruppe 6) und RöV (Fachkundegruppe 4)fachkundig sein!

Fachkunde

geeignete Berufsausbildung

=Lehrer-Staatsexamen

einschlägiges Gesetzes-wissen sowie der Tätig-

keit entsprechende Fachkenntnisse

Anwesenheit + erfolg- reicher Abschlusstest

= +

Page 6: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/076

Literaturhinweise

Verordnungen, kommentierte Verordnungen

Allgemeine, ausführliche Monographien

Taschenbücher

Ständig aktualisierte „Loseblatt“-Sammlungen

Spezial-Literatur

Literaturliste

Page 7: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/077

Inhaltsverzeichnis1. Allgemeine physikalische und biologische Grundlagen2. Grundlagen der Strahlenphysik3. Strahlenmesstechnik4. Abschirmung ionisierender Strahlung5. Strahlenbiologische Grundlagen (Dr. Möhlmann)6. Natürliche und zivilisationsbedingte Strahlenbelastung des Menschen7. Kurze Risikobetrachtung zur Strahlenexposition8. Strahlenschutzrecht 8.1 Rechtliche Grundlagen 8.2 Anzeige und Genehmigung des Umgangs mit radioaktiven Material 8.3 Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung –StrlSchV–) 8.4 Die Röntgenverordnung –RöV– 8.5 Stellung und Pflichten des Strahlenschutzverantwortlichen und – beauftragten9. Praktische Auswirkungen der Strahlenschutz– und Röntgenverordnung

Page 8: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/078

Voraussichtliche Termine

09.11.06 Einführung, Grundlagen, Atomkerne und ihre Strahlung

16.11.06 Röntgenstrahlung, Größen und Einheiten der Strahlenschutzmesstechnik

30.11.06 Aufbau und Funktion von Strahlungsmessgeräten

14.12.06 Abschirmung ionisierender Strahlung

11.01.07 Strahlenbiologie (Dr. Torsten Möhlmann, FB Bologie)

25.01.07 Risikobetrachtungen

08.02.07 Strahlenschutzrecht

Page 9: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/079

Strahlenschutz

Strahlenschutzgegenüber

Ionisierender Strahlung

PhotonenE = h 15 eV(harte UV-, Röntgen-

und -Strahlung

Strahlenschutzgegenüber

nichtionisierenderStrahlung

UV-Strahlung

LASER

Mikrowellen

VHF (Mobilfunk)

niederfrequenteStrahlung

Verhinderung vonSchäden und Funktionsstörungen

Teilchen(-, -, n-

Strahlung u.a.m)

Page 10: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0710

1. Historische Übersicht über die Physikalischen Grundlagen

1895 RÖNTGEN: Entdeckung der „Materiedurchdringenden X-Strahlen“ d.h. der Röntgenstrahlung

1896 BECQUEREL: Entdeckung der natürlichen Radioaktivität (Uransulfat sendet unsichtbare Strahlung aus, die die Photoplatte schwärzt)

1897 MARIE CURIE: Radiaktivität und Strahlung haben nichts mit Chemie zu tun, Entdeckung von Radium und Polonium

1899 RUTHERFORD: , , - Strahlung identifiziert

1911 RUTHERFORD: Nachweis der „harten“ Kerns (Planetenmodell des Atoms)

1919 RUTHERFORD: Erste Kernreaktion (N14 (, p) 017)

1932 CHADWICK: Entdeckung des Neutrons

1938 HAHN-STRASSMANN: Nachweis der Kernspaltung

1943 FERMI: Kontrollierte Kettenreaktion der thermischen Kernspaltung – erster Kernspaltungsreaktor

Page 11: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0711

2. Historische Dokumentation von Strahlenschäden

1898 Erste Berichte über Hautschädigungen (Rötungen, Verbrennungen 1. Grades) nach intensiver Röntgenbestrahlung. Typischer Fokussiertest für Röntgen- Bestrahlungsanordnungen: Kleiner oder großer roter Fleck auf der Handrück-

seite

1901 Becquerel berichtet über die Bildung eines Hautgeschwüres nach langem Tragen eines Radiumpräparates

1902 Berichte über die Bildung bösartiger Geschwüre als Folge zu hoher Bestrahlungs dosen

1903 Schädigung von Keimzellen für Strahlungsdosen nachgewiesen, die noch nicht zur Rötung der Haut führen

SPÄTER: Berichte über die sogenannte „Bergkrankheit“ im erzgebirgischen Uranbergbau (Lungenkrebs durch Einlagerung von radioaktivem Staub)

Berichte über typische Erkrankungen im Bereich des Mundes, Kehl-

kopfes und der Lunge in der Leuchtstoffindustrie (Strahlenkrebs)

Page 12: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0712

1949-54 42 gemeldete Strahlenschäden in Deutschland (100% Röntgenstrahlung)

1942-55 49 gemeldete Strahlenunfälle (2 Tote) aus dem Bereich der Kernspaltung, Kernindustrie – „Manhattan-Projekt“

1950-89 5300 als Berufserkrankung anerkannte Lungenkrebserkrankungen bei der DSAG „Wismut“.

