temporal characterization of laser accelerated electron bunches using coherent thz

31
Temporal characterization of laser accelerated electron bunches using coherent THz Website: http://loasis.lbl. Wim Leemans and members of the LOASIS Program Lawrence Berkeley National Laboratory BIW 2006 May 1-4, 2006

Upload: varian

Post on 16-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Temporal characterization of laser accelerated electron bunches using coherent THz. Wim Leemans and members of the LOASIS Program Lawrence Berkeley National Laboratory. BIW 2006 May 1-4, 2006. Website: http://loasis.lbl.gov/. plasma. d=2 mm. LWFA: two regimes for bunch production - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Temporal characterization of laser accelerated electron bunches using coherent THz

Temporal characterization of laser accelerated electron bunches using coherent THz

Website: http://loasis.lbl.gov/

Wim Leemansand members of the LOASIS Program

Lawrence Berkeley National Laboratory

BIW 2006May 1-4, 2006

Page 2: Temporal characterization of laser accelerated electron bunches using coherent THz

Laser wakefield acceleration

Sprangle et al. (92); Antonsen, Mora (92); Andreev et al. (92); Esarey et al. (94); Mori et al. (94)

d=2 mm

plasmaLWFA: two regimes for bunch production • Large-energy-spread bunch (unchanneled) • Quasi-mono-energetic bunch (channeled)

1. Ionization of gas by laser2. Ponderomotive push of

plasma electrons3. Restoring force from due to

charge separation4. Density oscillation: strong

electric fields (100 GV/m)

Page 3: Temporal characterization of laser accelerated electron bunches using coherent THz

10 TW Ti:sapphire 100 TW-class Ti:sapphire Shielded target room

Tool: LOASIS multi-terawatt laser

LOASIS laser system

Three main amplifiers (Ti:sapphire,10 Hz):- Godzilla:

0.5-0.6 J in 40-50 fs (10-15 TW) ===> main drive beam (to date)- Chihuahua:

20-50 mJ in 50 fs ===> ignitor beam250-300 mJ in 200-300 ps ===> heater beam100-200 mJ in 50 fs ===> colliding beam

- T-REX:2-3 J in 30-40 fs ===> capillary experiments

} guiding

Page 4: Temporal characterization of laser accelerated electron bunches using coherent THz

Mid 90’s -2003: short pulse laser systems generate electron beams with 100 % energy spread

~10 mrad

e-beam on phosphor screen

100

101

102

103

104

0 10 20 30 40 50

E[MeV]

Detection Threshold

e-beam spectrum

Energy spectrum obtained with a magnetic spectrometer

Modena et al. (95); Nakajima et al. (95); Umstadter et al. (96); Ting et al. (97); Gahn et al. (99);

Leemans et al. (01); Malka et al. (01)

LWFA experiments produce electrons with:

1-100 MeV, multi-nC, ~100 fs, ~10 mrad divergence

Jet

Laser beam

Electron beam

Magnet

PhosphorPhosphor

OAP

Gas Jet

ChargeDetector

Magnet

vacuum

CCD

Page 5: Temporal characterization of laser accelerated electron bunches using coherent THz

How short are the bunches ?

•Simulations predict 10-20 fs

•Can we measure them? (Is the linac stable enough?)

• Coherent emission

I total(ω)= N+N(N−1)g(k) 2{ }I e(ω)

g(k)= ρ(z)eikzdz−∞

Dominates if z <

Page 6: Temporal characterization of laser accelerated electron bunches using coherent THz

Diagnostic relies on coherent transition radiationfrom the plasma-vacuum boundary

Schematic for Transition Radiation

Boundary size

Leemans et al., Phys. Rev. Lett. (2003);Schroeder et al., Phys. Rev. E (2004);Van Tilborg et al., Phys. Rev. Lett. (2006)

Laser-Wakefield Accelerator

Diagnostic implementation:• Use radiated field• Couple out of vacuum chamber

Page 7: Temporal characterization of laser accelerated electron bunches using coherent THz

In detail: CTR from Plasma-vacuum boundary

Page 8: Temporal characterization of laser accelerated electron bunches using coherent THz

CTR (THz) in spectral and temporal domain

Schroeder et al., Phys. Rev. E (04)van Tilborg et al., Laser Part. Beams (04)van Tilborg et al., Phys. Plasmas, submitted

Intense THz source• 0.01-10 MV/cm at focus (up to 10’s of J in THz pulse)• ‘traditional’ laser-based sources deliver <100 kV/cm

Diffraction function(boundary size )

Form factor

CTR spectrum CTR in time

Single electron TR

Page 9: Temporal characterization of laser accelerated electron bunches using coherent THz

Temporal THz measurement: electro-optic sampling

Valdmanis (82); Yariv (88); Gallot (99); Yan (00); Fitch(01); Wilke(02); Berden(04); Cavalieri(05)

