technology education and non-scientific technological knowledge

39
Technology Education and Non-Scientific Technological Knowledge PER NORSTRÖM Licentiate Thesis Stockholm, Sweden 2011

Upload: buiduong

Post on 03-Jan-2017

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Technology Education and Non-Scientific Technological Knowledge

Technology Education and Non-Scientific

Technological Knowledge

PER NORSTRÖM

Licentiate ThesisStockholm, Sweden 2011

Page 2: Technology Education and Non-Scientific Technological Knowledge

This licentiate thesis consists of an introduction, a summary in Swedish, and the fol-lowing papers:

I Norström, P. Technological Know-How From Rules of Thumb. Forthcoming inTechné: Research in Philosophy and Technology. (Published here with kind per-mission.)

II Norström, P. Engineers’ Non-Scientific Technological Knowledge in Technology Ed-ucation. Forthcoming in International Journal of Technology and Design Education.(Published here with kind permission.)

Department of Philosophy and the History of TechnologyKTH School of Architecture and the Built EnvironmentSE-100 44 StockholmSweden

Typeset with LATEX by the author. Written in Emacs.Printed by E-print, Stockholm.

ISBN 978-91-7501-143-1ISSN 1650-8831

© Per Norström, 2011

Page 3: Technology Education and Non-Scientific Technological Knowledge

iii

Abstract

This thesis consists of two essays and an introduction. The main theme is technologicalknowledge that is not based on the natural sciences.

The first essay is about rules of thumb, which are simple instructions, used to guideactions toward a specific result, without need of advanced knowledge. Knowing adequaterules of thumb is a common form of technological knowledge. It differs both from science-based and intuitive (or tacit) technological knowledge, although it may have its originin experience, scientific knowledge, trial and error, or a combination thereof. One of themajor advantages of rules of thumb is the ease with which they can be learned. Oneof their major disadvantages is that they cannot easily be adjusted to new situations orconditions.

Engineers commonly use rules, theories and models that lack scientific justification.How to include these in introductory technology education is the theme of the secondessay. Examples include rules of thumb based on experience, but also models based onobsolete science or folk theories. Centrifugal forces, heat and cold as substances, and suck-ing vacuum all belong to the latter group. These models contradict scientific knowledge,but are useful for prediction in limited contexts where they are used when found conve-nient. The role of this kind of models in technology education is the theme of the secondessay. Engineers’ work is a common prototype for the pupils’ work with product develop-ment and systematic problem solving during technology lessons. Therefore pupils shouldbe allowed to use the engineers’ non-scientific models when doing design work in schooltechnology. The acceptance of these could be experienced as contradictory by the pupils:a model that is allowed, or even encouraged in technology class is considered wrong whendoing science. To account for this, different epistemological frameworks must be used inscience and technology education. Technology is first and foremost about usefulness, notabout the truth or even generally applicable laws. This could cause pedagogical problems,but also provide useful examples to explain the limitations of models, the relation betweenmodel and reality, and the differences between science and technology.

Keywords: rule of thumb, technical knowledge, technological knowledge, technology educa-

tion, epistemology of technology, design process, modelling

Page 4: Technology Education and Non-Scientific Technological Knowledge
Page 5: Technology Education and Non-Scientific Technological Knowledge

Acknowledgements

First and foremost I wish to thank my supervisor professor Sven Ove Hansson, andmy assistant supervisors Dr. Per Sandin and professor Inga-Britt Skogh. Thanksalso to the colleagues at the department of philosophy at the Royal Institute ofTechnology (KTH) and in the TUFF (Teknikutbildning för framtiden – Technologyeducation for the future) graduate school.

My work has been funded by the Swedish government and the city of Stock-holm (i.e. the taxpayers) through Lärarlyftet (‘Boost for teachers’), a programmefor teachers’ continuing professional development. Their support is gratefully ac-knowledged.

v

Page 6: Technology Education and Non-Scientific Technological Knowledge

Contents

Acknowledgements v

Contents vi

1 Introduction 11.1 Philosophy of technology . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Technological knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Technology education in compulsory school . . . . . . . . . . . . . . 91.4 Overview of the papers . . . . . . . . . . . . . . . . . . . . . . . . . . 131.5 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Sammanfattning (Summary in Swedish) 212.1 Inledning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2 Teknik och naturvetenskap . . . . . . . . . . . . . . . . . . . . . . . 222.3 Skolans teknikämnen . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.4 Ingående artiklar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.5 Diskussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.6 Litteraturförteckning . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Papers 33

I Technological Know-How From Rules of Thumb 351 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Rules of thumb, knowing how, and knowing that . . . . . . . . . . . 374 Technological knowledge and rules of thumb . . . . . . . . . . . . . . 405 The origins and justification of rules of thumb . . . . . . . . . . . . . 416 Context dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Usefulness in engineering . . . . . . . . . . . . . . . . . . . . . . . . . 448 Dependence on creation procedures . . . . . . . . . . . . . . . . . . . 46

vi

Page 7: Technology Education and Non-Scientific Technological Knowledge

vii

9 Communicability and language dependence . . . . . . . . . . . . . . 4710 Teaching and learning . . . . . . . . . . . . . . . . . . . . . . . . . . 4711 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4912 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II Engineers’ Non-Scientific Knowledge in Technology Education 531 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Explanation and prediction . . . . . . . . . . . . . . . . . . . . . . . 554 Engineering and technological knowledge . . . . . . . . . . . . . . . . 575 Truth and usefulness . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 Science and school science . . . . . . . . . . . . . . . . . . . . . . . . 617 Technology in science education . . . . . . . . . . . . . . . . . . . . . 628 Technology and school technology . . . . . . . . . . . . . . . . . . . 639 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6410 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Page 8: Technology Education and Non-Scientific Technological Knowledge
Page 9: Technology Education and Non-Scientific Technological Knowledge

Chapter 1

Introduction

The aim of this thesis is to contribute to the epistemology of technology and itsuse in technology education. This introduction gives a brief overview of technologyeducation studies and an introduction to the philosophical study of technologicalknowledge. It is followed by two articles: Technological know-how from rules of

thumb, which describes the epistemic characteristics of rules of thumb used in tech-nological work, and Engineers’ non-scientific knowledge in technology education, inwhich problems and advantages of including non-scientific technological knowledgein technology education is discussed.

While the natural sciences are modern inventions, technology has existed at leastsince the dawn of mankind. Levers, fire, and fermentation were used technically,that is to produce particular results, long before there was anything reminiscent ofscientific theories explaining the phenomena that the technology produced. In spiteof its age and obvious usefulness, philosophers have payed little attention to techno-logical knowledge that is based on experience, justified through repeated successfulapplication, and clearly action-oriented. General epistemology and philosophy ofscience are well established areas of philosophical research. The philosophy of tech-nology in general, and the epistemology of technology in particular, are not. Duringthe last decade, the philosophical interest in technology has increased, but it is stilla small field (see for example Meijers, 2009a, pp. 8ff). The science-like or sciencebased theories of modern engineering have to some extent been covered in the gen-eral philosophy of science. The tacit knowledge of craftsmen and other professionalshas also been examined by philosophers. Other kinds of technological knowledge,such as standardised procedures, rules of thumb, and knowledge of standard com-ponents and mechanisms, have to a large extent been overlooked, even though theyare important for craftsmen, engineers, and technicians alike.

How technology and technological knowledge are defined and described is im-portant for technology education, as it affects what is to be taught as well as how toevaluate what has been learnt. Technology, in the form of crafts or industrial arts,has been a compulsory subject in primary school in many countries since the 19th or

1

Page 10: Technology Education and Non-Scientific Technological Knowledge

2 CHAPTER 1. INTRODUCTION

early 20th century. Since the 1980’s, those subjects have gradually been replaced orsupplemented with more modern technology subjects, focusing on design processes,general problem solving abilities and the history and sociology of technology. Theintroduction of these new subjects, and attempts to fit them into curricula full ofsubjects with established contents and strong support from academia, has led tosome new research concerning the teaching and learning of technology. In this re-search, findings from the epistemology of technology have only been used to a verylimited extent. And, for the most part, the philosophers studying the epistemologyof technology do not seem very interested in the findings from technology educationstudies. For me, writing from the perspective of an engineer-turned-teacher-turned-philosopher, this seems both strange and unfortunate. Even though philosophersand educational scientists approach the technological knowledge from different an-gles, there are common areas of interest: how to demarcate technological knowledgefrom other types of knowledge, how to regard concepts such as truth, usefulness,and justification in the technological domain, et cetera.

1.1 Philosophy of technology

Mitcham (1994) divides the philosophy of technology into two major parts: human-

ities philosophy of technology and engineering philosophy of technology. Humanitiesphilosophy of technology is philosophy about technology, often in the form of ethicsor political philosophy concerning technology related problems and phenomena.Many works in the cultural philosophy of technology depend heavily on examplesfrom the history and sociology of technology, and many of the philosophers activein the field started out in history, sociology or political science. Engineering phi-losophy of technology has an insider’s view of technology. Technology itself is thefocal point, not its relationships with the surrounding society. Questions commonlydiscussed in the engineering philosophy of technology concern for example the on-tology of technological artefacts and technological functions, the epistemology oftechnology, and modelling in the engineering sciences.

This thesis belongs to the engineering philosophy of technology domain. Rulesof thumb are studied from the perspective of their usefulness in various kinds oftechnological work. The role of non-scientific technological knowledge in technologyeducation is also studied from a technological point of view; its roles in technologicalwork are the main interest, not its influence or status in society at large.

Attempts at defining “technology”

There have been numerous attempts to define technology. Lindqvist (1987, p. 11),a Swedish historian of technology, compiled a list of the eight most common defi-nitions that he had come by (my translation from Swedish):

1. Technology is the use of machines, implements and tools.

2. Technology is applied science.

Page 11: Technology Education and Non-Scientific Technological Knowledge

1.1. PHILOSOPHY OF TECHNOLOGY 3

3. Technology is man’s ways to control nature.

4. Technology is man’s ways to control the physical environment.

5. Technology is man’s methods to fulfil his needs through the use of physicalobjects.

6. Technology is the methods used to treat raw materials to increase their use-fulness.

7. Technology is man’s methods to fulfil his wishes through the use of physicalobjects.

8. Technology is all rational and efficient activities.

All these examples mention characteristics commonly attributed to technology.Some of them are obviously too limited; for example number two, as technologyexisted long before the sciences, and numbers three and four, as technology is usedto manipulate artificial environments, some of which are simulated or in other waysnon-physical. Many other computer related inventions, such as programs and al-gorithms, are also examples of technology that is not necessarily physical. Numbereight encompasses too much. It is rational and efficient to chew food before swal-lowing it, but very few would consider it a technological act.