1950-90 342 zugeordnete Strahlenkrebstote als Spätschäden der Kernwaffeneinsätze in Hiroshima/Nagasaki

1986 20 direkte Strahlenopfer Tschernobyl

HEUTE: > 95% der zivilisatorisch bedingten Strahlenbelastung der gesamten Bevölkerung resultiert aus der Röntgendiagnostik

2. Historische Dokumentation von Strahlenschäden

Page 13: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0713

1920 Forderung der Ärzte nach einer gesetzlichen Regelung für

den Umgang mit Röntgenstrahlen

1940 Erste berufsgenossenschaftliche Strahlenexpositionsbegrenzung: 250 mR/Tag = Schwellwert, Toleranzdosis

1941 1. Röntgenverordnung (RöV) für den nichtmedizinischen Bereich

1950 Strahlenexpositionsbegrenzung: 300 mR/Woche

1956 Maximale Strahlenexposition für beruflich strahlenexponierte Personen Kat. A: 5 R/a 50 mSv/a

1960 1. Strahlenschutzverordnung (StrlSchV)

3. Gesetzliche Regelung zur Beschränkung der Strahlenbelastung

Lange Zeit nur Verhaltensregeln beim Umgang mit Strahlung durch nationale Berufsverbände

Page 14: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0714

1965 Neue Fassung der 1. StrlSchV 1967 (inkl. Regelung für Schulen)

Erkenntnis: Es gibt keinen Schwellwert für absolut unschädliche Strahleneinwirkung, bereits ein - Quant kann Schäden hervorrufen!

Maximal zulässige Dosis = Dosis, die toleriert werden kann, ohne größeren Schaden zu befürchten

300 SV – Konzept für die unkontrollierte Bevölke- rung, höher zulässige Dosiswerte nur bei Überwachung

1973 (RöV), erstmals auch gültig für Mediziner (mit 10jähriger Anpasszeit!)

1965 Neue StrlSchV: Grundsatz: Die Strahlenexposition ist „so gering wie möglich“ zu halten

Allgemeine Röntgenverordnung

3. Gesetzliche Regelung zur Beschrän-kung der Strahlenbelastung 2

2. Strahlenschutzverordnung

Page 15: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0715

1986 Strahlenschutzvorsorgegesetz (StrlSchVG) Gesetz

3. Gesetzliche Regelung zur Beschrän-kung der Strahlenbelastung 3

Neue Röntgenverordnung (RöV)1986(noch heute mit Änderungen gültig!)

Neue Strahlenschutzverordnung (StrlSchV)1989

Konzept der effektiven Äquivalent-Dosis nach (ICRP 1979)

1990/1991 Ausführliche ICRP-Studie (Grundsatzempfehlung Nr. 60!) zur 40-jährigen Nachuntersuchung der Kernwaffenopfer von Hiroshima und Nagasaki; neue Erkenntnisse über die Langzeitwirkung der Strahlen- exposition (nur für E, Heff > 300 mSv)

Ständige Zunahme des Alterskrebses nach einem Strahlungstrauma neue Rechenmodelle, Vorschlag zur Reduzierung/Begrenzung der „Berufslebens “ – Dosis.

Page 16: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0716

3. Gesetzliche Regelung zur Beschrän-kung der Strahlenbelastung 4

Neue Strahlenschutzverordnung (StrlSchV)2001

Viele Neuerungen/Änderungen durch Vorgaben der EU (z.B. EU-Grundnormen-Richtlinie EURATOM 96/29) Begrenzung der Lebenszeitdosis, reduzierte Jahresexpositionen, reduzierte Genehmigungsgrenzen, 5-jährige FK-Erneuerung , Be-rücksichtigung der Exposition aus natürlichen Strahlungsquellen u.a.m.

Neufassung/wesentliche Änderung der Röntgenverordnung (RöV)

Viele Neuerungen/Änderungen durch Vorgaben der EU (z.B. EU-Patienten-Richtlinie EURATOM 97/43), zum großen Teil Über-nahme der neuen Regelungen der StrlSchV von 2001 Rechtfertigungsprinzip, Genehmigungserweiterungen u.v.a.m.

