tensor categorical structure of observables in …tanimura/lectures/tanimura...dimensional analysis...

34
Tensor categorical structure of observables in classical physics Shogo Tanimura Department of Complex Systems Science Graduate School of Informatics Nagoya University Symposium on the Categorical Unity of the Sciences Kyoto University, 2019 March

Upload: others

Post on 28-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Tensor categorical structure of observables in classical physics

Shogo TanimuraDepartment of Complex Systems Science

Graduate School of InformaticsNagoya University

Symposium on the Categorical Unity of the SciencesKyoto University, 2019 March

Page 2: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Introduction of myself

β€’ My name is Shogo Tanimura..β€’ I am a theoretical physicist.β€’ My main concerns are foundation of

quantum theory, dynamical system theory, application of differential geometry to physics, and category theory.

β€’ Today’s topic is a rather primitive application of category theory to both classical and quantum physics.

2

Page 3: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Plan of this talk

1. Review of elementary dimensional analysis

2. Category of physical quantities3. Dimensional analysis is formulated as

tensor category4. Unit system is a functor5. Unit transformation law is a natural

transformation6. Observable algebra in quantum

physics in terms of category3

Page 4: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysis

Calculus of physical quantities

3kg + 500g = 3000g + 500g = 3500g

4m + 70cm = 4m + 0.7m = 4.7m

40kg + 8cm = 48 ? illegal !

Addition, equality and inequality of quantities must be homogeneous with respect to physical dimension.

4

Page 5: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

NONSENSE Sum

Fredrick I. Olness at Snowmass Villagehttp://www.physics.smu.edu//~olness/www/index.html

5

Page 6: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysisin physics

[kg] = Mass[meter] = Length[sec] = Time[pressure] = [N/m2] = MLT-2L-2 = ML-1T-2

[mass density] = ML-3

[pressure]----------------- = L2 T-2[density]

[velocity] = L1 T-1 = [𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩][𝐝𝐝𝐩𝐩𝐝𝐝𝐩𝐩𝐝𝐝𝐝𝐝𝐝𝐝]

6

Page 7: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysisin physics

Estimation of the sonic speed in airRelevant parameters:

air pressure = 1 atm = 1.013 x 105 N/m2

air density = 1.2kg/m3

[pressure]----------------- = L2 T-2[density]

[velocity] = L1 T-1 = [𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩][𝐝𝐝𝐩𝐩𝐝𝐝𝐩𝐩𝐝𝐝𝐝𝐝𝐝𝐝]

= 290m/s

7

Page 8: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysisin physics

Physicists feel uneasy with dimensionally incoherent formula :

𝐸𝐸 = π‘šπ‘šπ‘π‘2 + 12π‘šπ‘šπ‘£π‘£

2 + 14π‘šπ‘šπ‘£π‘£

4

Physicist notice this formula is wrong by a glance.

Correct formula:

𝐸𝐸 = π‘šπ‘šπ‘π‘2 1 + 12𝑣𝑣𝑐𝑐2 + 3

8𝑣𝑣𝑐𝑐4 + β‹― =

π‘šπ‘šπ‘π‘2

1 βˆ’ 𝑣𝑣𝑐𝑐2

8

Page 9: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysisin mathematics

Quadratic equation and its solution:π‘Žπ‘Žπ‘₯π‘₯2 + 𝑏𝑏π‘₯π‘₯ + 𝑐𝑐 = 0

π‘₯π‘₯ =βˆ’π‘π‘ Β± 𝑏𝑏2 βˆ’ 4π‘Žπ‘Žπ‘π‘

2π‘Žπ‘ŽRequiring homogeneity of dimensions:

𝐴𝐴𝑋𝑋2 = π‘Žπ‘Žπ‘₯π‘₯2 = 𝑏𝑏π‘₯π‘₯ = [𝑐𝑐]π‘Žπ‘Ž = 𝐴𝐴, 𝑏𝑏 = 𝐴𝐴𝑋𝑋, 𝑐𝑐 = 𝐴𝐴𝑋𝑋2

π‘₯π‘₯ =βˆ’π‘π‘ Β± 𝑏𝑏2 βˆ’ 4π‘Žπ‘Žπ‘π‘

2π‘Žπ‘Ž=𝐴𝐴𝑋𝑋𝐴𝐴

= 𝑋𝑋

Consistent !9

Page 10: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysisin mathematics

Indefinite integral:

οΏ½π‘Žπ‘Ž

π‘Žπ‘Ž2 + π‘₯π‘₯2𝑑𝑑π‘₯π‘₯ = tanβˆ’1

π‘₯π‘₯π‘Žπ‘Ž

Homogeneity of dimensions is kept.

10

Page 11: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Dimensional analysisin quantum physics

Hamiltonian of harmonic oscillator:�𝐻𝐻 = 1

2π‘šπ‘šοΏ½Μ‚οΏ½π‘2 + 1

2π‘šπ‘šπœ”πœ”2 οΏ½π‘₯π‘₯2 + π‘šπ‘šπ‘šπ‘šοΏ½π‘₯π‘₯

�𝐻𝐻| βŸ©πœ‘πœ‘π‘›π‘› = 𝐸𝐸𝑛𝑛| βŸ©πœ‘πœ‘π‘›π‘›

𝐸𝐸𝑛𝑛 = β„πœ”πœ” 𝑛𝑛 + 12 βˆ’

π‘šπ‘šπ‘šπ‘š2

2πœ”πœ”2

πœ‘πœ‘π‘›π‘› π‘₯π‘₯ =1

2πœ‹πœ‹ 1/4Ξ”π‘₯π‘₯1/2 𝐻𝐻𝑛𝑛π‘₯π‘₯Ξ”π‘₯π‘₯ π‘’π‘’βˆ’

π‘₯π‘₯24Ξ”π‘₯π‘₯2

Ξ”π‘₯π‘₯2 β‰”β„πœ”πœ”

2π‘šπ‘šπœ”πœ”2Homogeneity of dimensions is kept again.

11

Page 12: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Question

Dimensional analysis works also in quantum theory.However, the standard mathematical formulations of quantum theory (Hilbert space formalism, von Neumann algebra, C*-algebra) do not concern physical dimensions of observables.I would like to formulate quantum theory in a language that involves physical dimensions.

12

Page 13: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

A Category of Simple Quantities

β€’ Object: Simple quantity = 1-dim vector space– addition– scalar multiplication by real number

β€’ Arrow: Linear mappingVelocity Hom 𝐿𝐿;𝑇𝑇 = πΏπΏβ¨‚π‘‡π‘‡βˆ—

Time 𝑇𝑇 β†’ 𝐿𝐿 Length, distance

𝑑𝑑 ⟼ 𝑙𝑙 = 𝑣𝑣𝑑𝑑𝑣𝑣 = 36 km/h = 10m/s

13

Page 14: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

A Category of Simple Quantities

β€’ Composition of linear mappings

𝑣𝑣 = 36 km/h = 10m/s

π‘šπ‘š = 100yen/300m = 13

yen/m

π‘šπ‘š ∘ 𝑣𝑣 = 103

yen/s = 3.33yen/s

Velocity 𝑑𝑑 ⟼ 𝑙𝑙 = 𝑣𝑣𝑑𝑑

Time 𝑇𝑇 β†’ 𝐿𝐿 Length, distance

β†˜ ↓ Meter 𝑙𝑙 ⟼ 𝑐𝑐 = π‘šπ‘šπ‘™π‘™

𝐢𝐢 Cost

π‘šπ‘š

𝑣𝑣

π‘šπ‘š ∘ 𝑣𝑣

14

Page 15: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

A Category of Simple Quantities

β€’ Hom-set is also a quantity𝑉𝑉 = Hom 𝑇𝑇; 𝐿𝐿 βˆ‹ 𝑣𝑣, πœ†πœ†π‘£π‘£, 𝑣𝑣1 + 𝑣𝑣2

β€’ Dual quantity: π‘‡π‘‡βˆ— = Hom(𝑇𝑇;ℝ)– frequency, density

β€’ Multilinear mappings define tensor productsπ‘‰π‘‰βˆ—β¨‚π‘Šπ‘Šβˆ— ≔ Hom(𝑉𝑉,π‘Šπ‘Š;ℝ) β‰… Hom(π‘‰π‘‰β¨‚π‘Šπ‘Š;ℝ)