What is obvious from the examples above is that technology is directed towardsaction, and that it depends on the intentions of the agent who uses or createsit. Based on examples of how the word has actually been used, Mitcham (1994,pp. 159ff) made a fourfold description of it: technology as object, knowledge, ac-

tivity, and volition. Technology as object includes the artefacts that are used intechnological activities as well as those that are the results. Technological objectscan be concrete (tools, buildings, computer hardware, . . . ) or abstract (rules, pro-cedures, algorithms, . . . ). The technology as knowledge category is made up of theknowledge and skills used to create, operate, describe, maintain, adjust, and explainthe technological objects. Technology as activity is the performance of the activi-ties made possible through the knowledge. Knowing how to weld is an example oftechnology as knowledge; to do the actual welding is an example of technology asactivity. The fourth and final category, technology as volition is probably furthestfrom the everyday use of the term. It is the intentions or will that motivate thetechnological activities.

Mitcham’s (1994) fourfold characterisation of technology has a wide area ofapplication, and is used throughout this thesis. One of technology’s distinguishingcharacteristics is its orientation towards action aiming at a particular outcome(technology as volition), which does have epistemological implications: To practicetechnology is to act, technological knowledge is technological insofar that it enablesthese actions; the action is successful if it results in artefacts that are useful for theintended purposes. Engineering and crafts are parts of the technological domain.So are many domestic activities such as cooking and weaving, as they transformraw materials into artefacts with certain characteristics.

Page 12: Technology Education and Non-Scientific Technological Knowledge

4 CHAPTER 1. INTRODUCTION

1.2 Technological knowledge

Technological knowledge is that which enables technological activity, such as the useor creation of technological artefacts. The knowledge is of many different kinds.There are essential differences between the science-based knowledge used in ad-vanced solid mechanics and the skills of the blacksmith, even though both aretechnological and both are about metals. The engineer’s knowledge is described inmathematical terms and suitable to be described in writing. By watching a piece ofmetal and feel its change in ductility and elasticity as the temperature varies, theblacksmith knows when the moment is right to start shaping it, but he may be un-able to verbally describe the process. He has learnt it mainly from practice, and hisknowledge is not suited to be described in written form. The engineer’s knowledgeof applied science and the blacksmith’s tacit knowledge are both oriented towardsthe creation of technological artefacts, but they have different origins, different ar-eas of application, and are justified in different ways. Their orientation towardsaction and creation makes them both technological.

During the last decades, there have been several attempts to create all-encom-passing taxonomies or other types of classification systems for technological knowl-edge. The most important one in terms of citation is probably that by Vincenti(1990, pp. 208ff). He divides engineering design knowledge into six categories, rang-ing from rules of thumb and branch traditions to mathematical methods based onscience. Vincenti’s taxonomy does have benefits, but also flaws and drawbacks. Itis easy to use when studying many different types of engineering activities, andclearly shows the huge variations within the technological knowledge domain. Un-fortunately, it is often easy to find examples of knowledge that fit into more thanone category, as well as examples that do not fit into any of them, or pieces of knowl-edge that move from one category to another if they are written down – branchspecific traditions belong to the Fundamental design concepts category, but if theyare made explicit they turn into Criteria and specifications even though their con-tents are still the same. Another flaw or disturbing characteristic is that differentcategories are defined in different ways; some are categorized by their creation andjustification method, while other are defined by their areas of application. Theseflaws are typical of knowledge classification schemes, and several other taxonomiesof technological knowledge have similar problems.

The taxonomy presented by Ropohl (1997) is another typical example. It recog-nizes five different types of technological knowledge: socio-technical understanding,

technological laws, structural rules, functional rules, and technical know-how. Muchof what could be referred to as technological knowledge fits into these categories,but not all. For example, knowledge about which standard components that arereadily available on the open market is very useful in many technological activities,but cannot be squeezed into Ropohl’s categories. It also suffers from the commonproblem with different definition methods for different characteristics. The tech-

nological laws are characterized by their justification methods, while the rest arecharacterized by their areas of application. In spite of these drawbacks, Ropohl’s

Page 13: Technology Education and Non-Scientific Technological Knowledge

1.2. TECHNOLOGICAL KNOWLEDGE 5

categorization is often useful. The categories are easy to understand and the in-clusion of the socio-technical understanding makes it fit for studies of technologyeducation, which tends to include the “making” parts of technology as well as thestudy of its relations to society.

Other taxonomies of technological knowledge include the ones by de Vries (2003)and Hansson (2011). The taxonomy presented in de Vries’ article is based on anattempt to apply Vincenti’s categories to a different area of technology, namely themanufacture of semiconductor devices. He found that knowledge gained throughtrial-and-error and experience played important roles there as well. To completeand refine Vincenti’s categories, de Vries suggests modified ones that better complywith other areas of the philosophy of technology: functional nature knowledge andphysical nature knowledge, that refer to the dual nature of technical artefacts (forexample de Vries, 2005b, pp. 18f; Kroes and Meijers, 2006), and action knowledge,that refers to studies of artefacts from an action theory perspective. Hansson (2011)presents a simple typology for technological knowledge, explicitly stated to be use-ful when studying technology education. He identifies four different categories oftechnological knowledge: tacit knowledge, practical rule knowledge, applied natu-

ral science, and technological science. The first two compare roughly to Ropohl’s(1997) categories of technical know-how and functional rules. What Ropohl callstechnological laws, Hansson has divided into two categories depending on their ori-gins. Applied natural science is based on science. Technological science has beendeveloped and justified using experiments and systematic testing, yet without beingbased on the natural sciences (see also Hansson, 2007). One of the advantages ofclassifying this as a category of its own is to stress that even advanced technologicalknowledge, formulated in a scientific language and using mathematics, need not befounded on the natural sciences.

Houkes (2009) provides an overview of the philosophical study of technologicalknowledge. He includes a comparison of important characteristics of four differ-ent taxonomies for technological knowledge, among them de Vries (2003), Ropohl(1997), and Vincenti (1990). The available classification systems for technologicalknowledge have emphases on the engineers, craftsmen, and/or inventors. Those whodo not create, but adjust, maintain, and/or control the technological objects alsopossess technological knowledge, but their varieties are for the most part ignoredin the above-mentioned taxonomies. The skilled machine operator or laboratorytechnician, with important and qualified knowledge of particular apparatuses andmeasuring instruments, are absent. The reason for this is in all likelihood not thattheir knowledge is less qualified (see for example Hills 1989, p. 6 and Latour andWoolgar 1986, pp. 66f, for descriptions of professional duties of these kinds), butan arbitrary choice made by philosophers when designing their taxonomies.

Knowing how and knowing that

Ryle (1949) made a famous division of knowledge into knowing that and knowing

how. Knowing that is basically propositional, while knowing how is about knowing

Page 14: Technology Education and Non-Scientific Technological Knowledge

6 CHAPTER 1. INTRODUCTION

how to do something. Knowing how is justified through experience, knowing thatmay be justified in other ways, for example through literature. It is possible toknow how to different degrees, like being a bad or a good cyclist, or a bad or a goodpainter. According to Ryle, this is in stark contrast to knowing that. Ryle showsthis by referring to an example: you cannot know whether Sussex is an Englishcounty or not to different degrees, either you know it or you do not (Ryle, 1949,p. 59). In the technological knowledge domains, this division is awkward. There aretypes of technological knowledge that shun Ryle’s classification system, for examplewritten rules of thumb or standard procedures for technological activities. Rulesthat describe how to reach a particular result, for example how to adjust somethingor how to operate some machinery, are carriers of know-how in the form of knowingthat. If you know that following the rules make you know how to perform theaction, the border between the two knowledge types is unclear and in practiceoften impossible to draw. Technological knowledge is in essence action oriented,which makes the division into knowing how and knowing that difficult: knowingthat in the technology domain is supposed to guide action, just as knowing how.

Prescriptive knowledge

A large section of the technologists’ professional knowledge is prescriptive; it reg-ulates how the work should be done. Some of these prescriptions are demandedby laws, insurance policies, and other types of official rules and regulations, forexample an overhead electrical wire has to be placed at a minimum height of 4.5metres for voltages lower than 1000V (Elsäkerhetsverket, 2008, p. 7), or that lightsthat indicate emergency evacuation should be red (Arbetsmiljöverket, 2008, p. 9).Others are not regulated in official documents, but by tradition and habit. Exam-ples of the latter include the placement of buttons on telephones and calculatorsor that the cold water tap is placed to the right and the hot water one to theleft (in Sweden anyway). These rules are often not explicitly stated, neverthelessdeviations from them can render an artefact useless in a certain context. Theseexamples show that technological activities depend on the environment where theytake place, and where the artefacts they produce should be used. This is anotherproof that technology is more than applied science – the regulatory traditions andrules are required for the successful creation of artefacts and therefore part of thetechnological knowledge domain. They can however not be derived from scientificknowledge.

Explanation and prediction

An explanation is some kind of description, intended to increase the understandingof how something is related to something else. In the sciences, a typical explanationshows how some phenomenon brings something else about, using established lawsof science. Hempel’s model of deductive nomological explanations (also known asthe covering law of explanation) states that a scientific explanation is based on

Page 15: Technology Education and Non-Scientific Technological Knowledge

1.2. TECHNOLOGICAL KNOWLEDGE 7

an explanans that is basically a description of a situation that includes one ormore natural laws (Hempel and Oppenheim, 1948; von Wright, 1971, pp. 11ff). Toqualify as a deductive nomological explanation, the explanandum must be logicallydeductible from the explanans. This type of explanation is not very common, andof limited use in technology. The main reasons for this are the users’ and creators’intentions that play a major role in technology. What the results of manipulatingartefacts are, depend not only on scientific laws, but also on the intentions of theagent doing the manipulation. By using scientific explanations it is possible toconclude that a particular force applied to the handle of a claw-hammer will causea stronger force to affect a nail. That this could be the first step towards theconstruction of a sauna cannot be derived scientifically, but in order to explain thecarpenter’s behaviour this is an important piece of information.