Phase shift is proportional to THz field

Page 10: Temporal characterization of laser accelerated electron bunches using coherent THz

Electro-Optic measurement of Coherent Transition Radiation yields information on laser accelerated electron beam: < 50 fs bunches

W.P. Leemans et al., PRL2003C.B. Schroeder et al., PRE2004J. Van Tilborg et al., Laser and Particle Beams 2004; PRL 2006

Page 11: Temporal characterization of laser accelerated electron bunches using coherent THz

Choice of EO-material affects temporal resolution

• ZnTe vs GaP: • ZnTe cutoff ~ 4 THz • GaP cutoff ~ 8 THz

• CTR based on 50 fs (rms) Gaussian electron bunch

Page 12: Temporal characterization of laser accelerated electron bunches using coherent THz

Scanning technique(takes 1.5 hours)

• < 50 fs bunches

•Synchronization

• Charge and bunch stability

Scanning technique provides bunch duration: Resolution limited by crystal properties

Van Tilborg et al., PRL2006, Phys. Plasmas06

Page 13: Temporal characterization of laser accelerated electron bunches using coherent THz

Single-Shot Technique for EO detection of THz pulses:Information on every bunch

J. van Tilborg et al., submitted to PRLG. Berden et al., Phys. Rev. Lett. 93, 114802 (2004)

• < 50 fs bunches

• peak E-field of ECTR≈150 kV/cm

3 ps

50 fs

Page 14: Temporal characterization of laser accelerated electron bunches using coherent THz

Experiments show double THz pulse

Red curves are double-THz-pulse-based waveforms and spectra

Spectrum AShot A

Spectrum BShot B

Use GaP instead of ZnTe• Higher bandwidth

Observation

•Temporal waveform: double pulse

•Spectral modulation

Why?

• Double bunch e-beam ?

Page 15: Temporal characterization of laser accelerated electron bunches using coherent THz

Single-shot 2D EO imaging provides spatial profile of THz beam

5 mm

7 mmShot 2=796 fs

Shot 1=546 fs

Shot 3=1154 fs

Van Tilborg et al., to be published

•Measure 2 D THz profile

• Focused THz beam

• Collimated laser beam

• Step laser beam in time

Page 16: Temporal characterization of laser accelerated electron bunches using coherent THz

‘Ray Optics’ approach to analyze spatio-temporal effects of coma

Sho

t 3=

1154

fs

Page 17: Temporal characterization of laser accelerated electron bunches using coherent THz

Propagation of a single-cycle pulse through focus

t=0t=+0.3

t=+0.6t=-0.3

t=-0.6

no coma

t=0t=+0.3

t=+0.6

t=-0.3t=-0.6

with coma

Page 18: Temporal characterization of laser accelerated electron bunches using coherent THz

‘Ray optics’ model for waveform and spectrum

With coma

No coma

Page 19: Temporal characterization of laser accelerated electron bunches using coherent THz

Large spot size, no channel (ZR order of gas jet length)

• RAL/IC: (Mangles et al.)• No Channel: 21019 cm-3

• Laser: 12 TW, 40 fs, 0.5 J, 2.51018 W/cm2, 25 m

• E-bunch: 1.4108 (22 pC), 70 MeV, E/E=3%, 87 mrad

• LOA: (Faure et al.)• No Channel: 0.5-2x1019 cm-3

• Laser: 30 TW, 30 fs, 1 J, 18 m• E-bunch: 3109 (0.5 nC), 170 MeV, E/E=24%,10 mrad

Controlled laser guiding with channel• LBNL: (Geddes et al.)

• Plasma Channel: 1-4x1019 cm-3

• Laser: 8-9 TW, 8.5 m, 55 fs

• E-bunch: 2109 (0.3 nC), 86 MeV, E/E=1-2%, 3 mrad

2004 Results: High-Quality Bunches

Page 20: Temporal characterization of laser accelerated electron bunches using coherent THz

Plasma Channel Production: Hydrodynamic Ignitor-Heater in H2 Gas Jet

*

P. Volfbeyn, E. Esarey and W.P. Leemans, Phys. Plasmas 1999C.G.R. Geddes et al., Nature 431, p. 543 (2004), Phys.Rev.Lett. (2005).