𝑉𝑉 Γ— π‘Šπ‘Š β†’ π‘‰π‘‰β¨‚π‘Šπ‘Š

β†˜ ↓ βˆƒ!π‘“π‘“βˆ€π‘π‘

βˆ€π‘“π‘“

⨂Universality

15

Page 16: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

A Category of Simple Quantities

β€’ The set of all endomorphisms of 1-dim vector space is isomorphic to real number field: dimensionless quantity

Hom 𝐿𝐿; 𝐿𝐿 β‰… Hom 𝑇𝑇;𝑇𝑇 β‰… ℝ‒ Unit and Coefficient:

𝑉𝑉 β‰… Hom ℝ;𝑉𝑉𝒖𝒖 ⟼ (𝐸𝐸𝒖𝒖 ∢ πœ†πœ† ⟼ πœ†πœ†π’–π’–)

kg ⟼ (𝐸𝐸kg ∢ 60 ⟼ 60kg)If 𝒖𝒖 β‰  𝟎𝟎, 𝐸𝐸𝒖𝒖:β„βŸΆ 𝑉𝑉 is invertible:

𝛩𝛩𝒖𝒖 = 𝐸𝐸𝒖𝒖 βˆ’1:𝑉𝑉 ⟢ ℝ16

Page 17: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Higher-Dimensional Quantities

β€’ Object: quantity = finite dimensional vector space over ℝ

β€’ Arrow: linear mapping

β€’ simple quantity: pressure

β€’ higher-dim quantity: tension

area 𝐿𝐿⨂𝐿𝐿 β†’ 𝐹𝐹 force𝑝𝑝

area 𝑆𝑆⨂𝑆𝑆 β†’ 𝐹𝐹 force𝜏𝜏

dim 𝑆𝑆 = dim𝐹𝐹 = 3,17

Page 18: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Higher-Dimensional Quantities

β€’ Multilinear mappings𝑉𝑉1 Γ— 𝑉𝑉2 Γ— β‹―Γ— π‘‰π‘‰π‘˜π‘˜ ⟢ π‘Šπ‘Šπ‘‰π‘‰ Γ— 𝑉𝑉 Γ— β‹―Γ— 𝑉𝑉 ⟢ π‘Šπ‘Š

β€’ symmetric bilinear β‡’ inner productβ€’ antisymmetric β‡’ exterior productβ€’ orientation β‡’ parity, twisted quantityβ€’ contraction, trace

π‘‰π‘‰βˆ— Γ— 𝑉𝑉 β†’ π‘‰π‘‰βˆ—β¨‚π‘‰π‘‰β†˜ ↓

ℝpairing

⨂

contraction

18

Page 19: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

How to make equivalence classes of quantities?

When we have transformation laws among measurable quatities but no general measure

salt by cup

sugar by spoon

milk by bottle

coffee by cup

19

Page 20: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Abstractization of Quantities

completed category of quantities

category of bare quantities

Limitweight of salt

weight of sugar

weight of milk

weight of coffee

salt by cup

sugar by spoon

milk by bottle

coffee by cup

abstract weight

embedding functor

gravity

20

Page 21: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Abstractization of Quantities

category of abstract quantities

category of bare quantities

salt by cup

sugar by spoon

milk by bottle

coffee by cup

weight

forget, abstractize

force

length area volume

energy

acceleration

stage of dimensional analysis

time

velocity

21

Page 22: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Unit system is a functor,Unit transformation is a natural transformation

category of abstract quantities

category of real number vector spaces

time β†’ length𝑣𝑣

carmile-hour functor

SI functor

2 hours β†’ 50 miles𝑣𝑣 = 25 mile/h

7,200 sec β†’ 80,000 m

𝑣𝑣 = 11. 1m/s

22

Page 23: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Fineness of classification