There have been some fundamental attempts to analyse the roles of users’ andcreators’ intentions and knowledge in technological explanations (for example deRidder, 2007; Houkes, 2006; Pitt, 2009) but there is still more to be done. Thislack of philosophical theory is a serious drawback for technology education studies.Knowing what constitutes a good explanation in technology is important for thechoice of teaching methods as well as for the assessment of pupils’ knowledge.

In technological practice, prediction is generally more important than explana-tion. It is often enough to be able to predict how a certain component will behavein a certain context; the laws of nature that bring this about matter very little tothe practician. Explanations could be useful when refining processes and improv-ing artefacts, but for everyday work the ability to predict is sufficient. This can beshown through many historical examples. Medieval metallurgists could predict thatsteel would become harder if heated until red-hot and then quenched in water oroil. They could not explain how this happened, as this demands an understandingof the crystalline structure of the steel; information that would not be available un-til several hundred years later. Their predictive ability was nevertheless sufficientto produce hard and firm steel. In science, the situation is quite different. Theproduct of scientific work is knowledge, and explanations are necessary to showhow different pieces of scientific knowledge support each other.

Non-scientific technological knowledge and its justification

As technology is much older than the sciences, at least some technological knowl-edge must be able to exist without scientific justification. Even today, and even intechnologically advanced professions such as among computer programmers, labora-tory technicians, and electronics engineers, a significant amount of their professionalknowledge is not based on science. The laboratory technician might know that acertain instrument does not give reliable results at high temperatures, even thoughthe data sheet says otherwise. Many computer programmers know that the wellknown sorting algorithm quick sort is more efficient than the equally well knownshell sort for large collections of data, but that the opposite is true for small sets. Itis possible to prove this mathematically, but it is perfectly possible to use the algo-

Page 16: Technology Education and Non-Scientific Technological Knowledge

8 CHAPTER 1. INTRODUCTION

rithms efficiently without knowing or understanding this proof. These are examplesof technological knowledge – knowledge that enables or improves technological abil-ities – that are justified by experience, rather than by science. Some of it, like themeasuring instrument that does not comply with its data sheet, could be justifiedusing established scientific methods. Other kinds of technological knowledge can-not, for example those based on standards and conventions. The insulation of theearth wire should be striped in yellow and green according to electrical installationstandards. An icon depicting a stylized 3.5" disk is commonly used to symbolise thesave command in graphical user interfaces (even though nobody uses that kind ofdisks anymore). These are highly useful pieces of technological knowledge for elec-tricians and computer users respectively; they are conventions that are generallyagreed upon, and cannot possibly be justified using the natural sciences.

Among the non-scientific technological knowledge it is the so-called tacit knowl-edge that has got the most attention. The concept was popularised by Polanyi, achemist turned philosopher who used it to describe knowledge (or skills) that aredifficult or impossible to verbalise. A common example is that of riding a bicycle.To describe how you actually behave to retain the balance on two wheels is muchmore difficult than doing it. To learn how to ride a bicycle from written or oralinstructions is impossible; it must be learnt by experience. The situation is similarin many crafts and also in professions that are seen as highly theoretical and sciencebased. The experienced doctor can often make a correct diagnosis within his area ofexpertise without doing a full examination. Knowledge like this can only be learntthrough experience (Nightingale, 2009, pp. 353ff).

While there is an extensive literature on tacit knowledge, other types of non-scientific, experience based knowledge are little discussed. This includes varioustypes of rule-based knowledge as well as knowledge of standard solutions and pro-cedures. These can typically be described in writing and they are thereby easy totransfer from one person to another. They may have their origin in trial-and-errorprocedures, experience or scientific knowledge. Often, the rules themselves do notdisclose their origins. They are ultimately justified through repeated successfuluse. This experience-based knowledge includes what Ropohl (1997) calls structural

rules: knowledge about how components interact. This does not demand any sci-entific knowledge; the components can be seen as ‘black boxes’, defined by theirinputs and outputs. It also includes what I refer to as rules of thumb, standardprocedures used in limited contexts to bring about a particular outcome.

The users of these kinds of knowledge are often unaware of their origins, andsometimes even believe that they have a scientific foundation. Rules for metalextraction from ore may be derived from the phlogiston theory. In the early 1700’s,the phlogiston theory was the best available theory for combustion and metalsturning to calx and vice versa (known today as oxidation and reduction) (Bowlerand Morus, 2005, pp. 60f). Its users certainly believed that conclusions drawn usingthe theories could serve as justification of procedures for metal extraction. It hassince been shown that phlogiston does not exist, and that it therefore cannot be usedto justify knowledge about how to turn ore into metal. The procedures themselves

Page 17: Technology Education and Non-Scientific Technological Knowledge

1.3. TECHNOLOGY EDUCATION IN COMPULSORY SCHOOL 9

are nonetheless useful, as they produce the expected results. The usefulness can bedivided into effectiveness and efficiency. The effectiveness of a model or methodsignifies to what extent it produces a good result (“barely useful” might be goodenough in one context, while “optimal” is needed in other). The efficiency is ameasure of which resources that are needed (material, economical, temporal, . . . )and in which amounts. As the procedure of heating coal with ore to get iron hasproven to be both effective and efficient over and over again, it is rational to believein its usefulness.

Rules that have even more fantastic attempts of justification may also be useful.Almar-Næss (1985, p. 8) describes an old Arabic tradition where a newly forgedsword, still red hot, is wielded in the air to accustom it to fighting, and afterwardsthrust into a living goat. He notes that the procedure is useful for the hardeningof objects made from steel with low levels of carbon. Similar methods are usedtoday, even though the preferred procedures are less complicated. The red hotsteel is allowed to cool in the air, after which it is quenched in water. Goats’ bloodwould work just as well, but using it would be unnecessarily expensive and ethicallyquestionable. The Arabs who used the method believed that the surrounding storyprovided justification for the method, but it was really only a mnemonic rule. Thedescription was useful for prediction of the final result, a durable sword that couldbe sharpened, but provided no true or correct explanation of how this came about.The procedure was really justified through repeated success.

1.3 Technology education in compulsory school

School technology has traditionally been closely connected either with science stud-ies or industrial arts. In some countries and regions, such as Sweden, Scotland, Eng-land, and several states in the United States, technology education has its rootsin some kind of wood or metal shop work. Beginning in the 1980’s, this practicalhands-on training has gradually been replaced by more theoretical subjects, empha-sizing product development, design processes, and the social effects of technology.The skills practiced have changed from sanding, sawing and soldering to designand general problem solving strategies (Cunningham and Hester 2007, p. 3; Lewis2004, pp. 30f; Pavlova 2006, p. 21). Using the terms of Ropohl’s 1997 taxonomy fortechnological knowledge (see page 4), focus has shifted from technical know-how, tosocio-technical understanding, functional rules, and structural rules. Technological

laws are largely excluded, as they demand knowledge of mathematics and skills insystematic problem solving that pupils in compulsory school seldom possess.

Among these modern technology subjects, there are slight differences. In mostof the United States, the purpose of the subject is to make the inhabitants tech-nologically literate: “A technologically literate person understands, in increasinglysophisticated ways that evolve over time, what technology is, how it is created,and how it shapes society, and in turn is shaped by society.” (International Tech-nology Education Association, 2007, p. 9). This means that pupils should acquire

Page 18: Technology Education and Non-Scientific Technological Knowledge

10 CHAPTER 1. INTRODUCTION

the fundamental technological knowledge and skills necessary to be an autonomousagent in a technology-based society. The English approach is somewhat different.In England, the school subject is called Design and Technology and has a strongfocus on the design process (Banks and McCormick, 2006, p. 287). English pupilsshould become capable to intervene in a technologically advanced society. The goalis that they should learn to design and develop artefacts and thereby become capa-ble of actual intervention in the technological world. When American pupils designartefacts they do so mainly to learn about the technologies involved. English pupilsdesign artefacts to learn the design process (Kimbell and Stables, 2008, pp. 22f).In England, the design ability is a goal in itself, whereas in the United States it isoften seen as a means to an end. The English pupils should learn how to designand make objects while the American should primarily understand the technologiesinvolved and their interactions with the surrounding society.

In Sweden, technology was established as a compulsory school subject in themid 1980’s. The first proper syllabus was written in 1994. A slightly revised ver-sion (Skolverket, 2008) has been used until the spring term of 2011. This syllabusis vague, and many teachers find it difficult to understand. According to the fewstudies of classroom reality that have been made, the subject’s contents vary con-siderably between schools and individual teachers. As technology is the newestcompulsory school subject, few teachers have adequate training, and there are nonational assessment tests, there are good reasons to believe that technology variesmore than other school subjects (Teknikdelegationen, 2010, p. 89). Among theactivities performed in Swedish technology classrooms, the design of artefacts andconstruction of physical models from cardboard, string, and drinking straws oftenhave prominent positions. Since the beginning of the autumn term of 2011, a newcurriculum is used (Skolverket, 2010). In this new curriculum some central areas ofstudy are defined, such as mechanics, electronics, automatic control, technologicalsystems, the product development process, and technology’s relation to society, thearts, and the sciences. To further help the teachers, a booklet of comments andsuggestions has also been published (Skolverket, 2011). To what extent this willchange the classroom practices and actual contents of the technology subject isimpossible to say at the time of writing (October 2011).

The philosophy of technology education

Technology education studies and the philosophy of technology have common in-terests. In spite of this, the collaborations and interchange between the two areashave been few and far between. The philosophy of technology is important to showwhat technology is and why technological knowledge is necessary for all citizens,and to justify useful teaching methods. To manage this, references to Heidegger andDewey have been among the most common philosophical references in technologyeducation studies. Heidegger’s philosophy has been used to define technology andits relations to society; in the Swedish syllabus of 1994 there is even a reference to“the essence of technology”, which is a complicated concept from one of his essays

Page 19: Technology Education and Non-Scientific Technological Knowledge

1.3. TECHNOLOGY EDUCATION IN COMPULSORY SCHOOL 11

on technology (Blomdahl, 2006; Heidegger, 1974). In the curriculum text, thereis no description of what this essence consists of or any information about howit should be interpreted in an educational context. Most teachers are unlikely tounderstand its meaning or know of its origins.