2002

Page 17: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0717

Personen außerhalb des Betriebes ggf. Überwachungsbereich allg. Staatsgebiet Direkte Strahlung, Abluft, Abwasser (300 µSv-Konzept)

Praktischer Strahlenschutz=

Schutz des Menschen

Personen, die direkt mit Quellen ionisierender Strahlung beschäftigt sind. Überwachungsbereich, Kontrollbereich Sperrbereich

Schutz vor Bestrahlung von außenSchutz vor Bestrahlung von innen = Inkorporation

„Vier A-Regel“Abstand großAufenthaltszeit kleinAbschirmung dickAktivität klein

Inhalation Ingestion Haut- und Wundkontamination

Kontrolle und Überwachung

Page 18: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0718

In den „Grundlagen der Strahlenphysik“ soll erklärt werden: Ursache der Strahlung natürliche oder künstliche Radioaktivität Wechselwirkung von hochenergetischen Teilchen mit Materie ( Röntgenstrahlung, Störstrahlung u. a. m.), Welche Arten gibt es verschiedene Arten von Teilchenstrahlung, elektromagnetischer Wellenstrahlung) Welchen Gesetzmäßigkeiten unterliegt sie?

Die Wechselwirkung von Strahlung mit Materie, d. h. die Absorption der Strahlung und ihre Folgen wird in den Kap. 4-7 behandelt.

2.1 Vorbemerkungen

• Die der Strahlenphysik zugrundeliegenden physikalischen Phänomene, Gesetzmäßigkeiten und Zusammenhänge sind äußerst vielfältig und teilweise sehr kompliziert.• Im Rahmen dieser Vorlesung kann nur auf die wesentlichen physikalischen Grundlagen der Strahlenschutz-relevanten Kernphysik eingegangen werden.• Es wird deshalb trotz der angestrebten Selbstkonsistenz eventuell notwendig sein, ein etwas ausführlicheres Lehrbuch zur Hand zu nehmen.

2. Grundlagen der Strahlenphysik

Page 19: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0719

2.2 Radioaktivität

Was ist Radioaktivität?

1896 Becquerell: Uransalzkristalle senden unsichtbare Strahlung aus!

1898 Marie und Pierre Curie: Entdeckung von „Radium“ = „das Strahlende“ „Radioaktivität“ = Strahlungsaktivität = (statistische) physikalische Eigenschaft von

von bestimmten Elemente/Atomen (Kernen) sog. „Radionukliden“

1899 Rutherford: α-, β- und γ-Strahlung durch Streuversuche identifiziert

Radioaktivität ist ein physikalischer Prozess, der in bestimmten, instabilenAtomkernen stattfindet! Die Instabilität kann entweder noch von der Entstehung unseres Sonnensystems herrühren “natürliche Radioaktivität“ oderdurch zivilisatorisch bedingte Kernumwandlungsprozesse (Kernreaktor, Be-schleuniger) erzeugt werden sog. „künstliche Radioaktivität“

Page 20: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0720

Der radioaktive Zerfall ist ein physikalischer Prozess, der mit statistischer Gesetzmäßigkeit abläuft. Für die Wahrscheinlichkeit W des Zerfalls gilt:

WZerfall t

WZerfall =  ·  t

wobei die Proportionalitätskonstante, die sog. Zerfallskonstante ist. Sie ist ein Maß für die relative Häufigkeit des radioaktiven Zerfalls.

Für die Wahrscheinlichkeit, dass ein Kern nicht zerfällt, gilt dann:

1 – WZerfall = 1 – ·  t

Die Überlebenswahrscheinlichkeit eines Kerns nach n Zeitintervallen ist gegeben durch:

(1 – WZerfall) n = (1 –  · Δ t) n

Ist n  t = t die Gesamtzeit, so gilt als Grenzwert für die Wahrscheinlichkeit, dass ein Kern nicht in dieser Zeit t zerfällt:

lim (1 - ·t/n) n = e - ·t

n ∞

Die Instabilität der Kerne führt durch Aussendung von radioaktiver Strahlung zu einer Kernumwandlung, die radioaktiver Zerfall genannt wird.

Page 21: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0721

Werden N0 radioaktive Kerne betrachtet, so gilt für den

Bruchteil N(t), der nicht in der Zeit t zerfallenen Kerne:

N(t) / N0 = e– · t oder N(t) = N0 e– · t

Diese Gesetzmäßigkeit wird als Zeitgesetz des radioaktiven Zerfalls oder kurz als Zerfallsgesetz bezeichnet. = Zerfallskonstante

Ist gerade die Hälfte der Ausgangskerne zerfallen, d. h. N(t) = N0/2, so gilt:

t1/2 = TH = ln 2/ = 0,693/ TH = Halbwertszeit

Das Maß für die Radioaktivität einer Strahlungsquelle ist die sog. Aktivität A (oder Präparatstärke), das sind die Anzahl der radioaktiven

Zerfallsereignisse pro Zeiteinheit, die in der Quelle stattfinden.

