telescopes and optics nhas astro 101. agenda optics relating to telescopes, lenses and mirrors types...

63
Telescopes and Optics NHAS Astro 101

Upload: clifford-harrison

Post on 22-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Telescopes and Optics

NHAS Astro 101

Page 2: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Agenda

• Optics relating to Telescopes, Lenses and Mirrors• Types of Telescopes and their advantages• Focal Length and Focal Ratio• Types of Eyepieces and their advantages• Magnification and Apparent Field of View• Types of Astronomical Mounts and their uses• Types of Finders and their uses• Filters and their uses

Page 3: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Lenses and Mirrors

Page 4: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Properties of Light

Law of Reflection - Angle of Incidence = Angle of reflection

Law of Refraction - Light beam is bent towards the normal when passing into a medium of higher Index of Refraction.

Light beam is bent away from the normal when passing into a medium of lower Index of Refraction.

Index of Refraction -

Inverse square law - Light intensity diminishes with square of distance from source.

n Speed of light in vacuum

Speed of light in a medium

Page 5: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Normal

Law of Reflection

Angle of incidence () = angle of reflection ()

The normal is the ray path perpendicular to the mirror’s surface.

Page 6: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Center of curvature - the center of the circle of which the mirror represents a small arcPrincipal axis - a radius drawn to the mirror surface from the center of curvature of the mirror - normal to mirror surfaceFocus - the point where light rays parallel to principal axis converge; the focus is always found on the inner part of the "circle" of which the mirror is a small arc; the focus of a mirror is one-half the radiusVertex - the point where the mirror crosses the principal axisFocal length - the distance from the focus to the vertex of the mirror

Geometry of a Concave Mirror

Focus

Principal axisVertex

Focal length

Page 7: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Index of Refraction

As light passes from one medium (e.g., air) to another (e.g., glass, water, plexiglass, etc…), the speed of light changes. This causes to light to be “bent” or refracted. The amount of refraction is called the index of refraction.

Page 8: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Imagine that the axles of a car represent wave fronts. If the car crosses from a smooth to a rough surface at an angle, one tire of the axle will slow down first while the other continues at normal speed. With one tire traveling faster the other, the car will turn in the direction of the slow tire. This is how refraction works.

Refraction

Page 9: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

AIR

GLASS / WATER

Slower Propagating Speed

NORMAL

Page 10: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

AIR

GLASS / WATER

Slower Propagating Speed

Car

( Sand / Gravel )

Page 11: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

AIR

GLASS / WATER

Slower Propagating Speed

Car

( Sand / Gravel )

Page 12: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

AIR

GLASS / WATER

Slower Propagating Speed

NORMAL LIGHT BENDING TOWARDS THE

NORMAL

LIGHT RAY

Page 13: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

n2

AIR

GLASS / WATER

Slower Propagating Speed

NORMAL LIGHT BENDING TOWARDS THE

NORMAL

n1

Snell's Law

( Next Slide )

Page 14: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

GLASS / WATER

Car

AIR

Slower Propagating Speed

( Sand / Gravel )

Page 15: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

GLASS / WATER

Car

AIR

Slower Propagating Speed

( Sand / Gravel )

Page 16: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

GLASS / WATER

Car

AIR

Slower Propagating Speed

( Sand / Gravel )

Page 17: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

AIR

Slower Propagating Speed

GLASS / WATER

NORMAL

AGAIN, LIGHT BENDS TOWARDS THE NORMAL

upon entering a region with slower speed.

LIGHT RAY

Page 18: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Slower Propagating Speed

GLASS /WATER

Car

AIR

( Sand / Gravel )

Page 19: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Slower Propagating Speed

GLASS /WATER

Car

AIR

( Sand / Gravel )

Page 20: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Slower Propagating Speed

GLASS /WATER

Car

AIR

( Sand / Gravel )

Page 21: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

NOW LIGHT BENDS AWAY FROM THE NORMAL

Slower Propagating Speed

GLASS /WATER

AIR

LIGHT RAY

NORMAL

Snell's Law

Page 22: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Optical axis - axis normal to both sides of lens - light is not refracted along the optical axisFocus - the point where light rays parallel to optical axis converge; the focus is always found on the opposite side of the lens from the objectFocal length - the distance from the focus to the centerline of the lens

Geometry of a Converging (Convex) Lens

Optical axisFocus

Focal length

Page 23: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Lens and Mirror AberrationsSPHERICAL (lens and mirror)

Light passing through different parts of a lens or reflected from different parts of a mirror comes to focus at different distances from the lens.