Dewey’s philosophy of education, especially the concept of learning by doing,has been popular in school science for a long time. The action-oriented nature oftechnology makes the concept fit for technology as well, at least for some of theareas covered by the modern technology subjects (Blomdahl, 2006; de Vries, 2005b,p. 84; Volk, 2007, p. 195).

So, while there is some kind of tradition for finding philosophical support for theviews of the nature of technology and the methods used to teach technology, otherareas have been overlooked. There have been attempts to introduce other branchesof philosophy of technology into technology education studies, most notably deVries (2005b) and Dakers (2006). There have also been a small number of articlespublished in The International Journal of Technology and Design Education abouttechnological knowledge (for example de Vries, 2005a; Ropohl, 1997), the study ofartefact functions (for example Frederik et al, 2010), and ethical and aestheticalaspects of technological work (for example Ankiewicz et al, 2006; Middleton, 2005).These articles have generally not been widely cited and I have not been able to findany implications of them having had any major impact on curriculum writers orother key persons in technology education development.

Technological knowledge in technology education

Results from research in the epistemology of technology could be very useful inthe planning and evaluation of technology education; they provide a starting pointfor the necessary discussion about how technological knowledge differs from othertypes of knowledge that are taught in school and how it should be assessed. Inthe philosophy of technology there is also a well defined terminology for types ofknowledge, truth, justification, et cetera, that would be useful when discussingthese themes in technology education.

If school technology should mainly be about acquiring the knowledge and skillsnecessary to be an autonomous agent in modern society, a strong emphasis must beplaced upon the socio-technical understanding. School technology should includethe history and sociology of technology, for example how railways, television, andcomputers have changed political and everyday life, and how new lifestyles havecaused demand for certain products. Being technologically literate and a consciousand attentive citizen also demands some knowledge about the technological arte-facts and technical aspects of socio-technical systems. When discussing the systemlevel, as is commonly done in science and technology studies (STS), focus is on theinteraction between agents and the system wherefore the artefacts that make up thesystems’ components are reduced to ‘black boxes’, abstract function-providers de-fined by their inputs and outputs (Sismondo, 2010, pp. 85, 120). A technologicallyliterate person must also have some understanding of the artefact level; how the in-

Page 20: Technology Education and Non-Scientific Technological Knowledge

12 CHAPTER 1. INTRODUCTION

dividual artefacts are used, what standard mechanisms they utilise, et cetera. UsingRopohl’s 1997 terminology (see page 4), the artefact and system studies should bedominated by socio-technical understanding, functional rules, and structural rules.Together, these allow pupils to develop a technological knowledge that enable anunderstanding of much of what is going on around us and also complements and mayprovide support to scientific knowledge, yet does not limit technology to appliedscience. Technical know-how must be included to some extent. Without fundamen-tal skills in for example tool handling it is very difficult to do experimental work intechnology. In Sweden, pupils practice sanding, sawing, soldering, sewing, et ceterain the crafts subject.1 Therefore these skills do not need prominent positions inthe technology curriculum. Technological laws must be excluded from school tech-nology as learning those demands knowledge of mathematics, science, and generalproblem solving that are too difficult for the vast majority of pupils in compulsoryschool.

Technology is different from science in that its purpose is to find what is useful,often in limited contexts, rather than what is true or generally applicable. If schooltechnology is to mimic real technology, this view must permeate the work performedby the pupils and also the procedures for assessment of their knowledge. Pupilsshould be allowed, and even encouraged, to use mechanisms and ideas developedby others as well as the trial and error method. To a large extent this is whattechnological work has been about throughout history. If school technology can useschool science and vice versa, that could provide a deeper understanding of bothsubjects. This must not be the main purpose, though. Science and technologyrepresent different traditions and approaches to knowledge. These differences mustbe apparent in education as well, otherwise technology loses its raison d’être asa separate subject. Knowledge of the philosophy of science and the philosophyof technology could provide teachers and curriculum developers with a deepenedunderstanding of the distinctive features of science and technology respectively.This could improve the quality of the teaching as well as the assessment procedures.

Models and experiments in technology education

To make the pupils understand the procedures of non-physical modelling and thedifferences between model and reality is difficult in science education. Here, tech-nology could provide useful examples. It is fairly easy to design models of one’sown, if the purpose is technological. This means that the models are intended forprediction in a limited context. Technological models do not have to be explana-tory and generally applicable, as scientific models do. For example: the solubilityof salt (sodium chloride) in water varies approximately linearly with the watertemperature in a limited interval. Outside of this interval it is not linear, and attemperatures above boiling or below freezing point the interpretation of solubility

1The Swedish name of this subject is slöjd. It is often referred to as sloyd in the international

literature on education. Crafts is the official translation from The Swedish National Agency for

Education.

Page 21: Technology Education and Non-Scientific Technological Knowledge

1.4. OVERVIEW OF THE PAPERS 13

is not evident to most pupils in secondary school. This means that the limitationsof the models should be obvious to the pupils, a first step towards understandingthat all models have limitations. Similarly, mathematical models could be made ofthe elongation of a spring or bending of a plank under different loads. At a certainstress, the spring is deformed plastically and the plank breaks, which marks thelimitations of the models. All the models used in school science – where wires lackelectrical resistance, Mendel’s laws of heredity are true, water is incompressible,and electrons circle atomic nuclei in well-ordered shells – have limitations. Theselimitations may not be possible to find in a school science setting, but they do existand are well known by scientists working in the respective fields. In that way, manyof the models used in school science are similar to technological models. We knowthat they are wrong, but they are useful for prediction in limited contexts.

1.4 Overview of the papers

This thesis consists of this introduction and two papers which are summarisedbelow:

(I) Technological know-how from rules of thumb

A rule of thumb is an ordered set of instructions that can be used to reach a specificresult. The agent who uses the rules needs little or no knowledge about what eachof the individual actions mean, but he knows what result they bring about whenperformed consecutively. Typically, rules of thumb are useful in just a limitedcontext, they may be based on experience or scientific knowledge, they are easy tolearn and teach, and their application leads to a useful albeit not optimal result.Because of this, they are frequently used in many different kinds of technologicalactivities. Typically, rules of thumb are thought of as rather primitive and belongingmainly to the domain of amateurs and beginners. The DIY enthusiast uses rulesof thumb in the form of tables to pick a useful drill for a particular material, whilethe professional builder uses tacit knowledge based on experience. The amateurpastrycook drops a spoonful of caramel mixture into a glass of water. If it ispossible to form a small ball of it, the mixture is finished. The professional knowsthis from the mixture’s consistency, or uses a thermometer. In many cases, rulesof thumb are also used by skilled professionals. Engineers use them in the form ofsafety factors, and also for quick estimations or when they have to perform workfor which they lack proper training.

The purpose of this paper is to provide an epistemological foundation for rules ofthumb, describe their limitations, advantages, and justification procedures. Knowl-edge from rules of thumb is a special kind of technological knowledge that is worthyof philosophical attention, namely know-how stored and transferred as know-that.

Page 22: Technology Education and Non-Scientific Technological Knowledge

14 CHAPTER 1. INTRODUCTION

(II) Engineers’ non-scientific knowledge in technology education

Among the non-scientific models that engineers use, there are some that actuallycontradict scientific knowledge. Among the examples mentioned in the paper arethe notions of heat as a substance and that vacuum sucks. That heat is a substancewas assumed even in science well into the 19th century. Today we all know thatit is not. Nevertheless, engineers often talk of heat as if it were a substance whendiscussing thermal insulation. As this facilitates communication and leads to usefulpredictions, it fulfils the major purposes of technological models.

These models are more prominent in real technological work than they are intechnology education. The reasons for this are multiple: not all teachers and cur-riculum designers realize that technological knowledge is first and foremost aboutwhat is effective and efficient and not necessarily about truth or generalizability,and school technology is still often seen as a support for school science. If technol-ogy is to be taken seriously as an epistemological domain, non-scientific methodsshould be used when they are useful. This means that separate epistemologicalframes of reference must be used in school science and school technology. Schoolscience should aim for the truth and generally applicable theories, while schooltechnology should aim for usefulness. The differentiation between knowledge in thescience subjects and knowledge in technology leads to some difficult pedagogicalchallenges. It also leads to new opportunities to explain the differences betweenscience and technology. It is possible to construct technological models or systemsfor prediction that are useful in a limited context (for example the elongation ofa loaded spring that is linear as long as no plastic deformation occurs), and tomake the limits explicit. This is generally not possible in school science – to falsifyNewton’s mechanics or Bohr’s model of the atom is complicated and demands ad-vanced knowledge and expensive equipment. If this is done systematically, pupilsand teachers would gain deeper insights into the modelling process, its purposes,and the relations between model and reality.

1.5 Further research

Collaboration between the philosophy of technology and technology education stud-ies ought to benefit both areas. Technology education studies could use the termi-nology, definitions and delimitations from the sciences that have been developed byphilosophers. Philosophers could benefit from viewing knowledge as a developingprocess, which is common in technology education studies, instead of just writingabout knowledge as a finished product, estranged from the knowing subject.

The study of different types of technological knowledge is not in any way fin-ished. The studies so far have been directed towards the knowledge used by engi-neers, inventors, craftsmen, and other types of creative technologists. The profes-sional knowledge of operators and maintenance personnel has not yet been thor-oughly studied, apart from the tacit parts. Not even all types of knowledge used bycreative professionals have been studied; we have yet to see a philosophical investi-

Page 23: Technology Education and Non-Scientific Technological Knowledge

1.6. CONCLUSIONS 15

gation that incorporates the knowledge about standard components or applicablesecurity regulations into the technological knowledge. Partly, these could be de-scribed as rules of thumb, but it is more than that. Whether it is philosophicallyinteresting, furher studies will show.

Related areas that demand further studies include explanations and understand-ing in technology. While understanding and explanations in the natural sciences arebased solely on the laws of nature and descriptions of the state of the world, theirtechnological counterparts must also include an agent’s intentions and/or a techno-logical function. Some fundamental work has been done in this area (for examplede Ridder, 2007; Pitt, 2009), but technological understanding has still not beenexamined properly. So far, there has also been surprisingly little interest in usingthe philosophical research results about technological explanation when studyingeducation.

