terahertz sensing and imaging based on carbon …...1. thz detector : frequency-tunable thz...

28
Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO [email protected] http://www.riken.jp/lab-www/adv_device/kawano/index.html

Upload: others

Post on 26-Jun-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Terahertz sensing and imaging based on carbon nanotubes:Frequency-selective detection

and near-field imaging

Yukio Kawano

RIKEN, JST PRESTO

[email protected]://www.riken.jp/lab-www/adv_device/kawano/index.html

Page 2: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

1.1.THz detectorTHz detector::Frequency-tunable THz detector using a carbon nanotube

2.2.NearNear--field THz field THz imaingimaing::

On-chip near-field THz probe integrated with a detector

3.3.THz imaging application to semiconductor researchTHz imaging application to semiconductor researchSimultaneous imaging of THz radiation and voltage

4.4.SummarySummary

Outline

SiO2 filmB

Si-lens2DEG (Sample)

2DEG (Electrometer)

2DEG (THz detector)

Voltage

THz radiationTHz absorberDeleted image

Page 3: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

What is terahertz (THz) wave?

Detector, Source, Imaging, Spectroscopy....All basic components remain undeveloped

Wave (Electronics)

Light (Optics)

THz (1012Hz)undeveloped

Radio astronomyBiochemical spectroscopy Medicine Solid-state physics

Related fields: PhononEnergy gap of superconductorsImpurity level of semiconductorsEnergy spacing due to quantum confinementLandau level

Page 4: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

EC+∆E

G

S D

Tunnel barrier

Quantum dot

Single electron charging energy

10~50meV (=THz)

Carbon NanotubeQuantum Dot

Feature 1・・・Single electron transistor

Feature 2・・・Photon-assisted tunneling

N

N+1

N

N+1NN N+1N+1

LLλλ

calculation

strong

off

hf

strong

off

strong

off

hfhf

New current signalsvia photon detection

Why can a carbon nanotube be used as a THz detector?

Page 5: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Photon-assisted tunneling: Tien-Gordon modelPhoton sidebands

via combination with AC electric field

N

N+1

N

N+1NN N+1N+1

LLλλ

calculation

strong

off

hf

strong

off

strong

off

hfhf

Quantum dot (QD):Generation of new satellite currents

New energy levels are formed at intervals of nhfThe current follows the Bessel function of the illuminated power

Semiconductor QD: Microwave (GHz)Microwave (GHz) region

In our work: Carbon nanotube QD THzTHz region

102-103

higher

Page 6: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

THz gas laserTHz gas laser

Cryostat with Cryostat with an optical windowan optical window

Experimental setup

1.5K

Continuous oscillationFrequency tunable

Carbon NanotubeQuantum Dot

N++-Si(back gate)

Source Drain

SiO2

Tunnel barrier

CNT

CNT

Quantum dot

Page 7: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Transport properties (without THz irradiation)

・ thermal enregy @ 1.5 K: kBT~ 0.15 meV

・ Charging energy: EC = 9.1 meV

・ 0-D level spacing: ∆E = 2.1 meV

・ tunnel rate: Γ = 10 MHz(for 1.6 pA)

・ tunnel barrier height: φB ~ 5 meV

・ photon energy: hf = 10.3 meV(for f = 2.5 THz)

THz

Page 8: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

THz irradiation effect: THz frequency dependence

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

x10

-12

-0.80 -0.75 -0.70 -0.65

THz off

1.4THz

1.6THz

4.2THz

2.5THz

Gate voltage (V)

Cur

rent

(pA

)VSD=1mVT=1.5K

Satellite currents by THz irradiation

Linear dependence on THz-photon energy

Evidence for:THz photon-assisted

Tunneling(Frequency-tunable

THz detection)

0 4 8 12 16 200

4

8

12

16

20

Photon energy (meV)

κ∆V

G(m

eV)

slope 1Y. Kawano et al., J. Appl. Phys., 103, 034307 (2008)

Page 9: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

THz irradiation effect: THz power dependence

VSD=0.5mVT =2.5Kf =2.5THz

14

12

10

8

6

4

2

0

Curr

ent

( pA

)

-520 -510 -500 -490 -480 -470Vlotage ( mV )

TH(ar

Gate voltage (V)

Cur

rent

(pA

) 10

8

6

4

2

0

Curr

ent

(pA

)

0.80.40.0THz power (arb. units)eak

eak

Main peak

MainSatellite

Current vs THz power

Satellite peak

Theoretically, the current follows the Bessel function

of the illuminated powerMain

Satellite

Page 10: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Performance as a THz detector

(2) Sensitivity:100-1000 times larger than a conventional Si bolometer

(3) Operation temperature:Carbon nanotube quantum dot: ~4K (in principle, ~20K)Earlier highly sensitive detector: < 0.3K

(1) Frequency bandwith:Frequency tunable in 1.4-4.2THz

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0x1

0-12

-0.80 -0.75 -0.70 -0.65

THz off

1.4THz

1.6THz

4.2THz

2.5THz

Gate voltage (V)