Es gilt: A = – dN/dt = N

Die Aktivität wird in der Einheit Bq (Becquerel) = sec–1 gemessen.

Wann ist nur noch 1/1000 der Aktivität (Ausgangskerne) eines Nuklids vorhanden? d. h. A = N(t) = A0/1000 = N0/1000 t ≈ 10 TH (210 = 1024!)

Page 22: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0722

TH (J131) = 8 Tage

= ln 2/TH = 0,693 / 8 24 60 60 = 10–6 sec–1

N = A / = 185 106 / 10–6 = 1,85 1014 Atome

1 Gramm-Atom J131 = 131 g 6 1023 Atome

Abgabemenge J131 = 1,85 1014 131 / 6 1023 = 4 10–8 g

Rechenbeispiel: AktivitätsabgabeDas Kernforschungszentrum Karlsruhe darf gemäß Genehmigungsauflage

bei den dort stattfindenden Forschungsarbeiten maximal die Aktivitätsmenge

A = 185 MBq (5 mCi) des Jod–Isotopes 131J = J131

pro Jahr an die Umgebung abgeben. Wieviel Gramm sind das?

Das ist zwar eine sehr geringe Menge, aber mit den äußerst empfindlichen kernphysikalischen Messtechniken können Aktivitäten von wenigen

Becquerel, d. h. weniger als 10–14 g J131 noch nachgewiesen werden.

Page 23: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0723

2.3 Eigenschaften der Atomkerne

Das Atom,das aus dem kleinen, positiv geladenen Kern und der umgebenden Elektronenhülle besteht, hat einen Durchmesser von einigen 10–10 m.

Die Massen m und Ladungen q von Elektronen, Protonen und Neutronen betragen:

Elektron: qe = – 1,6 10–19 C, me = 9,109 10–31 kg

Proton: qp = + 1,6 10–19 C, mp = 1,67239 10–27 kg

Neutron: qn = 0 C mn = 1,67470 10–27 kg

Der Kern besteht aus sog. Nukleonen, er ist nur ca. 10–15 m groß. Bei den Nukleonen unterscheidet man positiv geladene Protonen und elektrisch neutrale Neutronen.

Aus dem Verhältnis der Massen von Proton und Elektron mp / me = 1836 folgt,

dass quasi die gesamte Atommasse im Kern konzentriert ist. Es hat sich als zweckmäßig herausgestellt, die Massen von Nukleonen und Atomkernen in atomaren Masseneinheiten (AME) auszudrücken.

Eine atomare Masseneinheit ist definiert durch:1 AME = 1 a.u. = 1 u = 1/12 x Masse des Kohlenstoffatoms 12C

1 u = 1,66044 10–27 kg

Page 24: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0724

Durch die Einsteinsche Äquivalenzbeziehung (Masse–Energie–Äquivalent)

E = m c2

kann die Masse m mit Hilfe der Lichtgeschwindigkeit c in Energie E ausgedrückt werden. Es entspricht:

1 AMU = 1 u = 931,478 MeV

wobei die Energieeinheit 1 MeV = 106 eV = 106  1,6  10–19 J beträgt

Page 25: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0725

Zur Beschreibung eines Atomkerns werden folgende Größen/Zahlen verwendet :

  Nukleonenzahl A, Massenzahl M:Die Gesamtzahl der Nukleonen im Kern (Protonen und Neutronen) wird Nukleonenzahl A = Z + N genannt. Da die Masse eines Protons ungefähr gleich der eines Neutrons, ungefähr eine atomare Masseneinheit u ist, wird A auch als Massenzahl M bezeichnet.

    Ordnungszahl Z: Da das Atom elektrisch neutral ist, muss die Anzahl der Protonen im Kern gleich der Anzahl der Elektronen in der Hülle sein.

Diese Zahl, die Ordnungszahl Z, bestimmt das chemische Verhalten.

Die Atomkerne/ Nuklide in Nuklide gleicher Charakterisierungszahlen einteilen:·      Isotope: Nuklide gleicher Kernladungszahl bzw. Ordnungszahl Z·      Isobare: Nuklide gleicher Massenzahl/Nukleonenzahl A = N + Z·      Isotone: Nuklide gleicher Neutronenzahl N·      Isomere: Nuklide mit gleichen A und Z, aber in unterschiedlichen Energiezuständen.

Die Beschreibung eines Atomkernes erfolgt über die Abkürzung A X, wobei X die Kurzform des chemischen Elementes ist. Z

Neutronenzahl N: Die Anzahl der Neutronen N erhält man durch N = A – Z.