It is my firm conviction that technology teachers would benefit from deeperknowledge of the philosophy of technology. Skills in philosophical analysis, andknowledge of the specific questions concerning what technology is, what constitutestechnological knowledge, and what characterizes a technological artefact, wouldstrengthen technology as a subject of its own, elucidating that it is neither a moreglamorous crafts subject, nor some kind of degenerate science studies. To do this ef-ficiently, a first step would have to be an empirical study of what teachers know andthink today. Without knowledge of what teachers currently think about technolog-ical knowledge, truth versus usefulness, and the distinguishing qualities of techno-logical activities, it is impossible to propose an efficient education programme forthem.

1.6 Conclusions

The epistemology of technology still consists largely of uncharted terrain. Thetechnological laws that are science-based or science-like and the tacit knowledgeof the craftsmen have been subject of serious study, but for the rest philosophershave yet only scratched the surface. This includes the areas that are emphasizedin technology education for children and adolescents, which places curricula andgrading guidelines on shaky ground. How can knowledge be assessed in a contextwhere it is not defined properly?

Technological knowledge is multifaceted and includes facts about technologicalartefacts and mechanisms as well as skills necessary to perform technological work.I am firmly convinced that curriculum designers, textbook authors, and individualteachers could benefit from the philosophical work in this area. Without well-founded knowledge about what technology and technological knowledge are, it isdifficult to demarcate technology from other school subjects, use its special features,and guarantee that the contents of the subject, as well as the assessment proceduresare equivalent (or at least similar) throughout the country.

Page 24: Technology Education and Non-Scientific Technological Knowledge

16 BIBLIOGRAPHY

1.7 Bibliography

Almar-Næss A (1985) Metalliske materialer [Metallic materials]. Tapir akademiskforlag, Trondheim, Norway

Ankiewicz P, de Swardt E, de Vries MJ (2006) Some implications of the phi-losophy of technology for science, technology and society (STS) studies. Inter-national Journal of Technology and Design Education 16:117–141, URL http:

//dx.doi.org/10.1007/s10798-005-3595-x, 10.1007/s10798-005-3595-x

Arbetsmiljöverket (2008) Skyltar och signaler [Signs and signals]. Arbetsmiljöver-ket [The Swedish Work Environment Authority], Stockholm, AFS 2008:13

Banks F, McCormick R (2006) A case study of the inter-relationship betweenscience and technology: England 1984–2004. In: de Vries and Mottier (2006), pp285–311

Blomdahl E (2006) Att undervisa i teknik – ett försök till en undervisningsfilosofiutifrån Heidegger och Dewey [Teaching technology – an attempt at an educationalphilosophy based on Heidegger and Dewey]. NorDiNa 2(1):44–57

Bowler PJ, Morus IR (2005) Making modern science. The University of ChicagoPress

Cunningham CM, Hester K (2007) Engineering is elementary: An engineering andtechnology curriculum for children. In: Proceedings of the 2007 American Societyfor Engineering Education Annual Conference & Exposition

Dakers J (ed) (2006) Defining technological literacy. Palgrave MacMillan, NewYork

de Ridder J (2007) Reconstructing design, explaining artifacts. PhD thesis, DelftUniversity of Technology, Delft, The Netherlands

de Vries MJ (2003) The nature of technological knowledge: Extending empiricallyinformed studies into what engineers know. Techné 6(3), URL http://scholar.

lib.vt.edu/ejournals/SPT/v6n3/devries.html

de Vries MJ (2005a) The nature of technological knowledge: Philosophical re-flections and educational consequences. International Journal of Technology andDesign Education 15:149–154

de Vries MJ (2005b) Teaching about technology. Springer, Dordrecht, The Nether-lands

de Vries MJ, Mottier I (eds) (2006) International handbook of technology educa-tion. Sense Publishers, Rotterdam, The Netherlands

Page 25: Technology Education and Non-Scientific Technological Knowledge

BIBLIOGRAPHY 17

Elsäkerhetsverket (2008) Elsäkerhetsverkets föreskrifter och allmänna råd om hurelektriska starkströmsanläggningar ska vara utförda [The National Electrial SafetyBoard’s rules and regulations for how electrical high voltage installations shouldbe designed]. Elsäkerhetsverket, Kristinehamn, Elsäk-FS 2008:1

Frederik I, Sonneveld W, de Vries MJ (2010) Teaching and learning the nature oftechnical artifacts. International Journal of Technology and Design Education pp1–14, URL http://dx.doi.org/10.1007/s10798-010-9119-3, 10.1007/s10798-010-9119-3

Hansson SO (2007) What is technological science? Studies in History and Philos-ophy of Science 38:523–527

Hansson SO (2011) Vad är teknisk kunskap? [What is technological knowledge?].In: Hansson SO, Nordlander E, Skogh IB (eds) Teknikutbildning för framtiden[Technology education for the future], Liber, Stockholm, pp 178–188

Heidegger M (1974) Teknikens väsen och andra uppsatser [The essence of technol-ogy and other essays]. Rabén och Sjögren, Stockholm, originally published 1954.

Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philosophyof Science 15(2):135–175

Hills RL (1989) Power from steam. Cambridge University Press, Cambridge,United Kingdom

Houkes W (2006) Knowledge of artefact functions. Studies in the History andPhilosophy of Science 37:102–113

Houkes W (2009) The nature of technological knowledge. In: Meijers (2009b), pp309–350

International Technology Education Association (2007) Standards for technolog-ical literacy, 3rd edn. International Technology Education Association, Reston,VA

Kimbell R, Stables K (2008) Researching design learning. Springer, Dordrecht,The Netherlands

Kroes P, Meijers A (2006) The dual nature of technical artefacts. Stud-ies in History and Philosophy of Science Part A 37(1):1–4, DOI 10.1016/j.shpsa.2005.12.001, URL http://www.sciencedirect.com/science/article/

pii/S0039368105001032

Latour B, Woolgar S (1986) Laboratory life. Princeton University Press

Lewis T (2004) A turn to engineering: The continuing struggle of technologyeducation for legitimization as a school subject. Journal of Technology Education16:21–39

Page 26: Technology Education and Non-Scientific Technological Knowledge

18 BIBLIOGRAPHY

Lindqvist S (1987) Vad är teknik? [What is technology?]. In: Sundin B (ed)I teknikens backspegel [In technology’s rear-view mirror], Carlssons bokförlag,Stockholm, pp 11–33

Meijers A (2009a) General introduction. In: Meijers (2009b), pp 1–19

Meijers A (ed) (2009b) Philosophy of technology and engineering sciences. NorthHolland, Burlington, MA

Middleton H (2005) Creative thinking, values and design and technology educa-tion. International Journal of Technology and Design Education 15:61–71, URLhttp://dx.doi.org/10.1007/s10798-004-6199-y, 10.1007/s10798-004-6199-y

Mitcham C (1994) Thinking through technology. The University of Chicago Press

Nightingale P (2009) Tacit knowledge and engineering design. In: Meijers (2009b),pp 351–374

Pavlova M (2006) Comparing perspectives: Comparative research in technologyeducation. In: de Vries and Mottier (2006), pp 19–32

Pitt JC (2009) Technological explanation. In: Meijers (2009b), pp 861–879

Ropohl G (1997) Knowledge types in technology. International Journal of Tech-nology and Design Education 7:65–72

Ryle G (1949) The Concept of Mind. Hutchinson’s university library, London

Sismondo S (2010) An introduction to science and technology studies. Wiley-Blackwell, Chichester, United Kingdom

Skolverket (2008) Syllabuses 2000, revised version 2008, compulsory School.Skolverket [The Swedish National Agency for Education], URL http://www3.

skolverket.se/ki/eng/comp.pdf, originally published 1994, revised 2000 and2008. Accessed on 21 July 2010.

Skolverket (2010) Del ur Lgr 11: Kursplan i teknik i grundskolan [Excerpt from Lgr11: Syllabus for technology in compulsory school]. URL http://www.skolverket.

se/content/1/c6/02/38/94/Teknik.pdf

Skolverket (2011) Kommentarmaterial till kursplanen i teknik [Comments to thesyllabus in technology]. URL http://www.skolverket.se/publikationer?id=

2568

Teknikdelegationen (2010) Vändpunkt Sverige [Turning point Sweden]. Stockholm,SOU 2010:28

Vincenti WG (1990) What engineers know and how they know it. The John Hop-kins University Press, Baltimore

Page 27: Technology Education and Non-Scientific Technological Knowledge

BIBLIOGRAPHY 19

Volk KS (2007) Attitudes. In: de Vries MJ, Custer R, Dakers J, Martin G (eds)Analyzing best practices in technology education, Sense publishers, Rotterdam,The Netherlands, pp 191–202

von Wright GH (1971) Explanation and understanding. Cornell University Press,Ithaca, NY

Page 28: Technology Education and Non-Scientific Technological Knowledge
Page 29: Technology Education and Non-Scientific Technological Knowledge

Kapitel 2

Sammanfattning(Summary in Swedish)

2.1 Inledning

Syftet med denna uppsats är att bidra till teknikens epistemologi och dess tillämp-ning i undervisningssammanhang. Uppsatsen utgörs av en inledning (”kappa”),denna svenska sammanfattning och två artiklar. Den första artikeln beskriver denkunskap man kan få genom tumregler och inordnar den i ett teknikepistemolo-giskt sammanhang, med begränsningar, för- och nackdelar. Den andra behandlarhur teknisk kunskap som inte är vetenskapsbaserad kan tas upp i grundläggandeteknikundervisning i ungdomsskolan. Detta leder till pedagogiska utmaningar, menockså till möjligheter till en fördjupad förståelse för skillnaderna mellan teknik ochnaturvetenskap samt mellan modell och verklighet.

Teknisk kunskap kan vara av många olika slag, från urgamla hantverksfärdighe-ter till modern ingenjörskonst. Till skillnad från den vetenskapliga kunskapen harden tekniska inte tilldragit sig något större filosofiskt intresse. Framför allt gällerdetta de kunskaper som kan formuleras i ord men inte nödvändigtvis berättigas ge-nom naturvetenskap. Exempel på dessa är kunskaper om standardprocedurer ochså kallade tumregler.