Cur

rent

(pA)

量子ドット

GaAs/AlGaAs

Source Drain

SiO2

Tunnel barrier

ナノチューブ

THz

CNT

QDTHz VSD=0.5mV

T =2.5Kf =2.5THz

14

12

10

8

6

4

2

0

Curr

ent

( pA

)

-520 -510 -500 -490 -480 -470Vlotage ( mV )

THz p(arb. u

Gate voltage (V)

Cur

rent

(pA

)

VSD=0.5mVT =2.5Kf =2.5THz

14

12

10

8

6

4

2

0

Curr

ent

( pA

)

-520 -510 -500 -490 -480 -470Vlotage ( mV )

THz p(arb. u

Gate voltage (V)

Cur

rent

(pA

)

14

12

10

8

6

4

2

0

Curr

ent

( pA

)

-520 -510 -500 -490 -480 -470Vlotage ( mV )

THz p(arb. u

Gate voltage (V)

Cur

rent

(pA

)

Page 11: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

量子ポイントコンタクト カーボンナノチューブ量子ポイントコンタクト カーボンナノチューブ量子ポイントコンタクト カーボンナノチューブ量子ポイントコンタクト カーボンナノチューブ量子ポイントコンタクト カーボンナノチューブ量子ポイントコンタクト カーボンナノチューブ

Future improvement(2) Frequency (2) Frequency tunabilitytunability

(3) THz camera(3) THz camera

N. R. Franklin et al., APL 81, 913 (2002)

Fabrication of a double quantum dot

(1) Sensitivity(1) Sensitivity

Readout of a single THz-excited electron by quantum point contact

Two-dimensional array of many carbon natnobues

VgL

VgR

hf

左右のゲートを独立に制御

source drain

source drain

hf1

hf2

Single dot Double dotCarbon nanotubeQuantum point

contact

Page 12: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

1.1.THz detectorTHz detector::Frequency-tunable THz detector using a carbon nanotube

2.2.NearNear--field THz field THz imaingimaing::

On-chip near-field THz probe integrated with a detector

3.3. THz imaging application to semiconductor researchTHz imaging application to semiconductor research::Simultaneous imaging of THz radiation and voltage

4.4.SummarySummary

Outline

SiO2 filmB

Si-lens2DEG (Sample)

2DEG (Electrometer)

2DEG (THz detector)

Voltage

THz radiationTHz absorberDeleted image

Page 13: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

THz imaging applications● Nondestructive Inspection

● Materials Science● Astronomy

● Medicine

SemiconductorSuperconductorOrganic conductorCarbon nanotubeetc.

Defect inspection of space shuttles Imaging of cancer cells

Far-infrared image of Magellanic clouds

Ene

rgy

gap

Page 14: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Towards improvement in spatial resolution: Near-field technique

Localized electromagnetic field(Evanescent field)

1) Aperture type: Small aperture (tapered optical fiber or wave guide)2) Apertureless type: Small scatterer (STM/AFM probe)

Resolution:determined by the tip size

NearNear--field probefield probe

Wavelength

Irradiation

Sample

For obtaining optical imagesFor obtaining optical imagesbeyond the diffraction limitbeyond the diffraction limit

Page 15: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Why is the development of near-field THz imaging difficult?

Microwave region

Waveguide, Coaxial cable

Visible and near-infrared regions

Resolution: 20µm(λ/200)

N. Klein et al., J. Appl. Phys. 98, 014910 (2005)

Sample

Scattered wave

Evanescent wave

Resolution: Several tens of nm(~λ/100)

Optical fiber

THz region:Lack of high transmission wave line Low sensitivity of commonly used detectors

Page 16: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Several pages have been deleted because they contain unpublished data.

Page 17: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

1.1.THz detectorTHz detector::Frequency-tunable THz detector using a carbon nanotube

2.2.NearNear--field THz field THz imaingimaing::

On-chip near-field THz probe integrated with a detector

3.3. THz imaging application to semiconductor researchTHz imaging application to semiconductor research::Simultaneous imaging of THz radiation and voltage

4.4.SummarySummary

Outline

SiO2 filmB

Si-lens2DEG (Sample)

2DEG (Electrometer)

2DEG (THz detector)

Voltage

THz radiationTHz absorberDeleted image

Page 18: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

THz imaging application to materials science

For example;Supercurrent mapping

by THz irradiation

Direct probing of spatial properties of excited states in the meV spectrum

Materials:

SemiconductorSuperconductorOrganic conductorCarbon nanotubeetc.

S. Shikii et al., APL 74, 1317 (1999)

Photon energy corresponding to 1THz(wavelength: 300µm):

~4meV

Physical properties:

PhononEnergy gap of superconductorImpurity state of semiconductorLandau levelCharge density waveetc.

