testing general relativity with black hole x-ray data

58
T G R B H X- D C B F U C-I W H E A O M (- N )

Upload: others

Post on 30-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Testing General Relativitywith Black Hole X-ray Data

Cosimo Bambi

Fudan University

China-India Workshopon High Energy AstrophysicsOnline Meeting (6-8 November 2020)

Motivations

Tests of General Relativity

1915→ General Relativity (Einstein)

1919→ De�ection of light by Sun (Eddington)1960s-Present→ Solar System Experiments1970s-Present→ Binary Pulsars

These are all tests in the weak �eld regime!

Today→ Cosmological Tests→ Large scalesToday→ Black Holes→ Strong �eld regime

1 50

Black Holes in General Relativity

“No-Hair Theorem” → M, J, Q (a∗ = J/M2)

Uncharged black holes → Kerr solution

Clear predictions on particle motion

2 50

Astrophysical Black Holes

It is remarkable that the spacetime metric around astrophysicalblack holes formed from gravitational collapse of stars/cloudsshould be well approximated by the “ideal” Kerr metric

Initial deviations→ Quickly radiated away by GWs

Accretion disk, nearby stars→ Negligible

Electric charge→ Negligible

3 50

Non-Kerr Black Holes

Macroscopic deviations from the Kerr metric are predicted inmany models

Quantum gravity e�ects (information paradox)I Mathur (Fuzzballs)I Dvali & GomezI GiddingsI ...

Modi�ed theories of gravityI Einstein-dilaton-Gauss-Bonnet gravityI Chern-Simons gravityI Lorentz-violating theoriesI ...

Presence of exotic matterI Hairy black holes (Herdeiro & Radu)I ...

4 50

Black Holes Classes

From astronomical observations, we know two/three classes ofastrophysical black holes:

Stellar-mass black holes (M ≈ 3− 100 M�)

Supermassive black holes (M ∼ 105 − 1010 M�)

Intermediate-mass black holes (M ∼ 102 − 105 M�) ? ? ?

5 50

Stellar-Mass Black Holes in X-Ray Binaries

Figure courtesy of Jerome Orosz

6 50

Search for Stellar-Mass Black Holes with GWs

Figure from Abbott at al., PRL 116, 061102 (2016)

7 50

Stellar-Mass Black Holes

8 50

Supermassive Black Holes

Image courtesy of NRAO/AUI

9 50

Supermassive Black Holes

Evidence for the existence of a supermassive black hole at thecenter of our Galaxy

Study of the orbital motion of individual stars

Point-like central object with a mass of ∼ 4 · 106 M�

Radius < 45 AU (∼ 600 RSch)

10 50

Supermassive Black Holes

Astrometric positions and orbital �ts for seven stars orbiting thesupermassive black hole at the center of the Galaxy1:

1Ghez et al., ApJ 620, 744 (2005)11 50

Supermassive Black Holes

Image of the supermassive object at the center of M87

From the Event Horizon Telescope collaboration

12 50

Comments

Robust observational evidence for the existence of compactobjects that can be naturally interpreted as the black holespredicted by General Relativity

We want to test whether the spacetime metric around theseobjects is described by the Kerr solution

13 50

Current Methods

EM vs GW tests

Electromagnetic tests: we can test the interactions betweenthe matter and the gravity sectorI Motion of massive and massless particles near black holesI Atomic/Nuclear physics near black holes

Gravitational wave tests: we can test the gravity sectorI Generation and propagation of gravitational waves

14 50

How Can We Test the Kerr Metric?

Top-down approach: we test a speci�c alternative theory ofgravity against Einstein’s theory of General RelativityProblems:I A large number of theories of gravity...I Usually we do not know their rotating black hole solutions...

Bottom-up approach: parametric black hole spacetimes inwhich deviations from the Kerr geometry are quanti�ed by anumber of “deformation parameters”

15 50

Bottom-Up Approach

Parametrized Post-Newtonian (PPN) formalismWeak �eld limit: M/r � 1Solar System experiments

ds2 = −(1− 2M

r + β2M2r2 + ...

)dt2

+

(1+ γ

2Mr + ...