fine category of abstract quantities

coarse category of abstract quantities

𝐸𝐸 = π‘šπ‘šπ‘π‘2

natural unit functor

mass

energy

frequency

momentum

lengthβˆ—

𝐸𝐸 = β„Žπœˆπœˆ

𝐸𝐸 = 𝑐𝑐𝑝𝑝

𝑝𝑝 = β„π‘˜π‘˜ =β„Žπœ†πœ†

mass

energy

frequency

momentum

lengthβˆ—

23

Page 24: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

How to quantize?= How to make non-commutative?

β€’ Tensor product of classical quantities is symmetric:

π‘‹π‘‹β¨‚π‘Œπ‘Œ β‰… π‘Œπ‘Œβ¨‚π‘‹π‘‹

β€’ In quantum theory, we would like to introduce non-commutative products of observables.

β€’ Algebraic structure must be consistent with dimensional analysis:

𝐸𝐸 =12π‘šπ‘š

𝑝𝑝2 +12π‘šπ‘šπœ”πœ”2π‘₯π‘₯2 + π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯

24

Page 25: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Toward quantization

category of classical physical quantities

𝐿𝐿

𝑃𝑃 = π‘€π‘€β¨‚πΏπΏβ¨‚π‘‡π‘‡βˆ’1𝐿𝐿⨂𝐿𝐿

1

category of quantum observables

βˆ— β†’ βˆ— βˆ— β†’ 𝐿𝐿 βˆ—π‘€π‘€

𝑀𝑀⨂𝐿𝐿

πΏπΏβˆ— = πΏπΏβˆ’1𝑇𝑇

𝐸𝐸 = 𝑀𝑀⨂𝐿𝐿2β¨‚π‘‡π‘‡βˆ’2

1

π‘₯π‘₯ + 𝑦𝑦

π‘¦π‘¦βˆ— β†’ 𝐿𝐿 βˆ—

βˆ— β†’ 𝐿𝐿 βˆ—

π‘₯π‘₯

Hom 𝐴𝐴 βˆ—,𝐡𝐡 βˆ— isrequired to be a vector space.

βˆ— β†’ 𝑃𝑃 βˆ—π‘π‘π‘₯π‘₯

25

Page 26: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Category of quantum observables

object: asterisk marked by classical quantityarrow: quantum observableEach hom-set is a vector space over β„‚.composition: product of quantum observables

βˆ— β†’ 𝐿𝐿 βˆ—π‘₯π‘₯

𝑝𝑝π‘₯π‘₯𝑃𝑃⨂𝐿𝐿 βˆ—β†˜ ↓𝑝𝑝π‘₯π‘₯ ∘ π‘₯π‘₯

π‘₯π‘₯

βˆ— β†’ 𝐿𝐿 βˆ—π‘₯π‘₯

𝑝𝑝π‘₯π‘₯𝑃𝑃 βˆ— β†’ 𝑃𝑃⨂𝐿𝐿 βˆ—

↓↓𝑝𝑝π‘₯π‘₯

𝑝𝑝π‘₯π‘₯ ∘ π‘₯π‘₯ β‰  π‘₯π‘₯ ∘ 𝑝𝑝π‘₯π‘₯26

Page 27: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Algebraic equation of quantum observables

Description of harmonic oscillator hamiltonian

βˆ— β†’ 𝐿𝐿 βˆ—β†’ 𝐿𝐿2 βˆ— β†’ 𝑀𝑀⨂𝐿𝐿2β¨‚π‘‡π‘‡βˆ’2 βˆ—π‘₯π‘₯

𝑝𝑝π‘₯π‘₯β†˜

π‘₯π‘₯12π‘šπ‘šπœ”πœ”

