texas port recycling, lp · texas port recycling lp | nsr permit application trinity consultants...

43
Environmental solutions delivered uncommonly well INITIAL NSR APPLICATION Texas Port Recycling, LP Prepared By: TRINITY CONSULTANTS 1800 West Loop South Suite 1000 Houston, Texas 77027 (713) 552‐1360 October 2019 Project 191801.0067

Upload: others

Post on 23-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Environmental solutions delivered uncommonly well

INITIAL NSR APPLICATION Texas Port Recycling, LP

PreparedBy:

TRINITYCONSULTANTS1800WestLoopSouth

Suite1000Houston,Texas77027

(713)552‐1360

October2019

Project191801.0067

Texas Port Recycling LP| NSR Permit Application Trinity Consultants i

TABLE OF CONTENTS

1.EXECUTIVESUMMARY 1-1 

2.AREAMAP 2-1 

3.PLOTPLAN 3-1 

4.PROCESSDESCRIPTION 4-1 4.1.ReceiptofIncomingMetal..................................................................................................................................4‐1 4.2.MetalShredding.....................................................................................................................................................4‐1 4.3.MetalSeparation....................................................................................................................................................4‐1 4.4.Non‐FerrousPlant.................................................................................................................................................4‐2 

5.PROCESSFLOWDIAGRAM 5-1 

6.EMISSIONCALCULATIONMETHODOLOGY 6-1 6.1.VOCEmissionsGenerationfromtheShredder............................................................................................6‐1 6.2.VOCEmissionFactorSelectionfromtheShredder.....................................................................................6‐1 6.3.ShreddingEmissions(EPNsSHREDSTKandSHREDFUG).........................................................................6‐2 

7.BESTAVAILABLECONTROLTECHNOLOGYANALYSIS 7-1 7.1.ParticulateMatter(PM10andPM2.5)forShredding....................................................................................7‐1 7.2.VOCforSHredding.................................................................................................................................................7‐1 

7.2.1.Step1–IdentifyPotentialControlTechnologiesforVOCforMetalShredders.............................................7‐1 7.2.2.Step2–EliminateTechnicallyInfeasibleOptionsforVOCfromShredders....................................................7‐5 7.2.3.Step3–RanktheRemainingControlTechnologiesbyControlEffectivenessforVOCfromtheShredder....................................................................................................................................................................................................7‐8 7.2.4.Step4–EvaluatetheMostEffectiveControlsandDocumenttheResultsforVOCfromtheShredder7‐8 7.2.5.Step5–SelectBACTforVOCfromtheShredder......................................................................................................7‐10 

8.IMPACTSANALYSIS 8-1 8.1.StateNAAQSAnalysis...........................................................................................................................................8‐1 8.2.StateHealthEffectsEvaluation.........................................................................................................................8‐2 

8.2.1.Step1..............................................................................................................................................................................................8‐3 8.2.2.Step2..............................................................................................................................................................................................8‐3 8.2.3.Step3..............................................................................................................................................................................................8‐3 8.2.4.Steps4and5...............................................................................................................................................................................8‐4 8.2.5.Step6..............................................................................................................................................................................................8‐4 