Page 26: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0726

  

Z.Z. sind ca.1900 Nuklide bekannt, aber nur 274 davon sind stabil (s. Bild 2.1). Damit Nukleonen einen stabilen Atomkern bilden, muss für Z 2 die elektrostatische Abstoßung zwischen den Protonen kompensiert werden. Dies erfolgt durch die soge-nannten Kernkräfte oder starke Wechselwirkung, die zwischen den Nukleonen wirken (p  p, p  n, n  n) und eine nur sehr kurze Reichweite von 10–14 m besitzen.Im minimalen Abstand zweier Nukleonen von ca. 10–15 m ist sie allerdings ca. 100 mal so groß wie die elektrostatische Abstoßung zweier Protonen. Bei leichten Kernen sind Nuklide mit etwa gleicher Protonen– und Neutronenzahl stabil,während bei schweren Kernen die Neutronenzahl größer als die der Protonen sein muss, damit der Kern stabil ist. Verantwortlich für die Stabilität des Kerns ist die Bindungsenergie der Nukleonen ,EB.

Diese Bindungsenergie ist letztlich eine Bilanz von bindenden Kernkräften (alle Nukleonen) und abstoßenden Coulomb–Kräften (nur Protonen) unter Berücksich-tigung der Kernstruktur.Sie kann in einem einfachen Modell, das den Kern wie ein Flüssigkeitströpfchen behandelt („Tröpfchenmodell“), wie folgt dargestellt werden:

EB = EB (0) + EB (1) + EB (2) + EB (3) + EB (4)

 mit EB(0) = Volumen–Term (Kernkraft) , EB(1) = Oberflächen–Term (Kernkraft)

EB(2) = Coulombabstoßung, EB(3) = Asymmetrie–Term ( (N–Z)2)

EB(4) = Paarungs–Energie–Term

Page 27: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0727

N–Z–Diagramm der bekannten Atomkerne (Nuklide). Die Pfeile

markieren die Verschiebung der Kerne bei den verschiedenen

Zerfallsarten (s. Kap. 2.4). Der schraffierte Bereich

kennzeichnet die bisher be kannten Nuklide, Punkte

stellen stabile Atomkerne dar. Oberhalb von Z = 92 existieren

nur künstlich erzeugte Kerne

Page 28: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0728

Aus der Bilanz der Kräfte folgt unter Berücksichtigung ihrer Stärke und Reichweite, dass dieBindungsenergie je Nukleon bei kleinen Kernen mit jedem hinzukommenden Nukleon stark ansteigt.Bei großen Kernen bringt das Hinzufügen eines Protons im Nahbereich Gewinn an Bindungs-energie, bewirkt aber im Fernbereich letztlich mehr abstoßende Kräfte. Deshalb nimmt die Bindungsenergie je Nukleon des Gesamtkerns für große M oder Z leicht ab.

Die Bindungsenergie pro Nukleon beträgt, abgesehen von sehr kleinen Nukliden, EB ≈ 8 MeV und besitzt im Bereich 20  Z  40 ihr Maximum.

Kerne mit M > 250 sind nicht mehr stabil, weil ein weiteres Proton (nur bei diesem ist die sehr einfache Argumentation anschaulich verständlich) von den bereits vorhandenen ca. 100 Protonen des Kerns mehr Abstoßung erfährt, als durch die Bindungskräfte der Oberflächennukleonen, an die es angelagert würde.

Page 29: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0729

Mittlere Bindungs

energie pro Nukleon

EB/A als Funktion

der Massenzahl M

(Nuklidzahl A).

Als Beispiele sind

einige spezielle

Kerne eingetragen

Page 30: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0730

Die Bindungsenergie der Nukleonen wird gemäß der Einsteinschen Beziehung durch „Masseumwandlung“ gewonnen. Bei der Atomkernsynthese tritt also ein Massen-schwund auf, der als Massendefekt bezeichnet wird, Kerne sind deshalb leichter als die Massensumme ihrer Bestandteile (s. Beispiel).

Rechenbeispiel: Massendefekt des Kohlenstoffisotopes 12C

(p + n + e) = 6 mp + 6 mn + 6 me

= 6 1,0072852 u + 6 1,0086654 u + 6 0,0005486 u = 12,0989958 u

M = (p + n + e) – m (12C) = 12,0989958 u – 12 u

M = 0,0989958 u = 1,643766 10–28 kg

E = M c2 1,48–11 kg m2 s–2 92,3 MeV *)

EB(Kern) = E – EB (e–) **) E

EB/A = 7,69 MeV/Nukleon

*)1 kg m2 s–2 = 6,24 . 1018 eV **) EB(e–) 534 eV

Page 31: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0731

Es ist daher leicht ersichtlich, dass beim Zusammenfügen von Kernbauteilen bzw. leichten Kernen Energie gewonnen werden kann, weil die Bindungsenergie je Nukleon größer wird (es wird Masse in Energie umgewandelt = Massendefekt)

Energieerzeugung durch Fusion (Zusammenfügen) leichter Kerne Fusionsreaktor der Zukunft

Bei schweren Kernen kann durch Spaltung (Fission)Energie erzeugt werden kann, weil die Bindungsenergie je Nukleon der entstandenen

mittelgroßen Kernbruchstücke größer ist als die des Ursprungskerns!