)(dx2 + dy2 + dz2

)

|β − 1| < 2.3 · 10−4 (Lunar Laser Ranging experiment)|γ − 1| < 2.3 · 10−5 (Cassini spacecraft)

In the General Relativity (Schwarzschild metric), β = γ = 1

16 50

Our Methods

Our Methods

X-ray Re�ection SpectroscopyI Analysis of the re�ection component of thin accretion disksaround black holes

Continuum-�tting methodI Analysis of the thermal component of thin accretion disksaround black holes

17 50

X-ray Reflection Spectroscopy

Disk-corona model

Black HoleAccretion Disk

CoronaThermal

Component ReflectionComponent

Power-LawComponent

18 50

X-ray Reflection Spectroscopy

Corona models

19 50

X-ray Reflection Spectroscopy

Re�ection spectrum

Incident Power-Law Component Reflected Component

Black Hole

Accretion Disk

Scattering/Absorption

20 50

X-ray Reflection Spectroscopy

Atomic physics→ We can calculate the re�ection spectrumat the emission point in the rest-frame of the gas in the disk

Observations→ We measure the re�ection spectruma�ected by relativistic e�ects (Doppler boosting,gravitational redshift, light bending)

With the correct astrophysical model, we can learn aboutthe spacetime metric in the strong gravity region

21 50

Continuum-fitting method

Disk-corona model

Black HoleAccretion Disk

CoronaThermal

Component ReflectionComponent

Power-LawComponent

22 50

Continuum-fitting method

Accretion disk→ Novikov-Thorne model

Source→ Soft state, accretion luminosity 5%-30% LEdd

We �t the data and we can constrain the spacetime metric inthe strong gravity region

23 50

Our Models

Our Models

relxill_nk⇒ X-ray re�ection spectroscopy

nkbb⇒ Continuum-�tting method

24 50

relxill

relxill2 is currently the most advanced relativistic re�ectionmodel for Kerr spacetimes

relxill ∼ relconv × xillver

xillver: non-relativistic re�ection model

relconv: convolution model for the Kerr spacetime and aNovikov-Thorne accretion disk

relxill→ Black hole spin measurements

2Dauser et al., MNRAS 430, 1694 (2013); Garcia et al., ApJ 782, 76 (2014)25 50

Bottom-Up Approach

There are several parametrized black hole spacetimes in theliterature. Johannsen metric3:

ds2 = −Σ̃(∆− a2A22 sin2 θ

)B2 dt2 +

Σ̃

∆A5dr2 + Σ̃dθ2

−2a [(r2 + a2)A1A2 −∆] Σ̃ sin2 θ

B2 dtdφ

+

[(r2 + a2)2 A21 − a2∆ sin2 θ

]Σ̃ sin2 θ

B2 dφ2 ,

Σ̃ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 ,B =

(r2 + a2

)A1 − a2A2 sin2 θ

3Johannsen, PRD 88, 044002 (2013)26 50

Bottom-Up Approach

The functions f , A1, A2, and A5 are de�ned as

f =∞∑n=3

εnMn

rn−2 , A1 = 1+∞∑n=3

α1n

(Mr

)n,

A2 = 1+∞∑n=2

α2n

(Mr

)n, A5 = 1+

∞∑n=2

α5n

(Mr

)nThere are 4 in�nite sets of “deformation parameters”:

{εn} , {α1n} , {α2n} , {α5n}

If all deformation parameters vanish, we recover the Kerrsolution

27 50

relxill_nk

relxill_nk4 is the natural extension of relxill to non-Kerrspacetimes

relxill_nk ∼ relconv_nk × xillver

We assume that atomic physics is the same (xillver) but weemploy a metric more general than the Kerr solution andthat includes the Kerr solution as a special case

relxill_nk→ Tests of the Kerr metric

4Bambi et al., ApJ 842, 76 (2017); Abdikamalov et al., ApJ 878, 91 (2019)28 50

relxill_nk

Formalism of the transfer function (Cunningham 1975)

Observed �ux:

Fo(νo) =1D2

∫ rout

rindre∫ 1

0dg∗ π g2 re Ie√

g∗ (1− g∗)f

Transfer function:

f (g∗, re, i) =g√g∗ (1− g∗)πre

∣∣∣∣ ∂ (X, Y)

∂ (g∗, re)

∣∣∣∣ ,where

g∗ =g− gmin

g− gmax, gmin = min[g(re, i)] , gmax = max[g(re, i)]

29 50

Transfer function

Impact of the viewing angle (left panel) and of the spinparameter (right panel) on the transfer function f

0.0 0.2 0.4 0.6 0.8 1.0

g∗

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f

35°

50°65°

74°

85°

0.0 0.2 0.4 0.6 0.8 1.0

g∗

0.240

0.245

0.250

0.255

0.260

0.265

0.270

0.275

f

00.250.5

0.750.90.998

30 50

relxill_nk

A public version5 of relxill_nk and its manual can be found at:

Johannsen metric with the deformation parameters α13 and α22

5Current version is 1.4.031 50

relxill_nk

List of �avors:1. relline_nk2. relconv_nk3. relxill_nk4. relxillCp_nk5. relxillD_nk6. rellinelp_nk7. relxilllp_nk8. relxilllpCp_nk9. relxilllpD_nk

32 50

relxill_nk

Impact of the deformation parameter α13

α13

-1

0

1

2

2 5 10 20 50

20

30

40

50

60

Energy (KeV)

keV2(Photonscm

-2s-1keV

-1 )

33 50

relxill_nk

Impact of the deformation parameter α22

α22

-1

0

1

2

2 5 10 20 50

20

30

40

50

60

Energy (KeV)

keV2(Photonscm

-2s-1keV

-1 )

34 50

nkbb

Thermal spectrum of thin disks in non-Kerr spacetimesZhou et al., PRD 99, 104031 (2019)

35 50

Results

Sources Analyzed (relxill_nk)

1H0707–495; Cao et al., PRL 120, 051101 (2018)Ark 564; Tripathi et al., PRD 98, 023018 (2018)GS 1354–645; Xu et al., ApJ 865, 134 (2018)Ton S180, RBS 1124, Swift J0501.9–3239, Ark 120, 1H0419–577,PKS 0558–504, Fairall 9; Tripathi et al., ApJ 874, 135 (2019)GRS 1915+105; Zhang et al., ApJ 875, 41 (2019); ApJ 884, 147(2019)MCG–6–30–15; Tripathi et al., ApJ 875, 56 (2019)Cygnus X-1; Liu et al., PRD 99, 123007 (2019)Mrk 335; Choudhury et al., ApJ 879, 80 (2019)GX 339–4; Wang et al., JCAP 05 (2020) 026; Tripathi et al.,arXiv:2010.13474

36 50

MCG–6–30–15

Observations

Mission Observation ID Exposure (ks)NuSTAR 60001047002 23

60001047003 12760001047005 30

XMM-Newton 0693781201 1340693781301 1340693781401 49

37 50

MCG–6–30–15

Light curves of NuSTAR/FPMA, NuSTAR/FPMB andXMM-Newton/EPIC-Pn

38 50

MCG–6–30–15

Constraints on a∗ and α13

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

α 13

a*

39 50

MCG–6–30–15

Constraints on a∗ and α22

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.88 0.9 0.92 0.94 0.96 0.98

α 22

a*

40 50

MCG–6–30–15

Constraints on a∗ and ε3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

ε 3

a*

MCG-06-30-15

41 50

GRS 1915+105

Results of MCMC simulations

42 50

GRS 1915+105

Constraints on a∗ and α13

43 50

Sources Analyzed (nkbb)

LMC X-1; Tripathi et al., ApJ 897, 84 (2020)GX 339–4; Tripathi et al., arXiv:2010.13474

44 50

LMC X-1

Constraints on a∗ and α13

-5

-4

-3

-2

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α13

a*

45 50

Conclusions

Past Work

relxill_nk (with public version)

nkbb

“Preliminary” observational constraints on somedeformation parameters

46 50

Future Work

Developing relxill_nk1. Atomic physics calculations2. Accretion disk model3. Corona model4. Minor relativistic e�ects

Testing sources with nkbb and testing the same source withboth relxill_nk and nkbb

Selecting the most suitable sources/data for our tests

Testing more deviations from standard predictions

47 50

Future Work

Source Selection for X-ray Re�ection Spectroscopy1. Very high spin (a∗ > 0.9)2. Cold accretion dosks3. No absorbers4. High resolution at the iron line + Data up to 50-100 keV (e.g.XMM-Newton + NuSTAR)

5. Prominent iron line6. L ∼ 0.05− 0.30 LEdd (Rin = RISCO)7. Constant �ux8. Lamppost coronae?

48 50

Thank You!

Electric Charge

Equations of motion for the proton and electron �uids:

i) mpv̇p = −GNMmpr2 +

σγpL4πr2c +

eQr2

ii) mev̇e = −GNMmer2 +

σγeL4πr2c −

eQr2

Equilibrium electric charge⇒ v̇p = v̇e

me i)−mp ii)⇒ mpmev̇p −mpmev̇e =σγeL4πr2c +

2eQr2

⇒ −Q =σγeL8πce ≤

σγeLEdd

8πce ∼ 1021(MM�

)e

49 50

MCG–6–30–15

Spectra of the best-�t models with the correspondingcomponents and data to best-�t model ratios for a variable ε3

50 / 50