teuwen e and p composites wind turbines

Upload: alexrferreira

Post on 01-Mar-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    1/23

    28-10-2009

    Challenge the future

    DelftUniversity ofTechnology

    Vacuum infused thermoplasticcomposites for wind turbine blades

    Julie Teuwen, Design and Production of Composites Structures

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    2/23

    2Thermoplastic wind turbine blades

    Introduction

    WIND ENERGY:

    Promising renewable energysource

    Fast growing market share inenergy supply

    WIND TURBINE BLADES:

    Length > 50 m Life expectancy 20 years

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    3/23

    3Thermoplastic wind turbine blades

    Large Wind Turbine Blades

    Dedicated Offshore Wind Power Systems:

    Stronger and more constant wind Increasingly large blades to increase power output per turbine and

    reduce cost per kWh

    No noise-pollution and aesthetical issues

    Larger blades require: Materials with higher specific properties (E/, /):

    Carbon fibre based composites

    More efficient structural design

    mblade (Rblade)3

    2.35

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    4/23

    4Thermoplastic wind turbine blades

    Current blade manufacturing technology

    Material:

    Glass fibres (NCFs) Thermoset resin

    Process: Vacuum infusion

    Prepregging Design:

    2 skins and 1 spar

    Structural bonding

    Design

    Material

    Process

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    5/23

    5Thermoplastic wind turbine blades

    Alternative structural design Re-introduction of ribs:

    Higher structural efficiency (E/)

    Reduces buckling of the spar Provides attachment points and load paths for smart actuators,

    control surfaces and sensors

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    6/23

    6Thermoplastic wind turbine blades

    Why thermoplastics?

    Processing:

    Forming Assembly by welding

    Properties: Good impact properties

    High toughness, also at low temperatures Abrasion resistant

    Chemical resistant

    Life cycle: Unlimited shelf-life of raw materials

    Short production cycle time

    Fully recyclable

    Pre-cut laminatesheet material

    Infra redheating panels

    Rubber die

    Metal die

    Rubber press

    Final thermoplasticcomposite part

    Heating element

    Clampconnection

    Weldedparts

    Voltmeter

    Ampmeter

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    7/23

    7Thermoplastic wind turbine blades

    What still stands in the way? Costs:

    Technology costs:

    New technologies and expensive equipment

    Material costs:

    Need for intermediates

    Processing:

    High processing temperatures (>200C): High costs, thermal stresses

    Melt pressing technology:

    Limits part size and thickness

    Properties: Fatigue performance:

    Weak fiber-to-matrix bond

    Monomer

    Polymer

    PowderGranules

    Film Solution

    Laminate Prepreg

    Finalproduct

    Traditi

    onal

    Pro

    cessin

    gof

    Thermopla

    stic

    Com

    posite

    s

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    8/23

    8Thermoplastic wind turbine blades

    Vacuum infusion of thermoplasticcomposites

    Reactive processing:

    Processing:

    From the monomer directly to the polymer

    Large, thick, integrated parts

    Commonly used technology

    Below melting temperature of polymer

    Properties: Improved fibre-to-matrix bond

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    9/23

    9Thermoplastic wind turbine blades

    Vacuum infusion of thermoplasticcomposites

    Selection of resin: Low processing

    temperature (150-180C)

    Low viscosity (10 mPa.s)

    Low price/performance(2-3/kg)

    Anionic Polyamide-6: AP-Nylon

    World wide availability

    0,001

    0,01

    0,1

    1

    10

    100

    1000

    10000

    100000

    0 50 100 150 200 250 300 350 400 450

    Processing temperature [C]

    Meltviscosity

    [Pas]

    epoxyvinylester

    polyester

    PMMA

    PA-6

    PBT

    PA-12

    PEK

    ETPUPC

    PMMA

    PA-12

    PA-6

    PBTPPS

    PES

    PEI

    PEEK

    PEKK

    Reactive processingof thermoset resins

    Reactive processing ofthermoplastic resins

    Melt processing ofthermoplastic polymers

    0,001

    0,01

    0,1

    1

    10

    100

    1000

    10000

    100000

    0 50 100 150 200 250 300 350 400 450

    Processing temperature [C]

    Meltviscosity

    [Pas]

    epoxyvinylester

    polyester

    PMMA

    PA-6

    PBT

    PA-12

    PEK

    ETPUPC

    PMMA

    PA-12

    PA-6

    PBTPPS

    PES

    PEI

    PEEK

    PEKK

    Reactive processingof thermoset resins

    Reactive processing ofthermoplastic resins

    Melt processing ofthermoplastic polymers

    Selection of resin: Low processing

    temperature

    Low viscosity

    Low price/performance

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    10/23

    10Thermoplastic wind turbine blades

    Alternative blade manufacturingtechnology

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    11/23

    11Thermoplastic wind turbine blades

    What is done on material development? Polymer chemistry and physics

    Resin infusion process

    Composite properties

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    12/23

    12Thermoplastic wind turbine blades

    Polymer chemistry and physics

    Resin composition

    0

    20

    40

    60

    80

    100

    0 5 10 15 20 25 30 35 40

    time [min]

    Degreeofc

    onversion[%].

    Fast system

    Slow systeminfusion

    cure CAPROLACTAM

    ACTIVATOR C20 INITIATOR C1

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    13/23

    13Thermoplastic wind turbine blades

    Polymer chemistry and physics

    Resin constitution Identify important parameters Understand & simulate the reaction

    Polymerisation at different temperatures and comparison with pure -caprolactame,

    inner temperature record, same beginning

    0

    50

    100

    150

    200

    250

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    time [s]

    temperature[C]

    pue CL, 140C, 1.measur.