Result: fuzzy image

CHROMATIC (lens only)

Objective lens acts like a prism.

Light of different wavelengths (colors) comes to focus at different distances from the lens.

Result: fuzzy image

Page 24: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Simple lenses suffer form the fact that light rays entering different parts of the lens have slightly difference focal lengths. This defect is corrected with the addition of a second lens.

One focal point for all light rays

The problem

The solution

Spherical Aberration in Lenses

Page 25: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Simple concave mirrors suffer from the fact that light rays reflected from different locations on the mirror have slightly different locations on the mirror have slightly different focal lengths. This defect is corrected by making sure the concave surface of the mirror is parabolic

The Problem

The Solution

All light rays converge at a single point

Spherical Aberration in Mirrors

Page 26: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Focal point for blue light

Focal point for red light

Focal point for all light

The problem

The solution

Simple lenses suffer from the fact that different colors of light have slightly different focal lengths. This defect is corrected by adding a second lens

Chromatic Aberration in Lenses

Page 27: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Coma

• Affects Fast Mirrors with deeply curved reflecting surface• Causes elongation in one axis if the object is not near

the center of the FOV• Faster the Mirror the more of an issue.• Its Not a mistake in workmanship• This off-axis distortion is called coma, named after the

term for a comet’s head

Page 28: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Types of Optical Telescopes

Page 29: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Basic Telescope Designs

Refractor• Uses a lens to gather the

light to a point• Most rugged design - easy to

care for• Gives the sharpest views -

especially of planets and the moon

• Most expensive for any given aperture

• Usually the tube is quite long, although short tube designs are now available

• Inexpensive models suffer from chromatic aberration – achromatic vs. apochromatic

Page 30: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Basic Telescope Designs

Reflector• Uses a mirror to gather the

light to a point• Open tube collects dust,

mirror eventually tarnishes• Requires periodic alignment

(collimating) of the mirrors• Least expensive for any

given aperture• Available in both long and

short tube design• Generally no chromatic

aberration• Most “bang for the buck”

Page 31: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Basic Telescope Designs

CompoundSchmidt-Cassegrain, Maksutov

• Uses mirror and lens to gather the light to a point

• Sharp views, Maksutov are almost as good as refractors

• Closed tube protects optics• Moderate cost for any given

aperture• Tube is shortest for any

given aperture• Most portable for any given

aperture

Page 32: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Refracting Telescope

Uses lens to focus light from distant object - the eyepiece contains a small lens that brings the collected light to a focus and magnifies it for an observer looking through it.

Focal Ratio= FL/Obj Diam

FL= Focal Length

Obj Diam

Page 33: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Types of Reflecting Telescopes

Each design incorporates a small mirror just in front of the prime focus to reflect the light to a convenient location for viewing.

Page 34: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Focal Length and Focal Ratio

• Focal Ratio= Focal Length/Objective Diam• Faster = Shorter= is smaller ratio• Shorter Focal Ratio Optics (F6 and below)

• Wider Fields of View• More Compact• More Expensive or More Distorted

– Optics must be close to perfect– Fast Optics are difficult to make

Page 35: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Telescope Specs

• 100mm F7 Refractor

• 100mm F10 Refractor

• 200mm F10 Schmidt Cass

• 400mm F4.5 Newtonian

• 16 inch F4.5 Newtonian

Page 36: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

The Powers of a Telescope

The Powers of a Telescope

Light Light Gathering PowerGathering Power: Astronomers prefer *large* telescopes. A large telescope can intercept and focus more starlight than does a small telescope. A larger telescope will produce brighter images and will be able to detect fainter objects.