Kernspaltungsreaktor (bereits seit 50 Jahren realisiert).

Page 32: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0732

2.4 Verschiedene Arten des radioaktiven Zerfalls

Der instabile Kern des Ausgangsnuklids (Mutternuklid mit A, N, Z) zerfällt unter Aussendung unterschiedlicher Strahlung in den Kern des Zwischen– oder Endnuklids (Tochternuklid mit A *, N *, Z *).Mit den verschiedenen Strahlungsarten sind charakteristische Übergänge im N, Z, A – Diagramm verbunden.

Übersicht über die verschiedenen Arten des radioaktiven Zerfalls

Es wird zwischen langsamen Zerfällen TH  10–7 s ... 1011 a und schnellen

Zerfällen TH  10–12 ... 10–7 s unterschieden. Langsame Zerfälle erfolgen

i. d. R. über die Emission geladener Teilchen.

Page 33: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0733

–Zerfall, isomere Kerne

Das End– bzw. Zwischennuklid liegt nach erfolgter Teilchenemission (langsamer Zerfall) gewöhnlich nicht im Grundzustand vor. Normalerweise entsteht ein Nuklid im angeregten Zustand. Dieser angeregte Zustand des End– bzw. Zwischennuklids geht i. d. R. in schnellen Übergängen unter Aussendung von –Strahlung in den Grundzustand des End– bzw. Zwischennuklids über (schneller –Zerfall). Der Zerfallsprozess ist beendet, wenn entweder direkt oder über verschiedene Zwischenkerne und Anregungszustände ein stabiler Endkern im Grundzustand entstanden ist.

Isomere Kerne sind (durch vorangehenden langsamen Zerfall entste-hende) metastabile „quasiangeregte“ Kernzustände mit TH  10–7 s.

Diese Kerne sind aber nicht einfach angeregte Zustände, sondern unterscheiden sich bei gleicher Nukleonenzahl (= isomer) durch eine unterschiedliche Nukleonenkonfiguration vom stabilen Grundzu-stand. Diese Nukleonenkonfiguration entspricht einem metastabilen Zustand höherer Energie (Instabilität), dessen Umordnung Zeit erfor-dert (metastabil!) und der schließlich durch –Emission (sog. langsamer/verzögerter –Zerfall) in den (stabilen) Endzustand aufgehoben wird. wichtiges Beispiel: Tc 99m (TH = 6h)

Page 34: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0734

––Zerfall von Kernen mit Neutronen–Überschuss

Bei Kernen mit Neutronen (n)–Überschuss wird praktisch ein Neutron des Mutternuklids in ein Proton und ein Elektron umgewandelt, wobei aus Erhaltungsgründen (der Leptonen-zahl) neben dem Elektron ein weiteres Teilchen, das Antineutrino, emittiert wird. –Zerfälle werden durch die sog. schwache Wechselwirkung verursacht.

––Zerfall = ––Strahlung hat eine kontinuierliche Energieverteilung

n p +e– + e

KZA KZ + 1

A +e– + e

J53131 Xe54

131 +e– + e

Page 35: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0735

- In der Nuklidkarte„ rot“

Page 36: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0736

+–Zerfall oder Elektroneneinfang von Kernen mit Neutronen–Defizit oder Protonen-Überschuss

p + (1MeV) n + e+ + e

p + e– n + e

Kerne mit Neutronen–(n–)Defizit bzw. Protonen–(p–)Über-schuss können ihre dadurch bedingte Instabilität durch eine p  n–Umwandlung aufheben. Wegen der größeren Masse (Ruheenergie) des Neutrons ist diese Umwandlung jedoch nur möglich, wenn der Kern über einen Energieüberschuss (geeignete energetische Verhältnisse bzw. Kernstruktur) von ca. 1 MeV verfügt ( +–Zerfall) oder sich ein Elektron der Hülle (meist aus der innersten sog. „K–Schale“) einfängt (K–Einfang oder EC = electron capture).

Page 37: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0737

Beim +–Zerfall wird ein sog. Positron (positiv geladenes Anti–Teilchen zum Elektron) und ein Neutrino emittiert. Die Energiebilanz beim +–Zer-fall ist ähnlich wie beim ––Zerfall, auch hier kann die bei der Umwandlung freiwerdende Energie EB auf das +–Teilchen und das Neutrino verteilt

werden. Für den Strahlenschutz ist das Neutrino wieder ohne Bedeutung, das Positron weist gegenüber dem Elektron jedoch eine für den Strahlen-schutz wichtige Eigenschaft auf. Trifft das Positron auf Materie, reagiertes als sog. Antimaterieteilchen sofort mit einem Elektron.