Plasma channel

CCD &Spectrometer

2 probe

Interferometer

CylindricalMirror

Heater beam100mJ 250ps

e-

H, He gas jet

Main beam<500mJ >50fs

Pre ionizingBeam 20mJ

Ti:sapphire

Page 21: Temporal characterization of laser accelerated electron bunches using coherent THz

At laser power of 8-9 TW: e-beam with %-level energy spread, 0.3 nC, 1-2 mm-mrad

UnguidedBeam profile Spectrum

Guided

Charge~100 pC

2-5 mrad divergence

C.G.R. Geddes et al., Nature 431 (2004); PRL (2005); Phys. Plasmas 2005

Page 22: Temporal characterization of laser accelerated electron bunches using coherent THz

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

-4 -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00

z-vgt

vM

om

en

tum

Phase

Group velocity of laser < speed of light causes particle dephasing which causes momentum bunching

• Dephasing distance:

• Control via density and a0 (laser intensity)

• Optimum acceleration requires Lacc = Ldeph: channel or large ZR

Page 23: Temporal characterization of laser accelerated electron bunches using coherent THz

Wake Evolution and Dephasing Yield Low Energy Spread Beams in PIC Simulations

WAKE FORMING

INJECTION

DEPHASINGDEPHASING

Propagation Distance

Lon

gitu

dina

l M

omen

tum

200

0

Propagation DistanceL

ongi

tudi

nal

Mom

entu

m

200

0

Propagation Distance

Lon

gitu

dina

l M

omen

tum

200

0

Geddes et al., Nature (2004) & Phys. Plasmas (2005)

Page 24: Temporal characterization of laser accelerated electron bunches using coherent THz

Next step: GeV laser driven accelerator

Increasin

g beam

energy:

cm-scale

capillary

discharg

e + 100

TW laser

CapillaryL'OASIS 100 TW laser

Wd[GeV] ~ I[W/cm2] n[cm-3]

• Lower density needed: capillary discharges

Plasma injector

3-5 cm

e- beam

1-2 GeVLaser

40-100 TW40 fs

CapillaryTREX

Page 25: Temporal characterization of laser accelerated electron bunches using coherent THz

Capillary channel guiding: set-up

Page 26: Temporal characterization of laser accelerated electron bunches using coherent THz

Hydrogen based capillary discharge produces suitable density profile for guiding

• 209 m diameter capillary

• 85 mbar initial pressure

• n0 = 8.5x1017 cm-3

• 32 micron matched spot

• Mach-Zehnder interferometer

A. Gonsalves et al., submitted to PRL

CCD

Page 27: Temporal characterization of laser accelerated electron bunches using coherent THz

40 TW power guided over > 3 cm

P = 0.1-40 TW in 40 fs, 10 Hz

wx,in=wy,in= 26 m

wx,out=wy,out= 33 m

Output

Input

Page 28: Temporal characterization of laser accelerated electron bunches using coherent THz

LOASIS GeV Spectrometer

1GeV

160MeV

40MeV

moderate resolution

Forward view: 0.16 - 1GeV

Interaction point

Yoke

Phosphor

Bottom view: 40-160 MeVhigh resolution(under const.)

Mirr

or a

nd c

amer

as

Capillary

Chamber Shielded mirror and cameras

- Large momentum acceptance (factor 25)

- Maximum resolving energy: ~1.1 GeV

- High resolution (bottom: <1%, forward: 2~4%)Chamber

Beamline

Pole

Page 29: Temporal characterization of laser accelerated electron bunches using coherent THz

Up to 1 GeV achieved with 40 TW laser pulses

25 TW

E<0.6 GeV

Q~50-300 pC

40 TW

E< 1.1 GeV

Q~50-100 pC

DATA UNDER PRESS EMBARGO

Page 30: Temporal characterization of laser accelerated electron bunches using coherent THz

Summary

• Single shot EO-based methods of CTR THz radiation measures <

50fs laser-wakefield accelerated e-bunches

• Single cycle THz detected, 0.4 MV/cm

• Spatio-temporal coupling from aberrations in imaging can lead to

apparent double bunches

• GeV electron beam generated in 3.3 cm with 40 TW laser pulses

–THz based bunch profile measurements underway

–Novel diagnostics needed with fs and sub-fs resolution for slice

energy spread and emittance

• Next steps are on staging modules towards 10 GeV

Page 31: Temporal characterization of laser accelerated electron bunches using coherent THz

Scientists and Techs of LOASIS team

Staff:

Exp’t: C. Geddes, W. Leemans, C. TothTheory: E. Esarey, C. Schroeder, B. Shadwick,Postdocs:E. Michel*, P. Michel, B. NaglerStudents: K. Nakamura, J. van Tilborg, G. Plateau,T. Wolf Techs: D. Syversrud, N. Ybarrolaza

Collaborators:

D. Bruhwiler, D. Dimitrov, J. Cary--TechX CorpT. Cowan, H. Ruhl -- University of Nevada, Reno*

S. Hooker, A. Gonsalves--Oxford University, UKR. Ryne, J. Qiang--AMAC, LBNLR. Huber, R.Kaindl, J. Byrd, M. Martin--LBNLW. Mori--UCLAD. Jaroszynski-University of Strathclyde, UKM. Van der Wiel-TUE, Eindhoven, NLG. Dugan--Cornell UniversityD. Schneider, B. Stuart, C. Barty, C. Bibeau--LLNL