Resolving Resolving PowerPower: A large telescope also increases the sharpness of the image and the extent to which fine details can be distinguished.

MagnificationMagnification: The magnifying power is the ability of the telescope to make the image appear large in the field of view.

Page 37: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Three Fundamental Properties of a Telescope

Light-Collecting Area think of the telescope as a “photon bucket”

The amount of light that can be collected is dependent on the mirror area A = (D/2)2

Resolutionsmallest angle which can be seen

= 1.22 / D

The angular resolution of a reflecting telescope is dependent on the diameter of the primary (D) and the wavelength of the light being viewed ()

These properties are much more important than magnification which is produced by placing another lens - the eyepiece - at the mirror focus.

Page 38: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Light Gathering Ability: Size Does Matter

1. Light-gathering power: Depends on the surface area A of the primary lens / mirror, proportional to diameter squared:

A = (D/2)2

D

Page 39: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Angular Resolution

• The ability to separate two objects.

• The angle between two objects decreases as your distance to them increases.

• The smallest angle at which you can distinguish two objects is your angular resolution.

Page 41: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Eyepieces

• Used to magnify the image at the focal plane for viewing by the naked eye

• Your image will only be as good as the weakest chain in your optical system

• Many Different designs– All specified with an Eyepiece FL and an

AFOV

Page 43: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Types of Eyepieces

• Old designs (limited use)– Huyghenian, Ramsden, Kellner, Erfle– Low Cost, with distortion

• Gold Standards, (52deg AFOV)– Plossl, Orthoscopics– Med Cost, without distortion

• Widefields, ( up to 82deg AFOV)– Naglers, Panoptics, Radians, Swans– High Cost: Distortion Free AFOV correlates to Cost– More money vs more distortion

Page 44: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Magnifying Power

Magnifying Power = ability of the telescope to make the image appear bigger.

The magnification depends on the ratio of focal lengths of the primary mirror/lens (Fs) and the eyepiece (Fe):

M = Fs/Fe

A larger magnification does not improve the resolving power of the telescope!

Rule of Thumb- Maximum useful Mag is 50x per inch of Objective diameter under ideal seeing

- 20x to 30x per inch of Objective is more common in NE

Page 45: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Field of View: FOV

• Each eyepiece design has a specified Apparent Field of View, AFOV

• AFOV/ Magnification = effective FOV – Expressed in angular degrees

Ex…

A 25mm Plossl with 52deg FOV is being used on a refractor with a 1000mm FL.

What is the magnification and FOV:

1000mm FL/25mm Ocular= 40x mag

52deg AFOV / 40 Mag = 1.3 deg effective FOV

Page 46: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Examples

• 100mm F7 Refractor, w 32mm Plossl (52deg AFOV)• Mag• FOV

• 200mm F10 Schmidt Cass, w 32mm Nagler (82deg AFOV)• Mag• FOV

• 400mm F4.5 Newtonian, w 32mm Widefield (66deg AFOV)• Mag• FOV

Page 47: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Eye relief

• The distance from the last surface of the eyepiece eye lens (the lens closest to your eye) to where the image is formed.

• Eye relief should be fairly long for comfortable viewing, – if you must wear eyeglasses, you will need a minimum of 15mm

of eye relief to see the entire field of view – Eye relief usually decreases as eyepiece focal lengths get

shorter • More $$ for more eye relief

Page 48: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Barlow Lens

• x2 or x3 increase in your mag or a /2 or /3 decrease in your eyepiece FL.

• Using a x2 barlow you can make a 32mm eyepiece also serve as a 16mm eyepiece.– (But you keep the 32mm eye relief)

• Slight decrease in image brightness due to extra elements.

Page 49: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Telescope MountsAltitude-Azimuth (Alt-Az)• Simple, easy to use• Inexpensive• Most portable

Equatorial• Easy to keep objects in

the field of view• More difficult to setup• Usually heavy• Usually driven

Dobsonian (Dob)• Very easy to use• Least expensive ??• Very stable

Most important: Stability!