9.FEDERALNEWSOURCEREVIEWANALYSIS 9-1 

10.GENERALAPPLICATIONREQUIREMENTS 10-1 

11.PERMITFEE 11-1 

APPENDIXA:DETAILEDEMISSIONCALCULATIONS A-1 

APPENDIXB:MERAANALYSIS B-1 

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 1-1

1. EXECUTIVE SUMMARY

TexasPortRecycling,LP(TPR)ownsandoperatesascrapmetalrecyclingfacility,theTPRManchesterFacility,inHouston,HarrisCounty,Texas.TheTPRManchesterFacilitycurrentlyoperatesunderTexasCommissiononEnvironmentalQuality(TCEQ)CentralRegistryRegulatedEntityNo.RN101474955andCentralRegistryCustomerNo.CN602997272.TPRisawholly‐ownedventureofCincinnati‐based,TheDavidJ.JosephCompany(DJJ).DJJperiodicallyconductsreviewsoftheirfacilityoperations.Aspartofthisprocess,DJJreviewspubliclyavailableinformationforsimilarscrapmetalrecyclingfacilities,aswellasnewliteraturewhichmightbettercharacterizefacilityoperations.Duringthelastreview,itbecameapparentthatscrapmetalandautomobileshreddersareamorerelevantpotentialsourceofvolatileorganiccompounds(VOCs)thanhadbeenpreviouslyunderstood.TheTPRManchesterFacilitywasoriginallyauthorizedunderPermitbyRule(PBR)Registration82289andconstructedin2007.Basedonthebestavailableemissionfactorsinuseatthetime,thesitequalifiedforregistrationunderPBRs106.261,106.262,and106.412.TheupdatedVOCemissionfactorsforthemetalshredderidentifiedthroughtheliteraturereviewresultinVOCemissionsthatexceedthesitewidelimitsin106.4.TPRisthereforesubmittingthisapplicationforaminorNewSourceReview(NSR)permitfortheshredder.AllothersourcesattheTPRManchesterFacilitycontinuetoqualifyforPBRsandwillremaininPBRRegistration82289.TheTPRManchesterFacilityislocatedintheHouston‐Galveston‐Brazoria(HGB)ozonenonattainmentarea.Theareaiscurrentlydesignatedseriousnonattainmentforozoneandattainmentforallotherpollutants.AtthetimetheTPRManchesterFacilitywasoriginallyauthorizedandbuilt(2007),theHGBareawasdesignatedasamoderateozonenonattainmentarea.ThisapplicationisthereforebeingsubmittedaswitharetrospectiveFederalNSR(FNSR)applicabilityanalysisbasedonthenonattainmentstatusatthetimethemetalshredderwasinitiallypermittedandconstructed.Allrequiredsupportingdocumentationforthepermitisprovidedinthisapplication.ApplicantinformationissubmittedaspartoftheTCEQPI‐1workbook.TheareamapandplotplanareincludedinSections2and3ofthisapplication.AprocessdescriptionandprocessflowdiagramareprovidedinSection4and5,respectively.AnexplanationofemissioncalculationmethodologiesisprovidedinSection6.ABestAvailableControlTechnology(BACT)analysisisincludedinSection7.AdescriptionoftheimpactsanalysisisincludedinSection8.TheFederalNewSourceReviewAnalysisisprovidedinSection9.CompliancewithgeneralandadministrativerequirementsisdemonstratedinSection10.Section11containsthePermitFeeinformation.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 2-1

2. AREA MAP

§̈¦610

278,000 279,000 280,000 281,000 282,000 283,000

3,287,000

3,288,000

3,289,000

3,290,000

3,291,000

3,292,000

3,293,000 ¯U

TM

Nor

th (

me

ters

)

UTM East (meters)

LegendProperty Boundary

3000 ft Buffer

1 mile Buffer

0 500 1,000 1,500

Meters

pchennupati
Rectangle
pchennupati
Typewritten Text
Texas Port Recycling Facility Area Map
pchennupati
Typewritten Text
pchennupati
Typewritten Text
Manchester St
pchennupati
Typewritten Text
pchennupati
Typewritten Text

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 3-1

3. PLOT PLAN

!(!(

!(

280,300 280,400 280,500 280,600 280,700 280,800 280,900

3,289,700

3,289,800

3,289,900

3,290,000

3,290,100

3,290,200

3,290,300

3,290,400

¯U

TM

Nor

th (

me

ters

)

UTM East (meters)

Legend!( Point Sources

Property Boundary0 50 100 150

Meters

Scale

Buildings

Texas Port RecyclingPlot Plan

KLewis
Callout
ZBOXSTK
KLewis
Callout
SHREDSTK
KLewis
Callout
SHREDFUG
KLewis
Rectangle
KLewis
Oval
KLewis
Callout
SHRED
KLewis
Rectangle
KLewis
Rectangle

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 4-1

4. PROCESS DESCRIPTION

4.1. RECEIPT OF INCOMING METAL

Incomingmetalarrivesonsitefrombusinessesandindividualsbytruck,railcar,orbarge.Althoughthemakeupofincomingmetalwillvary,TPRwillonlyacceptcrushedautomobilebodies,whitegoods(appliancessuchasrefrigerators,washingmachines,driers,etc.),andlightiron(variousscrapmetalitems).Atypicalmixoftheincomingmaterialconsistsof30%automobilesand70%appliancesandlightiron.Allincomingmetalisweigheduponreceiptandinspectedtoidentifysubstancesthatthefacilitywillnotacceptsuchas:leadcontainingbatteries,PCBs,hazardousmaterials,pressurizedgascylinders(unlessopenandemptied),refrigerants,andammunition.Acceptedmaterialisunloadedfromtruckorrailcarontotheinfeedstockpile.Materialfrombargesisunloadedontotruckswhichdrivetoandunloadontotheinfeedstockpile.

4.2. METAL SHREDDING

Materialsfedthroughtheshredderarescreenedforradiationwhenpurchasedacrossthetruckscales.Materialisliftedbycranefromtheinfeedstockpileanddroppedontotheinfeedconveyor,whichfeedstheshredder.Theshredderconsistsofrollers,whichinitiallycompresstheincomingmetal,andarotatingdrumwithten850‐poundhammersthatmake300to400revolutionsperminute.Therotatinghammerspummelthemetalintosmallerpieces.Theshreddercontainstopandbottomgrateswithopeningsthroughwhichtheshreddedmaterialpassesonceitbecomessmallenough.Largerpiecesthatcannotbeshreddedfurtherareejectedthroughahydraulicallyoperatedejectionflap,bypassingthegrateswithoutinterruptingtheshreddingprocess.Afterpassingthroughthegrates,theshreddedmetalfallsdownthroughtheexitopeningontotheundermillshaker,whichfeedsthe#1transferconveyor.Atthispoint,materialisscreenedagainforradiationwithautomaticcontrolstostopthesystemifradiationisabovebackground.Thematerialleavingtheshredderisamixofferrousmetal(mixofironandironoxide);non‐ferrousmetal(primarilyaluminum,zinc,andlead);andfluff(mixoflightermaterialinautomobilebodiessuchasfoamrubber,fabrics,carpet,andplastic,alongwithwood,glass,dirt,andothermiscellaneousmaterials).