    140C, 1.measurement

    150C, 1.measurement160C, 1.measurement

    pure CL, 150C, 1.measur.

    pure CL, 160C, 1.measur.

    160C150C

    140C

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    14/23

    14Thermoplastic wind turbine blades

    Polymer chemistry and physics

    Resin constitution Identify important parameters Understand & simulate the reaction Characterise the properties

    Comparison with currently used material

    2

    1

    0.1

    0.2

    f

    m

    Compared to injection molded PA-6

    Condition Youngs modulus[GPa]

    Maximum strength[MPa]

    Strain at failure[%]

    23C, dry 4.2 (+ 41%) 96 (+ 14%) 9 (-)23C, 50% RH 2.1 (+ 59%) 61 (+ 4%) 28 (-)

    80C, dry 1.6 (+ 65%) 51 (+ 32%) 29 (-)

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    15/23

    15Thermoplastic wind turbine blades

    Resin infusion process

    Development of resin infusion process:

    Fabric (fine and coarse weave) Glass

    UD

    Glass

    110C

    110C

    160-180C

    60 minutes

    250 mbar

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    16/23

    16Thermoplastic wind turbine blades

    Resin infusion process

    Development of resin infusion process Homogeneous properties: In flow direction

    Through thickness

    135

    140

    145

    150

    155

    160

    165

    170

    175

    0 5 10 15 20 25

    Time [min]

    Tem

    perature[C]

    Tmould = 160C (inlet)

    Tmould = 160C (center)

    Tmould = 160C (outlet)

    Outlet Inlet

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    135 140 145 150 155 160 165 170 175 180 185

    Temperature (C)

    Layer Thermofoil+Carbon

    CarbonResistiveThermofoilPlated press

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    17/23

    17Thermoplastic wind turbine blades

    Resin infusion process

    Development of vacuum infusion process

    Homogeneous properties Identify important parameters Optimise infusion process Good mechanical properties

    Good fibre-to-matrix bond

    10

    20

    30

    40

    50

    60

    70

    80

    140 150 160 170 180 190 200

    Mould temperature [C]

    Interlaminarsh

    earstrength[MPa]

    APA-6 composite (unsized/outlet)

    APA-6 composite (sized/outlet)

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    18/23

    18Thermoplastic wind turbine blades

    Composite Properties

    Static properties

    (Dry conditioned)

    0

    100

    200

    300

    400

    500

    600

    Compressive strength Tensi le strength Shear strength

    [MPa]

    APA-6 Epoxy PA-6

    0

    5

    10

    15

    20

    25

    30

    Compressive modulus Tensile modulus Shear modulus

    [GPa]

    APA-6 Epoxy PA-6In dry state, APA-6 outperforms

    all other reference material

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    19/23

    19Thermoplastic wind turbine blades

    Composite Properties

    Static properties(moisture conditioned):

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Compressive strength Tensile strength Shear strength

    [MPa]

    APA-6 Epoxy PA-6

    0

    5

    10

    15

    20

    25

    30

    Compressive modulus Tensile modulus Shear modulus

    [GPa]

    APA-6 Epoxy PA-6

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    20/23

    20Thermoplastic wind turbine blades

    Composite Properties

    Dynamic properties: APA-6 compositemanufactured at 180C has

    better fatigue properties

    than the melt processed PA-

    6 composite:

    Same toughness

    Higher interfacial bond

    strength0

    50

    100

    150

    200

    250

    300

    350400

    1.0E

    +02

    1.0E

    +03

    1.0E

    +04

    1.0E

    +05

    1.0E

    +06

    1.0E

    +07

    n

    S[MPa]

    APA-6 (180C)PA-6Epoxy

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    21/23

    21Thermoplastic wind turbine blades

    Conclusions

    For rib/spar/skin-structures, thermoplastic composites arefavoured over thermoset composites. Parts can be rapidly meltprocessed and assembled through welding. Blades will be fullyrecyclable.

    Vacuum infusion of thermoplastic composites is introduced to

    overcome the classical drawbacks of these materials.

    The cure of a semi-crystalline thermoplastic resin is morecomplicated than of a thermoset resin.

    AP Nylon has a low viscosity (10 mPa.s), good availability, alow price (2-3 /kg), and a relatively low processing temperature(150-180C).

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    22/23

    22Thermoplastic wind turbine blades

    Conclusions Homogeneous composites were obtained after optimisation of

    infusion process. Temperature, pressure and time are the key

    parameters.

    Reactively processed PA-6 outperforms melt processed PA-6 inall temperatures and humidities tested.

    Static properties of APA-6 composites are better than of theirHPA-6 and epoxy counterparts in dry conditions. When moistureconditioned, the performance of APA-6 composites drops rapidly.

    Reactive processing of thermoplastic composites results in astrong interfacial bond strength and leads consequently tobetter fatigue performance compared to melt processing.

  • 7/25/2019 Teuwen E and P Composites Wind Turbines

    23/23

    23Thermoplastic wind turbine blades

    Vacuum infused thermoplastic

    composites for wind turbine blades

    Questions?

    Julie Teuwen

    Delft University of TechnologyFaculty of Aerospace Engineering

    Design and Production of Composite Structures