Sedan 1980 års läroplan är teknik ett obligatoriskt ämne i den svenska grund-skolan. Trots detta har ämnet ännu inte funnit sin form. Det finns få läromedel, fåutbildade lärare och ämnet varierar kraftigt mellan olika skolor. Av tradition hartekniken betraktats som samhörande med slöjd eller med något av de naturoriente-rande ämnena, vanligen fysik. Dagens teknikämne skall dock stå på egna ben. Attdöma av läroplanen skall teknik vara ett ämne med inslag av hantverk, vardagsfär-digheter, ingenjörskonst och samhällsvetenskaper (Skolverket, 2010). Den kursplan,Skolverket (2008), som använts till och med vårterminen 2011 har av många uppfat-tats som svårläst. Den forskning som har genomförts visar att klassrumspraktikenoch det faktiska ämnesinnehållet ofta haft svag koppling till kursplanen (Bjurulf,

21

Page 30: Technology Education and Non-Scientific Technological Knowledge

22 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH)

2008; Teknikdelegationen, 2010). Den nuvarande läroplanen, som började använ-das höstterminen 2011, har en delvis annan uppläggning och ett tydligt angivetcentralt innehåll. Dessutom kompletteras och förtydligas den av ett kommentar-material, Skolverket (2011). I skrivande stund (oktober 2011) är det för tidigt attuttala sig om hur detta kommer att påverka undervisningen.

2.2 Teknik och naturvetenskap

Teknik är ett samlingsnamn för en stor mängd aktiviteter, föremål och kunskaps-områden som är skapade av människan och syftar till att lösa problem eller förändraomgivningen. Vissa former av teknik har funnits mycket länge. Människan har i tu-sentals år använt hävstänger för att flytta föremål, kol för att reducera järnmalm tilljärn och jäsningsprocesser för att framställa vin. Dessa exempel falsifierar effektivtpåståendet att all teknik skulle vara tillämpad naturvetenskap (något som framhål-lits bland annat av Bunge 1966) eftersom teknik existerade långt innan det fannsnågon naturvetenskap att tillämpa. Före 1900-talet är det faktiskt svårt att hittabra exempel på teknik som är tillämpad naturvetenskap. Tvärtom finns det gott omexempel på hur naturvetenskapen utvecklats ur tekniska upptäckter. Exempelvisgrundade Carnot termodynamiken på upptäckter som han gjort i arbetet med atteffektivisera ångmaskinen (Šesták et al, 2009, ss. 680ff). Vidare lades grunden förden vetenskapliga hållfasthetsläran av den byggnadstekniska praktiken (Turnbull,1993, p. 317) och metallurgin härstammar från gamla erfarenheter av hur förore-ningar och värmebehandlingar påverkar metallers egenskaper. Modern teknik hardock ofta formen av tillämpad naturvetenskap. Utan den moderna fysiken skulledagens halvledarbaserade elektronik vara otänkbar och den moderna bioteknikenskulle vara omöjlig utan senare decenniers stora landvinningar i kemi, biologi ochbesläktade vetenskaper.

Teknik och naturvetenskap är två skilda verksamhetsområden. Viss teknik ärutvecklad ur naturvetenskapligt kunnande. Vissa naturvetenskapliga upptäckterkommer ur tekniken. Tekniken och naturvetenskaperna har olika mål och studie-objekt. Naturvetenskapernas yttersta (sannolikt ouppnåeliga) mål är att finna san-ningen om världen. Teknikens mål är att vara användbar. Inom naturvetenskapernaintresserar man sig för generella lagar, inom tekniken ofta för partikulära lösningar.Resultatet av naturvetenskapligt arbete är kunskap medan tekniskt arbete resulte-rar i artefakter.

Teknikfilosofen Mitcham (1994) beskriver fyra olika aspekter hos tekniken:1 tek-

nik som aktivitet, teknik som föremål, teknik som kunskap och teknik som viljeytt-

ring. Teknik som aktivitet omfattar arbete med konstruktion, byggande, felsök-ning, underhåll, teknologisk forskning med mera. Teknik som föremål är alla deföremål som är resultat av tekniskt arbete. Teknik som kunskap är de kunskaperoch färdigheter som man använder i det tekniska arbetet. Teknik som viljeyttring

1Mitcham skriver om technology. I detta sammanhang översätts det bäst med det svenska

ordet teknik.

Page 31: Technology Education and Non-Scientific Technological Knowledge

2.3. SKOLANS TEKNIKÄMNEN 23

är drivkrafterna för att få igång det tekniska arbetet: brokonstruktörens vilja attkorsa floden, hackerns vilja att knäcka säkerhetssystemet et cetera. Teknik somviljeyttring ligger längst ifrån vardagsanvändningen av ordet teknik, men markeraren avgörande aspekt av det tekniska arbetet – utan viljan att handla för att uppnåett mål, ingen teknik.

Teknisk kunskap

Det finns i dag flera olika klassificeringssystem för teknisk kunskap (exempelvis deVries, 2003; Hansson, 2011; Vincenti, 1990). De flesta av dessa är inriktade på att be-skriva de tekniska kunskaper som används i skapandet av tekniska artefakter, alltsåden kunskap som konstruktörer, hantverkare och liknande använder. De kunskaperoch färdigheter som teknikanvändare har får sällan något större utrymme, inte enshögt kvalificerad kunskap som handhavandet av komplicerade maskiner eller mä-tinstrument. I föreliggande uppsats används framför allt det klassifikationssystemsom föreslagits av Ropohl (1997). I detta system delas den tekniska kunskapen in itekniska färdigheter, funktionella regler, strukturella regler, tekniska lagar samt soci-

oteknisk förståelse. Den sociotekniska förståelsen handlar om förståelse av teknikensväxelverkan med samhället. Övriga beskriver kunskap för tekniskt skapande, från desituationsspecifika, hantverkslika tekniska färdigheterna till de vetenskapslika eller-baserade tekniska lagarna som ofta beskrivs med matematikens hjälp. De funktio-nella reglerna handlar om att veta hur man uppnår något utan att nödvändigtviskunna förklara processen vetenskapligt. Dessa har jag valt att kalla tumregler. Destrukturella reglerna beskriver samverkan mellan ingående delar i ett system. Spe-ciellt med Ropohls system är att den sociotekniska förståelsen betraktas som entyp av teknisk kunskap. Det gör systemet lämpat för att beskriva den tekniskautbildningen inom det obligatoriska skolväsendet, där socioteknisk förståelse, hant-verksfärdigheter, funktionella regler och strukturella regler ingår. Tekniska lagarfår i regel inget större utrymme, detta då elever i ungdomsskolan inte har de för-kunskaper i naturvetenskap, matematik och generell problemlösningsmetodik sombehövs för att kunna tillgodogöra sig dem.

2.3 Skolans teknikämnen

Teknik har varit ett obligatoriskt ämne i den svenska grundskolan sedan 1980 årsläroplan. Teknikinslag har funnits längre än så i ämnen som slöjd, hemkunskapoch hembygdskunskap. Det har också funnits en lång tradition av att användatekniska uppfinningar för att konkretisera undervisningen i naturorienterande äm-nen, exempelvis används glödlampor, tvättmedel och ångmaskiner för att förtydligaegenskaperna hos slutna kretsar, emulgatorer och gastryck. Det är inte bara i Sve-rige som man har infört ett separat teknikämne under de senaste decennierna, utanäven på många andra håll. I England, Skottland, Nederländerna, vissa av USA:sdelstater, Nya Zeeland och flera andra länder har nya teknik- och/eller designäm-nen tagit plats i läroplanen. Till skillnad från slöjden är de nya teknikämnena

Page 32: Technology Education and Non-Scientific Technological Knowledge

24 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH)

inte hantverksbaserade, utan handlar primärt om produktutveckling, generell pro-blemlösningsförmåga och tekniken i samhället. Inriktningen varierar något mellanländerna. I England står produktutvecklingsprocessen i centrum och det uttalademålet är att eleverna skall lära sig att skapa artefakter och därigenom kunna påver-ka samhället och den egna livssituationen. Amerikanska elever behöver inte kunnapåverka handgripligen, utan målet för dem är att förstå världen genom den tekniksom påverkar den. Även de arbetar ofta med produktutveckling, men då som enmetod för att fördjupa sin allmänna tekniska förståelse.

I läroplanen beskrivs det svenska teknikämnet som brett, med tydligt tvärve-tenskaplig karaktär (Skolverket, 2010). Den nu gällande läroplanen, som börjadeanvändas hösten 2011, har ett angivet centralt innehåll med vitt skilda teman.Socioteknisk förståelse, produktutvecklingsmetodik, materiallära, styr- och regler-teknik, elektronik och tekniska system är några av de områden som skall behandlas.Teknikens och den tekniska kunskapens speciella egenskaper får inte stort utrym-me i läroplanstexten. Det står att ”tekniken ställer frågan hur saker och ting skullekunna vara och hur man kan åstadkomma det man vill” (Skolverket, 2011, s. 10).Att tekniken inte kan reduceras till tillämpad naturvetenskap påpekas också, lik-som att tekniken påverkar och påverkas av mänskliga verksamheter som vetenskapoch konst. Däremot nämns inte det tekniska kunskapsfältets handlingsorienteringeller hur man inom tekniken förhåller sig till begrepp som förklaring, förståelse,sanning eller användbarhet.

I undervisningspraktiken har ämnets inrikting ofta varit otydlig. Bjurulf (2008)har granskat hur fem lärare tolkar teknikämnets innehåll och syfte i sin undervisningutifrån den kursplan som gällde till och med vårterminen 2011 (Skolverket, 2008).Tolkningarna varierar kraftigt: en lärare menar att syftet är att eleverna skall lärasig vardagsfärdigheter som tapetsering, en annan menar att ämnets mål är att fåfler elever att söka tekniska utbildningar efter grundskolan och en tredje att ämnetssyfte är att förbättra flickors självförtroende. Att ämnet kan se väldigt olika ut iolika skolor och på många håll har fått orimligt lite schemalagd tid bekräftas avbland andra Teknikdelegationen (2010).

Filosofin och skolans teknikämnen

I den tidigare kursplanen för den svenska skolans teknikämne finns tydliga spårav Heidegger, framför allt genom begreppet ”teknikens väsen” som ämnet skallge förtrogenhet med (Skolverket, 2008, s. 115). ”Teknikens väsen” lanserades avHeidegger i en essä med samma namn och är ett centralt begrepp i hans teknikfilo-sofi. Exakt vad Heidegger menar med det är svårt att reda ut, något som betonasbland annat av Heidegger själv (1974, ss. 17ff) och Mitcham (1994, s. 53). Dettahindrade inte kursplaneförfattarna från att nämna ”teknikens väsen” i sambandmed teknikämnets syfte, helt utan förklarande kommentarer. I den nya läroplanen(Skolverket, 2010) lyser tydliga filosofireferenser med sin frånvaro.