Page 19: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

THz imaging application to materials science

For example;Supercurrent mapping

by THz irradiation

Direct probing of spatial properties of excited states in the meV spectrum

Materials:

SemiconductorSuperconductorOrganic conductorCarbon nanotubeetc.

S. Shikii et al., APL 74, 1317 (1999)

Photon energy corresponding to 1THz(wavelength: 300µm):

~4meV

Physical properties:

PhononEnergy gap of superconductorImpurity state of semiconductorLandau levelCharge density waveetc.

Study of spatial properties of a two-dimensional electron system on a semiconductor

Simultaneous imaging of THz radiation and voltage

In our work

Page 20: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Combined system of a THz microscope and an electrometer

SiO2 filmB

Si-lens2DEG (Sample)

2DEG (Electrometer)

2DEG (THz detector)

Voltage

THz radiation

Electrometer, Sample, THz detector: fabricated from GaAs/AlGaAs heterostructure wafers

Y. Kawano et al., Phys. Rev. B 70, 081308(R) (2004).

THz absorber

Page 21: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Motivation: Electron density mapping for each Landau level

Density of state

Ene

rgy

1)

2)

Landau level 1) Ground state (Intra-level scattering)

2) Excited state (Inter-level scattering)~10meV

(THz) How are the two states distributed ?

No method for separate imaging

Our technique:Combination between THz microscope and electrometer

THz imaging --- Spectroscopic information

Voltage imaging --- Transport information

Page 22: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Combined system of a THz microscope and an electrometer

SiO2 filmB

Si-lens2DEG (Sample)

2DEG (Electrometer)

2DEG (THz detector)

Voltage

THz radiation

Electrometer, Sample, THz detector: fabricated from GaAs/AlGaAs heterostructure wafers

Y. Kawano et al., Phys. Rev. B 70, 081308(R) (2004).

THz absorber

Page 23: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

B

SiO2 film

Equivalent circuitSetup

CV(x,y)=ΔQ ΔR

=Isam

C

V(x,y)

Isen

ΔQ ΔR

Y. Kawano et al., Appl. Phys. Lett. 84, 1111 (2004). Y. Kawano et al., Appl. Phys. Lett. 87, 252108 (2005).

Scanning electrometer

Selected as a cover page of Applied Physics Letters

Capacitive coupling between two 2DEGsLarge magnetoresistance oscillation→ Highly sensitive detectionLow impedance → High speed detection

Imaging ofImaging ofvoltage distributionsvoltage distributions

2D electron (Sensor)

2D electron (Sample)

Page 24: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Mapping of voltage & THz cyclotron emission

0 1 2 3 4 5 6 70

4

8

12

16

20

R2t

(kΩ

)

B (T)

+-

B●

20μA70μA

140μA

1mm

2.8mm

0 1 2 3 4 5 6 70

4

8

12

16

20

R2t

(kΩ

)

B (T)

+-

B● B●

20μA70μA

140μA

1mm

2.8mm

Y. Kawano et al., Phys. Rev. B 70, 081308(R) (2004).

Ground-state electrons

Excited-state electrons

Page 25: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

DOS

E

EF

DOS

E

EF

- +-

Ionized impurity scattering

Period: 0.05~0.2µm

● GroundGround--state electronsstate electrons

Acoustic phonon scatteringDrift velocityE/B ×Scattering timeτ

=3×103 (m/s)×10~100 (ns)=30~300µm

2800µm

1000µm+

Separate distributions of ground-state and excited-state electrons

Local behavior Non-local behavior

● ExcitedExcited--state electronsstate electrons

Page 26: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Macroscopic size effect of THz emission imagesY. Kawano et al., Phys. Rev. Lett. 95, 166801 (2005).

Width

20µm

300µm

1200µm

(Length: 4mm)

Size effect arising from a long equilibrium length of excited electrons

Page 27: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Future perspective:Research on Graphen with Near-field THz Imaging

K. S. Novoselov et al., Nature 438, 7065 (2005)

Surface 2D electrons:compatible with near-field techniques

Wide-band energy spectrum (several to several tens THz)

Dirac particle

Electron-hole symmetry

2D electron on GraphenElectron

Hole

Direct probing of electron transport and energy dissipation

Page 28: Terahertz sensing and imaging based on carbon …...1. THz detector : Frequency-tunable THz detector using a carbon nanotube 2. Near-field THz imaing : On-chip near-field THz

Summary

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

x10

-12

-0.80 -0.75 -0.70 -0.65

THz off

1.4THz

1.6THz

4.2THz

2.5THz

Gate voltage (V)

Cur

rent

(pA)

(1) Carbon (1) Carbon nanotubenanotube THz detectorTHz detector (2) On(2) On--chip nearchip near--field THz probefield THz probe

Deleted image

(3) Simultaneous imaging of THz radiation and voltage(3) Simultaneous imaging of THz radiation and voltage

SiO2 filmB

Si-lens2DEG (Sample)

2DEG (Electrometer)

2DEG (THz detector)

Voltage

THz radiationTHz absorber

Ground-state electrons Excited-state electrons