Positron und Elektron vernichten sich gegenseitig unter Aussendung sog.Vernichtungsstrahlung. Das heißt, das Masseäquivalent beider Teilchen und ihre eventuell vorhandene kinetische Energie wird in zwei (aus Impuls-erhaltungsgründen) –Quanten umgewandelt. Diese –Vernichtungsstrah lung ist sehr hart, da ihre Mindestenergie (bei Ekin(

+) = 0) bereits 0,511 MeV

beträgt. Sie ist sehr durchdringend und muss für den Strahlenschutz berück-sichtigt werden.

Page 38: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0738

Verfügt der Mutterkern nicht über die ausreichende Energie, um den p–Überschuss durch +–Strahlung abzubauen, kann der Kern sich durch sog. Elektroneneinfang stabilisieren. Dabei werden Elektronen der niedrigsten Energiezustände (innersten „Schalen“, meist K–Schale  K–Einfang) eingefangen. Aus Teilchen– und Energie erhaltungsgründen muss dabei ein Neutrino emittiert werden, das die freiwerdende Energie übernimmt. Führt der Elektroneneinfang zu einem Tochternuklid im Grund zustand, ist für den Strahlenschutz nur die charakteristische Röntgenstrahlung relevant, die dadurch entsteht, dass Elektronenübergänge in der Elektronenhülle erfolgen, bei denen freiwerdende, innere Elektronenzustände wieder besetzt werden (meist in sog. Kaskaden).

+–Zerfall und EC finden oft als sog. Konkurrenzprozesse statt (s. Prozentangaben hinter dem jeweiligen Prozess). Bei Kernen mit großer Ordnungszahl überwiegt EC, während bei kleinem Z sowohl EC als auch +–Emission stattfindet.

Page 39: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0739

Na1122

2,62 a

+ 100%Ne10

22 + e+ +

Fe2655

2,6 a

EC 100%Mn25

55 +

Be47

53,4 d

+ 11% , EC 79%Li3

7 + e+ +

Beispiele für reinen bzw. gemischten +–Zerfall und EC sind:

Page 40: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0740

+, EC

In der Nuklidkarte„ blau“

Page 41: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0741

Energieverteilungen der emittierten -Teilchen beim - und +–Zerfall :

Page 42: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0742

–Zerfall schwerer Kerne

In der hohen Stabilität der (2p + 2n)–Konfiguration, die z. B. zu –artiger Clusterung von Nukleonen in Kernen führt, liegt die Ursache für den –Zerfall. Für schwere Kerne A  150 ist es nach dem Tröpfchenmodell energetisch günstiger, ein –Teil-chen abzustoßen, als die Nukleonen im Kern zu behalten. Zwar ist für A  150 die mittlere Bindungsenergie pro Nukleon immer noch deutlich größer als 7,1 MeV/Nu-kleon aber die an der Kernoberfläche liegenden Nukleonen sind schwächer gebunden

KZA K1

Z – 2A – 4

+ He24

z. B. U92238

4,5 108 a

Th90

234 +

Bei schweren Kernen wird die Emission von sog. Alpha–Teilchen beobachtet, die aus zwei Protonen und zwei Neutronen bestehen. Diese Nukleonenkonfiguration, die dem Kern des 4He–Atoms ent-spricht, ist besonders stabil (EB = 28,4 MeV; 7,1 MeV/Nukleon).

Page 43: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0743

Die –Emission ein Paradebeispiel für den quantenmechanischen Tunnel-effekt (Theorie von Gamov). Je höher die –Teilchen–Energie ist, um so geringer ist die Halbwertszeit des –Strahlers (Geiger-Nutallsche Regel)

Energiebilanz des –Zerfalls:

EB KZA = EB KZ – 2

A – 4 + EB He24 + Ekin

Aus der Energiebilanzgleichung des –Zerfalls ergibt sich, dass –Teil chen ein diskretes Energiespektrum besitzen müssen, die gesamte Über schussenergie EB wird i. d. R. auf das –Teilchen übertragen

Po84212

0,3 sPb82

208 + +8,78 MeV

Nd60144

2,1 1015 a

Ce58140 + +1,83 MeVBeispiele:

–Strahler mit mittleren TH haben Energien 4 MeV < E < 7 MeV

Page 44: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0744

In der Nuklidkarte„ gelb“

Page 45: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0745

Kernspaltung

8 1015 a

sfK1 M 100 + K2 M 140 + 3n 25 sf–Prozesse pro g und h

Pu94238

86 a

U92

234 +

5 1010 a

sfK1 + K2 + 3n

Md101256

1n

sfK1 + K2 + 3n

Neben den bisher beschriebenen „klassischen“ Zerfallsarten besteht für schwere Kerne die Möglichkeit, sich spontan zu spalten (engl.: spontanious fission, sf). Die Ursache für diese Spaltung liegt im Bindungsenergiegewinn, der gemäß EB = f(M)

bei der Spaltung eines schweren Kernes in zwei Teilkerne anfällt. Theoretisch besteht ab ca. M = 100 die Möglichkeit der Spaltung mit Energiegewinn, praktisch wird sie erst ab M = 230 beobachtet. Spontane Kernspaltung stellt für einen instabilen Kern eineMöglichkeit dar, sich zu stabilisieren. Sie tritt daher neben anderen Zerfallsarten auf und wird für sehr schwere Kerne (Z  98) dominant.

Page 46: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0746

2.5 Kernreaktionen, Nuklidkarte, Isotopentabelle

Strahlungsaktivität kann entweder auf natürliche oder sog. künstliche Radioaktivität zurückgeführt werden. Künstliche Radioaktivität bedeutet die Erzeugung instabiler Kerne durch sog. Kernreaktionen.

Kernreaktionen werden in folgender Weise angegeben:

Targetkern (Beschussteilchen, emittiertes Reaktionsteilchen) Endkern

Die Reaktion 19F(, p) 22Ne bedeutet, dass beim Beschuss von F–19 mit –Teilchen Ne–22 entsteht und Protonen emittiert werden.

Die für die praktische Arbeit benötigten detaillierten Informationen über Radionuklide können gezielt aus der Nuklidkarte bzw. aus den sog. Isotopentabellen entnommen werden.

Page 47: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0747

K 40 0,0118

1,27 109a

- 1,3

, + . . .

1,46 70

Die Nuklidkarte (z. B. des Kernforschungszentrums Karlsruhe) enthält in einem relativ kompakten Karten-diagramm alle bekannten stabilen (schwarz markiert)und radioaktiven Isotope. Die Kästchen enthalten: das Isotop die Isotopenhäufigkeit (in %); die Halbwertszeit; die Art des Zerfalls (farbige Unterlegung der Kästchen) die Art der emittierten Strahlung; den Wirkungsquerschnitt für thermische Neutronen die häufigsten (maximalen) –, –, –Energien

Folgende Nuklide werden unterschieden:

• Primordiale Radionuklide • Kosmogene Radionuklide• Medizinische Radionuklide • Nuklide für die Kernmesstechnik • Abfallnuklide der Kernenergietechnik

Page 48: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0748

Darstellung der Kernübergänge, die mit den verschiedenen Zerfallsarten im N, Z, A – Diagramm verbunden sind

Page 49: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0749

Die Isotopen–Tabellen enthalten das genaue Termschema des Zerfalls mit allen möglichen –, –, –, EC–, IC–Übergängen und den zugehörigen Energien; die relativen Häufigkeiten (Übergangswahrscheinlichkeiten) bei Parallelprozessen (Aufspaltung EC und + u. a. m.).

Page 50: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0750

Page 51: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0751

Page 52: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0752

2.6 Röntgenstrahlung

Ionisierende Strahlung entsteht entweder, wie in den vorangehenden Ab-schnitten geschildert, durch die verschiedenen Arten von Radioaktivität oder wird gezielt (Röntgenstrahl–, Beschleunigerquellen) bzw. ungewollt (Störstrahler) in Anlagen mit beschleunigten Ladungen bis hin zu super-heißen Plasmen (Sternen) erzeugt.

Die Röntgenstrahlung wurde 1895 durch Röntgen bei Arbeiten über Eigen-schaften von Kathodenstrahlen entdeckt und X–Strahlen (heute noch engl.: X–ray) genannt. Erst 1912 wurde von v. Laue, Friedrich und Knipping durch Beugung der Strahlen an Kristallen nachgewiesen, dass es sich bei der Röntgenstrahlung um elektromagnetische Wellen handelt.

Eigenschaften und Wirkung der Röntgenstrahlen sind identisch mit denen von –Strah-lung gleicher Energie, beide Strahlungsarten unterscheiden sich nur durch ihren Ur-sprung. Während Röntgenstrahlung bei Übergängen der Hüllen–Elektronen des Atoms (charakteristische Röntgenstrahlung) oder durch unelastische Wechselwirkung gelade-ner Teilchen mit dem Coulombfeld der Kerne (Bremsstrahlung) ausgesendet wird, ent-steht –Strahlung bei Übergängen zwischen verschiedenen Kernzuständen.

Page 53: TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth (Dr. Bernd Schröder) Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/07 1 Fachkunde

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN Dr. Hans-Jochen Foth(Dr. Bernd Schröder)

Fachkunde im Strahlenschutz, Vorlesung + Praktikum, WS 2006/0753