Fackfilosofin har generellt svag ställning inom teknikdidaktiken. Bortsett frånenstaka försök att analysera vad teknik är och få in etiska frågor i teknikundervis-

Page 33: Technology Education and Non-Scientific Technological Knowledge

2.3. SKOLANS TEKNIKÄMNEN 25

ningen är det skralt. Detta gäller såväl i Sverige som internationellt. Forskningeninom teknikens kunskapsteori har inte haft någon större påverkan på kursplaner el-ler teknikdidaktisk forskning. För mig, som började som ingenjör, sedan blev lärareoch därefter filosof, framstår detta som konstigt. Man studerar teknisk kunskapbåde inom teknikfilosofin och inom teknikdidaktiken. Båda områdena borde kun-na vinna på ett samarbete. I dag har områdena ingen gemensam terminologi ochvanligen olika infallsvinklar i sina studier av den tekniska kunskapen. Didaktikernastuderar framför allt kunskapsbildningen och kunskapens användning. De engelskateknikdidaktikerna Kimbell och Stables (2008, ss. 42f) markerar detta genom att iallmänhet inte skriva om ”knowledge” (kunskap), utan om ”knowing” (kunnande).Fokus är inte på kunskapen i sig själv, utan på det kunnande subjektet. Framförallt koncentrerar man sig på hur lärandet går till och hur kunskapen (kunnandet)används. Trots detta finns rimligen gemensamma intressen. Vad som karaktärise-rar den tekniska kunskapen, liksom hur man skall se på sanning och strävan eftersanning inom teknisk verksamhet, är essentiellt för bedömning och utvärdering avteknisk kunskap. Det går inte rimligen att skapa tydliga och rättssäkra kunskaps-bedömningskriterier utan att veta vilket slags kunskap det är man skall bedöma.

Experimentens roll inom naturvetenskaperna är och har varit en viktig veten-skapsfilosofisk fråga. Varför man skall experimentera inom de naturvetenskapligaämnena i ungdomsskolan har också debatterats och utretts många gånger. Elevernaskall bli förtrogna med experimentella metoder, de lär sig bättre om de får upp-täcka saker själva och så vidare. Experimentens roll inom teknikundervisningen ärdäremot ett betydligt mindre utforskat område. Medan experiment inom naturve-tenskaperna handlar om att nå kunskap om generella naturlagar så kan tekniskaexperiment vara betydligt mer jordnära. Om man vill veta huruvida en byrå är merhållbar än en annan kan man utsätta båda för upprepat hårdhänt in- och utdragan-de av lådorna och se vilken som går sönder först. Om man vill veta hur stor strömsom kan gå genom en ledning utan att den blir för varm kan man mäta tempera-turen vid olika strömstyrkor. I bästa fall är resultaten direkt tillämpbara, trots attde helt saknar förklaringsvärde. Denna påtagliga skillnad – sökandet efter ett välbelagt (i bästa fall sant), generellt resultat i vetenskapsfallet och något användbarti teknikfallet – återfinns sällan i den teknikdidaktiska litteraturen och inte i någonav de läroböcker i teknik för grundskolan som jag har studerat (Andersson, 2004;Börjesson et al, 2009; Sjöberg, 2004, med flera).

Tekniska modeller skiljer sig också ofta från de naturvetenskapliga. De tekniskamodellerna skall framför allt ge möjlighet till prediktion, medan de naturveten-skapliga även skall förklara. För förklaring krävs något slags orsakssamband. Förprediktion räcker korrelation. Detta gör att falsifierade vetenskapliga teorier kanleva kvar som tekniska modeller. Newtons fysik är falsifierad sedan ungefär hund-ra år, men används fortfarande med gott resultat av ingenjörer världen över. Ävenandra teorier och modeller som är obsoleta i vetenskapligt hänseende används flitigtinom tekniken. Lättfattliga exempel inkluderar centrifugalkraften (som är en sken-kraft) och den sugande kraften hos vakuum (som inte existerar, det är trycket frånden omgivande luften som ger upphov till den fasthållande kraften). Inom tekniken

Page 34: Technology Education and Non-Scientific Technological Knowledge

26 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH)

använder man det som ger användbara resultat i den aktuella kontexten, oavsettom det är sant eller inte.

I tekniska sammanhang kan man inte heller tillåta sig samma idealiseringar somman ibland kan göra inom naturvetenskaperna. En fysiker kan renodla problemgenom att exempelvis bortse från gravitationen. Ingenjören kan knappast göra det,om gravitationen påverkar resultatet måste den tas med i beräkningen (Hansson,2007, s. 526). Om han/hon skulle välja att försumma den måste han kompenseraför detta på annat sätt, exempelvis genom väl tilltagna säkerhetsmarginaler.

Många av de speciella karaktäristika som finns hos teknisk kunskap och tek-nisk verksamhet och skiljer dem från andra typer av kunskaper och verksamheterhar lagts i dagen av teknikfilosofer. De torde kunna ge positiva bidrag till såvälundervisningspraktik som utvärderingsmetoder och kunskapsmål inom teknikun-dervisningen.

2.4 Ingående artiklar

Uppsatsen består av ett inledande avsnitt, denna svenska sammanfattning och tvåartiklar, som sammanfattas nedan.

(I) Teknisk kunskap genom tumregler – Technological know-how

from rules of thumb

Olika typer av tumregler och standardprocedurer kan ge en person en typ av tek-nisk kunskap eller handlingsförmåga utan att han har någon kunskap om exakt hurde bakomliggande mekanismerna fungerar. I artikeln exemplifieras det bland annatmed inställningen av en reglerutrustning, en så kallad PID-regulator (proportionell,integrerande och deriverande regulator). På 1990-talet arbetade jag i den industri-ella automationsbranschen där sådana används bland annat för att styra hydraul-pumpar. En riktigt inställd regulator ger ett stabilt system, felaktig inställning kanleda till för lågt eller för högt tryck och en illa fungerande maskin. Bland mina kol-leger fanns två som var specialiserade på att hantera reglertekniska problem. Bådavar skickliga, men löste uppgiften på olika sätt. Den ene, Nils, är civilingenjör. Medhjälp av matematiska modeller tog han fram lämpliga parametervärden och ställ-de sedan in regulatorn enligt dessa. Den andre, Paul, var elektriker i grunden ochhade lärt sig regulatorinställningskonsten genom systematisk prövning och mångaårs erfarenhet. Han kunde inte förklara hur han gjorde, enligt egen utsago gick hanpå känsla, men åstadkom alltid användbara resultat. Båda hade teknisk kunskap– Nils kände till en mängd tekniska lagar, medan Paul hade informell kunskap av”tyst” slag.

Vid ett tillfälle blev jag, som nästan helt saknade erfarenhet av reglerteknik,ombedd att ställa in en regulator hos en kund. Nils gav mig en lista hämtad uren reglerhandbok. Nedanstående är snarlik, men hämtad från webbplatsen PLCDrives (Utan årtal, min översättning från engelskan):

Page 35: Technology Education and Non-Scientific Technological Knowledge

2.4. INGÅENDE ARTIKLAR 27

1. Sätt parametrarna Kp, Ki, Kd till deras minimivärde (0 eller 1 beroende påregulatorns utforming).

2. Öka Kp till systemet börjar självsvänga.

3. Öka Kd till systemet slutar självsvänga.

4. Öka Ki till det statiska felet är eliminerat.

Jag följde instruktionerna och startade maskinen. Systemet blev förmodligen intelika snabbt eller lika robust som om Nils eller Paul hade ställt in det, men det fun-gerade. Även jag hade, med hjälp av tumreglerna ovan, en typ av teknisk kunskap,trots att jag inte förstod vad vart och ett av stegen egentligen innebar.

Tumregler av liknande slag används inom de mest skilda branscher och verk-samheter. I handböcker och på webbplatser kan man hitta regler för att välja fyll-nadsmaterial vid svetsning, rätt kornstorlek i lödpastan vid automatlödning, rättsorteringsalgoritm för en viss datamängd och så vidare. Inom andra områden sominte är fullt så tydligt tekniska finns det liknande regler. Ett exempel är ”Safety onboard”-korten som finns på passagerarflygplan. De är fulla av enkla regler som ärtänkta att ge användbara resultat. Det är inte säkert att det i varje enskilt fall ärsäkrast att först ta på sin egen syrgasmask och först därefter hjälpa medföljandebarn. Det är inte heller säkert att det alltid är optimalt att välja den bakre utgång-en bara för att man sitter i den bakre halvan av planet, det beror faktiskt på hurmedpassagerarna sitter fördelade och hur de rör sig. Reglerna är gjorda för att varalättfattliga och ge användbara resultat i de flesta situationer – de är tumregler.

Tumregler har typiskt följande egenskaper:

• De är kontextberoende. Reglerna är användbara för att lösa en mycket begrän-sad uppgift. Om mätsignalen i reglersystemet ovan hade varit väldigt brusigskulle tumreglerna ha varit oanvändbara.

• De är användbara även om agenten har liten eller ingen kunskap om de un-

derliggande processerna. Agenten behöver inte vet vad var och en av de hand-lingar som reglerna föreskriver leder till. Det räcker med att veta vad de ledertill tillsammans.

• De är lätta att verbalisera och överföra. Häri ligger tumreglernas kanske störs-ta fördelar.

• De är oberoende av sitt ursprung. Tumreglerna för regulatorinställningen ovankan vara framtagna med hjälp av matematisk analys av reglerproblem. De kanockså vara framtagna genom att man studerat hur en erfaren tekniker faktisktgör när han ställs inför ett liknande problem. När reglerna väl är nedskrivnaspelar skapandeprocessen i allmänhet ingen roll.

• Deras användning leder ofta till användbara men sällan till optimala resultat.

Reglerna bygger på det som är allmänt för en stor problempopulation. Detfinns små eller inga möjligheter att ta hänsyn till speciella omständigheter.

Page 36: Technology Education and Non-Scientific Technological Knowledge

28 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH)

Tumreglerna är speciella såtillvida att de ger handlingsberedskap eller ”know-how”genom en lista med beskrivningar av handlingar. Om man vet vad som står pålistan har man också färdigheten. Kunskap genom tumregler är en speciell typ avteknisk kunskap som är viktig inom många tekniska domäner. Den är därför välvärd att uppmärksammas inom teknikfilosofin.