2

𝑃𝑃 βˆ— β†’ 𝑃𝑃2 βˆ— β†’ π‘€π‘€βˆ’1⨂𝑃𝑃2 βˆ—π‘π‘π‘₯π‘₯ 1

2π‘šπ‘š

𝐻𝐻 =12π‘šπ‘š

𝑝𝑝π‘₯π‘₯2 +12π‘šπ‘šπœ”πœ”2π‘₯π‘₯2

βˆ— 𝑀𝑀⨂𝐿𝐿2β¨‚π‘‡π‘‡βˆ’2 βˆ—27

Page 28: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Representation functor sends objects to Hilbert spaces and observables to operators

Category of Hilbert spaces with physical-quantity coefficients

�𝐻𝐻 =12π‘šπ‘š

�̂�𝑝π‘₯π‘₯2 +12π‘šπ‘šπœ”πœ”2 οΏ½π‘₯π‘₯2

β„Œ 𝑀𝑀⨂𝐿𝐿2β¨‚π‘‡π‘‡βˆ’2β¨‚β„Œ

β„Œ β†’ πΏπΏβ¨‚β„Œ β†’ 𝐿𝐿2β¨‚β„Œ β†’ 𝑀𝑀⨂𝐿𝐿2β¨‚π‘‡π‘‡βˆ’2β¨‚β„ŒοΏ½π‘₯π‘₯

�𝑝𝑝π‘₯π‘₯ β†˜

οΏ½π‘₯π‘₯12π‘šπ‘šπœ”πœ”

2οΏ½1

π‘ƒπ‘ƒβ¨‚β„Œ β†’ 𝑃𝑃2β¨‚β„Œ β†’ π‘€π‘€βˆ’1⨂𝑃𝑃2β¨‚β„Œ12π‘šπ‘šοΏ½1�𝑝𝑝π‘₯π‘₯

28

Page 29: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Eigenvector subspace is an equalizer

Category of Hilbert spaces with physical-quantity coefficients.Eigenvalue problem: �𝐻𝐻| βŸ©πœ‘πœ‘ = πœ€πœ€| βŸ©πœ‘πœ‘

�𝐻𝐻ℒ β„Œ πΈπΈβ¨‚β„Œ

πœ€πœ€οΏ½1

29

Page 30: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Summary 1/3

1. Quantities in classical physics forms a tensor category.

2. A set of isomophic quantities define an abstract quantity.

3. Functor sends a fine category to a coarse category of quantities.

4. Unit system is a functor from quantities to real values.

5. Unit transformation law is a natural transformation.

30

Page 31: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Summary 2/3

6. An observable in quantum physics is an arrow that multiplies physical quantity on an object:

βˆ— β†’ 𝐿𝐿 βˆ— 𝑀𝑀 βˆ— β†’ 𝐿𝐿⨂𝑀𝑀 βˆ—7. Hom-set is a vector space over β„‚.8. This structure guarantees

homogeneity of physical dimensions of terms in equations of observables.

π‘₯π‘₯ π‘₯π‘₯

31

Page 32: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Summary 3/3

9. Composition of quantum observables is non-commutative in general.

10. Representation functor sends objects to Hilbert spaces with physical-quantity coefficients and arrows to operators:

β„Œ β†’ πΏπΏβ¨‚β„Œ π‘€π‘€β„Œ β†’ πΏπΏβ¨‚π‘€π‘€β¨‚β„Œ11. Spectral values of observable

operators have suitable physical dimensions.

οΏ½π‘₯π‘₯ οΏ½π‘₯π‘₯

32

Page 33: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

References

1. Tanimura, β€œTopology, category, and differential geometry: from the viewpoint of duality” (in Japanese)

2. Tanimura, Series of lectures on geometry and physics published in Mathematical Science (in Japanese)

3. Kitano, β€œMathematical structure of unit systems” J. Math. Phys. 54, 052901 (2013)

33

Page 34: Tensor categorical structure of observables in …tanimura/lectures/Tanimura...Dimensional analysis in mathematics Quadratic equation and its solution: π‘Žπ‘Žπ‘₯π‘₯ 2 +𝑏𝑏+π‘₯π‘₯𝑐𝑐=

Thank you for your attention

34