temperature and he at conduction beyond fourier law peter ván

28
Temperature and heat conduction beyond Fourier law Peter Ván HAS, RIPNP, Department of Theoretical Physics and BME, Department of Energy Engineering 1.Introduction 2.Theories − Cattaneo-Vernotte − Guyer-Krumhansl Jeffreys type 3.Experiments Common work with B. Czél, T. Fülöp , Gy. Gróf and J. Ve

Upload: stuart

Post on 11-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Temperature and he at conduction beyond Fourier law Peter Ván HAS, RIPNP, Department of Theoretical Physics and BME, Department of Energy Engineering. Introduction Theories Cattaneo-Vernotte Guyer-Krumhansl Jeffreys type Experiments. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Temperature and he at conduction beyond Fourier law Peter  Ván

Temperature and heat conduction beyond Fourier law

Peter VánHAS, RIPNP, Department of Theoretical Physics

and BME, Department of Energy Engineering

1. Introduction2. Theories

− Cattaneo-Vernotte− Guyer-Krumhansl− Jeffreys type

3. Experiments

Common work with B. Czél, T. Fülöp , Gy. Gróf and J. Verhás

Page 2: Temperature and he at conduction beyond Fourier law Peter  Ván

Heat exchange experiment

http://remotelab.energia.bme.hu/index.php?page=thermocouple_remote_desc&lang=en

Page 3: Temperature and he at conduction beyond Fourier law Peter  Ván
Page 4: Temperature and he at conduction beyond Fourier law Peter  Ván

)( 0TTlT

Model 1 (Newton, 3 parameters):

Estimate Std. Error

l 0.02295 0.00014

T0 52.52 0.02

Tini 27.33 0.09

Page 5: Temperature and he at conduction beyond Fourier law Peter  Ván
Page 6: Temperature and he at conduction beyond Fourier law Peter  Ván

)( 0TTlT

Model 1 (Newton, 3 parameters):

Model 2 (Extended Newton, 5 parameters):

)( 0TTlTT

Estimate Std. Error

l 0.02295 0.00014

T0 52.52 0.02

Tini 27.33 0.09

Page 7: Temperature and he at conduction beyond Fourier law Peter  Ván
Page 8: Temperature and he at conduction beyond Fourier law Peter  Ván

)( 0TTlT

Model 1 (Newton, 3 parameters):

Model 2 (Extended Newton, 5 parameters):

)( 0TTlTT

Estimate Std. Error

l 0.02295 0.00014

T0 52.52 0.02

Tini 27.33 0.09

Estimate Std. Error

l 0.0026 0.0009

T0 53.3 0.30

Tini 26.98 0.05

35.8 1.6

vTini 0.617 0.004

Page 9: Temperature and he at conduction beyond Fourier law Peter  Ván

Why?

− two step process

)(1

0TTTT

)(

)(

1

011

TTT

TTT

)( 0TTlTT

T0 T1 T

α β

Page 10: Temperature and he at conduction beyond Fourier law Peter  Ván

Oscillations in heat exchange:

− parameters model - values micro - interpretation

− macro-meso mechanism

Page 11: Temperature and he at conduction beyond Fourier law Peter  Ván

Fourier – local equilibrium (Eckart, 1940)

0

0

ii

ii

Js

qe

ji q

TJes

1,

Entropy production:

0,1

2 TT

T

L

TLq iiii

Constitutive equations (isotropy):

Fourier law

01111

Tqq

TTqq

TT

qe

de

dsJs iijiiiii

iiii

Page 12: Temperature and he at conduction beyond Fourier law Peter  Ván

Constitutive equations (isotropy):

Cattaneo-Vernotte

Cattaneo-Vernotte equation (Gyarmati, 1977, modified)

0

0

ii

ii

Js

qe

ji q

TJq

mes

1,

22

TT

Lqq

T

mLq

T

m

TLq iiiiii

2

1

Entropy production:

011

iii

iiiiiiii q

T

m

Tq

T

qqq

T

mq

TJs

Page 13: Temperature and he at conduction beyond Fourier law Peter  Ván

0 iiqe

Heat conduction constitutive equations

.

,

,

,

,

2

21

ijjii

iiii

ijjjijiii

iii

ii

qaTq

TlTqq

qaqaTqq

Tqq

Tq

Fourier (1822)

Cattaneo (1948), (Vernotte (1958))

Guyer and Krumhansl (1966)

Jeffreys type (Joseph and Preziosi, 1989))

Green-Naghdi type (1991)

Tkkc iiii ,21

there are more…

Page 14: Temperature and he at conduction beyond Fourier law Peter  Ván

0

0

ii

ii

Js

qe

jiji qBJ

mes

,

22

Thermodynamic approachvectorial internal variable and current multiplier (Nyíri 1990, Ván 2001)

Entropy production:

01

1

iijijiijijji

jijiiiiiii

T

mqB

TBq

qBT

mq

TJs

Page 15: Temperature and he at conduction beyond Fourier law Peter  Ván

Constitutive equations (isotropy):

.1

ˆ,ˆ

ˆ,ˆ

321

22221

1212121

ijkkijjiijij

ijiji

ijiji

qkqkqkT

B

T

mlllBl

T

mlllBlq

,),(,),(

,,,1

22

1231

2

112

2231

21

22

122

21

2

kl

lbkk

l

lbk

l

Lakk

l

La

Tl

l

Tl

L

l

ijjjijijjjijiiii qbqbqaqaTTqq 212121

0

,0,0

0ˆˆ

,0,0

3

21

211221

21

k

kk

llllL

ll

Page 16: Temperature and he at conduction beyond Fourier law Peter  Ván

1+1 D:

'.'''''

,0'

21 qbaqTTqq

qTc

'.'''ˆ''ˆ1TaTaTTT

''ˆ''ˆ

''ˆ''ˆ

''ˆ

''ˆ

TaTT

TaTTT

TTT

TT

Fourier

Cattaneo-Vernotte

Guyer and Krumhansl and Jeffreys type

Green-Naghdi type

Page 17: Temperature and he at conduction beyond Fourier law Peter  Ván

Calculations

Page 18: Temperature and he at conduction beyond Fourier law Peter  Ván

iii

iii

ii

qqqTqq

Tq

~ˆ~~~

ˆˆ

'ˆ')ˆ~

(

'ˆ'~

ˆ'ˆ'~~

TTqq

TTqqTTqq

1+1D:

a) Jeffreys-type equation – heat separation

Jeffreys

‘Meso’ models

Page 19: Temperature and he at conduction beyond Fourier law Peter  Ván

),(),( trTtrq ii

Taylor series:

TkTqq iiii 1

b) Jeffreys-type equation – dual phase lag

Jeffreys

This is unacceptable.

Page 20: Temperature and he at conduction beyond Fourier law Peter  Ván

''''1

)''()(''

12

12

111

112

12

2

212

2

21111

Tc

gT

c

cgc

Tcc

gT

c

gTT

c

gTgTgTc

1+1D:

)(

),(

2122

1

2111

TTgc

Tq

TTgqcii

ii

c) Jeffreys-type equation – two steps

Jeffreys

Page 21: Temperature and he at conduction beyond Fourier law Peter  Ván

Waves +… in heat conduction:

− thermodynamic framenonlocal hierarchy (length

scales)

− macro-meso mechanismsframe is satisfied

Page 22: Temperature and he at conduction beyond Fourier law Peter  Ván

Memory Nonlocality Objectivity Thermo-dynamics

Fourier no no research ok

Cattaneo-Vernotte yes no research ok

Guyer-KrumhanslGyarmati-Nyíri, (linearized Boltzmann)

yes yes ? ok

Jeffreys type1. internal variable, 2 .heat separation3. dual phase lag,

4. two steps

yes yes ? ok

Ballistic-diffusive(Boltzmann split)

yes yes ? ?

Heat conduction equations

Page 23: Temperature and he at conduction beyond Fourier law Peter  Ván

Experiments

Homogeneous inner structure – metals- typical relaxation times: = 10-13- 10-17 s- Cattaneo-Vernotte is accepted: ballistic phonons(nano- and microtechnology?)

Inhomogeneous inner structure- typical relaxation times: = 10-3- 100 s- experiments are not conclusive

Page 24: Temperature and he at conduction beyond Fourier law Peter  Ván

Resistance wire Thermocouple

Kaminski, 1990

Particulate materials: sand, glass balottini, ion exchanger

= 20-60 s

Page 25: Temperature and he at conduction beyond Fourier law Peter  Ván

Mitra-Kumar-Vedavarz-Moallemi, 1995

Processed frozen meat: = 20-60 s

Page 26: Temperature and he at conduction beyond Fourier law Peter  Ván

Scott-Tilahun-Vick, 2009

− repeating Kaminski and Mitra et. al.

− no effect

Herwig-Beckert, 2000

˗ sand, different setup˗ no effect

Roetzel-Putra-Das, 2003

− similar to Kaminski and Mitra et. al.

− small effect

Page 27: Temperature and he at conduction beyond Fourier law Peter  Ván

Summary and conclusions

− Inertial and gradient effects in heat conduction

− Internal variables versus substructures(macro – micro) black box – universality

− No experiments for gradient effects(supressed waves?)

Page 28: Temperature and he at conduction beyond Fourier law Peter  Ván

iiiu

ii qqquuuqu ˆ~,~ˆ,

1D:

,ˆ~,ˆ

ˆ

~~

0

0 fffff

f

ffff

f

uqq

uqu

iii

ii

ˆˆˆ

,~~~

Ballistic, analytic solution

Ballistic-diffusive equation (Chen, 2001)Boltzmann felbontás

diffusive

?