(II) Ingenjörers ovetenskapliga tekniska kunskap och dessanvändning i teknikundervisningen - Engineers’ non-scientific

technological knowledge in technology education

Inom naturvetenskaperna är förklaringar centrala. Förklaringar visar hur teorierstöder varandra och hur ett fenomen ger upphov till ett annat. Inom teknikenhar de inte alls samma roll. I regel räcker det där med prediktionsförmåga hosmodeller och teorier. Detta leder till att man i tekniska sammanhang ofta kananvända obsoleta vetenskapliga teorier, modeller baserade på vardagsuppfattningareller metoder som på annat sätt är felaktiga eller ofullständiga, så länge de ledertill korrekta förutsägelser.

Att vakuum suger fast saker är en vanlig men felaktig vardagsuppfattning. Isjälva verket är den omkringliggande luften som trycker fast föremålet. Trots dettaär det vanligt att ingenjörer utgår från ett sugande vakuum i sitt konstruktionsar-bete. Jag har själv arbetat på ett företag där vi omtalade vakuum som om det voreen substans. Det skapades i en ejektor och transporterades i slangar varefter detslutligen nådde en sugkopp där det kunde suga fast något som skulle lyftas ellerhållas. Sugande vakuum omtalas också i flera patenttexter. Detta gör man då detleder till användbara prediktioner och är ett enkelt sätt att prata om apparaternasfunktion. Det är bekvämare att tala om aktiviteten hos ett skapat vakuum än omtrycket hos den omkringliggande luften.

Ingenjörers användning av felaktiga teorier och verklighetsfrämmande modellersom ger användbara förutsägelser har lämnat litet avtryck i den teknikdidaktiskalitteraturen. I de läroböcker i teknik och naturorienterande ämnen som jag harstuderat får frågor kring modeller och modellering över lag väldigt litet utrymme.Man använder enkla matematiska och grafiska modeller, både av typer som an-vänds utanför skolan (exempelvis kopplingsscheman och kraftparallellogram) ochav skolspecifika typer. Ett exempel på det senare är den välkända modell där enelektrisk krets liknas vid ett vattenledningssystem. Spänningen motsvaras av tryc-ket, strömmen av flödet, resistorer representeras av olika tjocka rör, strömbrytareoch dioder av olika slags ventiler och så vidare. Modellen är användbar till exempelför att visa hur strömmen påverkas av en parallellkoppling. Den är givetvis väl-digt begränsad i sitt användningsområde och det är lätt att hitta dessa gränser.Om man klipper av en kabel i en sluten strömkrets så upphör strömmen. Om manklipper av ett vattenledningsrör kommer vattnet däremot att fortsätta strömmaoch spruta ut i omgivningen. En av begränsningarna är alltså att modellen barakan användas när rören/ledningarna är hela. Andra begränsningar är till exempel

Page 37: Technology Education and Non-Scientific Technological Knowledge

2.5. DISKUSSION 29

att vattnet inte värmer rören på samma sätt som elektriciteten värmer ledningarnaoch att att elektronernas rörelser i en elledning inte alls är lika regelbundna somdet strömmande vattnets. Liknande begränsningar finns givetvis hos alla modeller,men ofta kan de inte enkelt visas i ett skollaboratorium. Bohrs atommodell ochNewtons fysik har exempelvis väl kända begränsningar, men för att få fram demkrävs mer tid, större kunskaper och mer avancerad utrustning än man har tillgångtill i grundskolan.

Tekniska modeller som är användbara i en mycket begränsad domän kan använ-das för att demonstrera skillnaderna mellan modell och verklighet samt teknik ochnaturvetenskap. De naturvetenskapliga modellerna har större krav på förklarings-förmåga och generalitet än de tekniska. Ingenjören kan med gott samvete låtsasatt vakuum har en sugande förmåga, att centrifugalkraften existerar, att värme ären substans och att elektronerna i en elektrisk ledning rinner fram likt vatten irör. Faktiskt skulle han ofta till och med kunna använda sig av den sedan längefalsifierade flogistonteorin för oxidation och reduktion om han så önskade. Trots attflogiston inte existerar så ger teorin ofta riktiga förutsägelser (Allchin, 1997, s. 474).Inom naturvetenskaperna duger de inte.

I skolan kan detta leda till besvärliga motsättningar. Tanken att teknikämnetskall vara en stödfunktion till de naturorienterande ämnena finns såväl i Sverigesom på andra håll (Cunningham and Hester 2007, s. 3, Klasander 2010, ss. 261f;Lewis 2004, ss. 30f; Pavlova 2006, s. 21). Om man då tillåter eller till och meduppmuntrar eleverna att tänka i termer av sugande vakuum på tekniklektionernasamtidigt som man avråder från det på fysiklektionerna kan det hela bli mycketförvirrande. Det finns tyvärr ingen enkel utväg. Skoltekniken skall genomsyras avteknikens särart. Att då plocka bort det som inte kan förklaras med hjälp av skolansnaturvetenskap vore att beröva det tekniska kunskapsområdet en av dess tydligastsärskiljande egenskaper. I stället måste man använda sig av skilda epistemologis-ka utgångspunkter i teknikundervisningen och i de naturorienterande ämnena. Iteknik skall prediktion poängteras och i de naturorienterande ämnena förklaring.I teknik är det användbarhet och funktion som är viktigt, i de naturorienterandeämnena skall man arbeta med generella frågor och hålla sig så nära den etableradevetenskapliga kunskapen som möjligt. De tekniska modeller som har lätt insed-da begränsningar kan användas för att illustrera förhållandet mellan modell ochverklighet – alla modeller har begränsningar, även om de inte kan upptäckas i ettskollaboratorium.

2.5 Diskussion

Teknikens kunskapsteori är fortfarande ett outvecklat område. De typer av kunskapsom saknar naturvetenskaplig grund har blivit styvmoderligt behandlade. Mycketarbete återstår innan det finns en heltäckande beskrivning av allt det vi kan kallateknisk kunskap.

Page 38: Technology Education and Non-Scientific Technological Knowledge

30 LITTERATURFÖRTECKNING

I den teknikdidaktiska forskningen har filosofiska frågor fått liten plats. Kun-skap, förklaringar och förståelse diskuteras utan att begreppens betydelse i teknik-utbildningskontexten är ordentligt klarlagd. Detta är problematiskt för teknikäm-nets innehåll och kunskapsutvärdering. Om det inte finns någon bestämd uppfatt-ning om vad teknisk kunskap är så kan man inte rimligen skapa något rättssäkertsätt att utvärdera den.

2.6 Litteraturförteckning

Allchin D (1997) Rekindling phlogiston: From classroom case study to interdisci-plinary relationship. Science and Education 6:473–509

Andersson N (2004) Teknikboken 2004/2005. Allde och Skytt, Stockholm

Bjurulf V (2008) Teknikämnets gestaltningar. Doktorsavhandling, Karlstads uni-versitet, Estetisk-filosofiska fakulteten, Karlstad, Sverige

Börjesson G, Chocron M, Högfeldt-Rudervall M, Nylén B, Olsson B, Sjöström IL,Svensson M (2009) Teknik direkt. Bonnier utbildning, Stockholm

Bunge M (1966) Technology as applied science. Technology and Culture 7:329–347

Cunningham CM, Hester K (2007) Engineering is elementary: An engineering andtechnology curriculum for children. I: Proceedings of the 2007 American Societyfor Engineering Education Annual Conference & Exposition

de Vries MJ (2003) The nature of technological knowledge: Extending empiricallyinformed studies into what engineers know. Techné 6(3), URL http://scholar.

lib.vt.edu/ejournals/SPT/v6n3/devries.html

Hansson SO (2007) What is technological science? Studies in History and Philo-sophy of Science 38:523–527

Hansson SO (2011) Vad är teknisk kunskap? I: Hansson SO, Nordlander E, SkoghIB (red) Teknikutbildning för framtiden, Liber, Stockholm, ss 178–188

Heidegger M (1974) Teknikens väsen och andra uppsatser. Rabén och Sjögren,Stockholm, ursprungligen publicerad 1954.

Kimbell R, Stables K (2008) Researching design learning. Springer, Dordrecht,Nederländerna

Klasander C (2010) Talet om tekniska system. Doktorsavhandling, Linköpingsuniversitet, Institutionen för samhälls- och välfärdsstudier, Norrköping, Sverige

Lewis T (2004) A turn to engineering: The continuing struggle of technology educa-tion for legitimization as a school subject. Journal of Technology Education 16:21–39

Page 39: Technology Education and Non-Scientific Technological Knowledge

LITTERATURFÖRTECKNING 31

Mitcham C (1994) Thinking through technology. The University of Chicago Press

Pavlova M (2006) Comparing perspectives: Comparative research in technologyeducation. I: de Vries MJ, Mottier I (red) International handbook of technologyeducation, Sense Publishers, Rotterdam, Nederländerna, ss 19–32

PLC Drives (Utan årtal) PLC drives and automation forums. URL http://www.

plcdrives.com/forum/f34/pid-tuning-rule-thumb-37763/, läst 16 november2009

Ropohl G (1997) Knowledge types in technology. International Journal of Tech-nology and Design Education 7:65–72

Šesták J, Mareš J, Hubík P, Proks I (2009) Contribution by Lazare and SadiCarnot to the caloric theory of heat and its inspirative role in thermodynamics.Journal of Thermal Analysis and Calorimetry 97:679–683

Sjöberg S (2004) Puls teknik. Natur och kultur, Stockholm

Skolverket (2008) Kursplaner 2000, reviderad version 2008, grundskolan. Skol-verket, URL http://www.skolverket.se/publikationer?id=745, ursprungli-gen utgiven 1994, reviderad 2000 och 2008. Läst 21 juli 2010.

Skolverket (2010) Del ur Lgr 11: Kursplan i teknik i grundskolan. URL http:

//www.skolverket.se/content/1/c6/02/38/94/Teknik.pdf

Skolverket (2011) Kommentarmaterial till kursplanen i teknik. URL http://www.

skolverket.se/publikationer?id=2568

Teknikdelegationen (2010) Vändpunkt Sverige. Stockholm, SOU 2010:28

Turnbull D (1993) The ad hoc collective work of building gothic cathedrals withtemplates, string, and geometry. Science, technology and human values 18(3):315–340

Vincenti WG (1990) What engineers know and how they know it. The JohnHopkins University Press, Baltimore