Many mountsare motorized,

some arecomputerized!

Page 50: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Finders

• Why? most telescopes have a 1 to 2 deg FOV at their lowest magnification

• Types– Reflex Sight:

• Zero Power• dovetail, red dot, telrad (concentric circles)

– Magnifying 30mm, 50mm and 70mm• Correct view • Telescope view

Page 51: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Finder Protocol

• Use a star map to define area to observe

• Use the finder to point the scope to the general area

• Use your eyepiece with the widest effective field to locate your target.

• Happy Observing

Page 53: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

• Filters are designed to block light.

• This inherently darkens the image, so the scope must be able to pull in enough light to still allow you to see the object you are interested in.

• Due to this fact, small telescope often do not benefit from filters.

• The Moon looks better through a filter in any size telescope.

• The Sun can be viewed directly with the proper filter.

Filter Basics

• Most filters are threaded for attaching to the bottom of eyepieces, the front of diagonals or to the visual back of an SCT telescope.

Page 54: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

• Conventional solar filters come in two varieties (glass and Mylar film) and allow us to see sunspots on the surface of the sun.

• Most Mylar filters show the sun as a blue disk. Glass filters generally show the sun in yellow. Baader Solar Film (Mylar) show the sun as a white disk and has the best contrast.

• H-Alpha filters are expensive, but allow us to view the flares and other features in the Sun’s chromosphere.

Solar Filters

These conventional solar filters mount on the front of the scope.

Never use a solar filter that mounts on the eyepiece!

Page 55: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

• The Moon is very bright, especially at lower magnifications. This makes it difficult to see fine detail.

• A standard lunar filter may block 80% or more of all visible light.

• A polarizing filter uses two polarized elements that can be rotated to vary the amount of light blocked.

Moon Filters

Page 56: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

• Color filters are mostly used for the planets.

• By blocking certain wavelengths (colors) of light, they help to bring out faint details.

• To learn what colors work well for which planets, visit the Learning Center at www.telescope.com.

• Other than Jupiter and Venus (two very bright objects) color filters will not provide much benefit for scopes smaller than 4.5”.

Color Filters

Page 57: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

• Designed to pass only certain wavelengths of light in order to show faint objects while blocking manmade light and skyglow.

• Broadband filters allow most light to pass, but block wavelengths commonly produced by exterior lighting. They improve most faint objects.

• Narrowband filters block much more light, but pass the light emitted by many faint nebulae.

Deep Sky Filters

• Oxygen III (O-III) filters block all but the one specific wavelength common to just a few nebulae (the Veil nebula for example).

• Hydrogen Beta (H-Beta) filters block all but the one specific wavelength common to just a few nebulae (the Horsehead and California nebula for example).

• These filters will not provide much benefit for scopes smaller than 6”.

Page 58: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Credits

• Phillip Anderson, University of Texas• Joseph Howard, Info Technology• Michael Swanson, US Naval Hospital Okinawa

Page 60: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Snell's Law

                                  Where:VL1 is the longitudinal wave velocity in

material 1.VL2 is the longitudinal wave velocity in

material 2.

Snell's Law describes the relationship between the angles and the velocities of the waves. Snell's law equates the ratio of material velocities VL1 and VL2 to the ratio of the sine's of incident and refracting angles.

Page 61: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Snell's Law

where 1 and 2 are the angles from the normal of the incident and refracted waves, respectively.

n1, n2 are indices of refraction of the two media respectively.

n=(c/v) where :

C is the velocity of light and

v is the velocity of light in that medium

Page 62: Telescopes and Optics NHAS Astro 101. Agenda Optics relating to Telescopes, Lenses and Mirrors Types of Telescopes and their advantages Focal Length and

Reflecting telescopes are primary astronomical tools used for research:

1. Lens of refracting telescope very heavy - must be placed at end of telescope - difficult to stabilize and prevent from deforming

2. Light losses from passing through thick glass of refracting lens - must be very high quality and perfectly shaped on both sides

3. Refracting lenses subject to chromatic aberration

Refracting vs Reflecting Telescopes