4.3. METAL SEPARATION

Theshreddedmaterialleavestheshredderviathecovered#1transferconveyortobeseparatedintomarketableferrousmaterialaswellasnon‐ferrousmaterial.Adrummagnetcollectsallmagnetizedmaterialanddropsitontothe#2transferconveyor,whilethenonmagnetizedmaterialdropstothe#1non‐ferrousconveyor.Adetailednon‐ferrousmaterialprocessdescriptionisincludedinthefollowingsection.Justdownstreamofthe#1non‐ferrousconveyorisaferrousrecoverymagnetandconveyorthatroutesthesmallferrousitemsthattendtoescapethedrummagnettothe#2transferconveyor.Theferrousmaterialtravelsthroughthezbox,whichremoveslighterfluffandotherresidue.Thelightermaterialisblownupthroughthezboxintoacycloneseparator.Collectedmaterialdropsoutofthecyclonethroughtheairlockontothefluffconveyor#1,whichdropsthefluffintothefluffpile.Ferrousmaterialexitsthebottomofthezboxontoamagnetvibrator.Aseconddrummagnetfurtherseparatesthemetal.Ferrousmetalisconveyedthroughhandpickingstationsandultimatelyconveyedtodedicatedstoragepileswhereitistransferredtobarge,truck,orrailcarforoff‐sitedelivery.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 4-2

4.4. NON-FERROUS PLANT

Everythingfromtheshredderthatisnon‐magneticorthatismissedbythemagneticseparationequipmentisgeneratedintoUnprocessedNon‐Ferrous(UNF)material.TheUNFmaterialcontinuesfromthe#1non‐ferrousconveyor,totheMetalsRecoveryPlant(MRP).TheMRPutilizeseddycurrentandinductionsortingtoremovethemetalfromtheUNF.TheMRPprocesscanbedescribedinfourbasicparts:ReceivingandSizing,EddyCurrentSeparation(ECS),inductionseparation(Finders)andNearInfraredseparation(PolyFinders).TheECS,FindersandPolyFindersarearrangedinastack.Materialstartsatthetopandproceedsdowntothenextsteponalowerdeck. ReceivingandSizingUNFisgeneratedfromtheshreddingoperationsandisnotbroughttotheplant.Initially,theUNFstreamisfedtotheCreepFeeder.Basedonprocessingrate,aportion(upto50%)ofthematerialmaybetemporarilystoredintheBypassBarn.Asneeded,frontendloaderstakematerialfromtheBypassBarnpileanddropitintotheCreepFeeder.FromtheCreepFeeder,theZConveyortakesthenon‐ferrousmaterialstoaFingerScreener.TheFingerScreenerseparatesthefinematerials(<1.5”)fromthelargermaterials(>1.5”).ThefinematerialisthendirectedtotheFinesProcessingUnit.Thelargermaterials>1.5”travelviaconveyortotheMRPequipment.Thelargernon‐ferrousmetalswillbeseparatedintothreemeshsizesbythetrommel(acylindrical,rotating,meshedscreenconveyor):1.5”,3”,and5”.Largermaterialormaterialwhichcannotbeseparatedatthetrommeldropsintoanoversizedmaterialbin,whichisfedbackthroughtheshredder. EddyCurrentSeparationTheUNFmaterialisfirstrunthroughahighgaussmagnetseparationsystemtoremoveanyremainingferrousandmagneticdirtthatcoulddamagetheECS.Aferrousproductandmagneticdirtby‐product(ferrousreclaim)aremadeatthisstep.Theferrousproductisstockpiledforsaleandthemagneticdirtisaddedtothewasteconveyor.TheECSusesanultra‐fastoscillatingmagneticfieldthatcausesmostnonferrousmetalstojumporbethrown.Thethrownmaterialiscollectedandstockpiledasresidue(zorba).Residueisanindustrynamedproductthatis85%metalandmostlyaluminum.Plastic,dirt,foam,stainlesssteel,andothermissedmetalsaredroppedtotheFindersdeck.Materialfromeachofthethreemeshdropsisfurtherseparatedbydrummagnetsaswellaseddycurrentseparators.Non‐ferrousmetalisseparatedintovariousproductsincluding:residue(zorba,whichisamixtureofaluminumandothermetals)andfines(twitch),zuric(amixtureofstainlesssteelandothermetals),andinsulatedcopperwire(ICW).Thefinalwasteproductgeneratedisusuallyreferredtoasflufforauto‐shredderresidue(ASR).TheASRisconveyedtoadedicatedwastestoragepileviatheFindersandPolyFinderssystem.TheFindersand/orPolyFinderssystemallowsremovalofremainingmetalsfromthelargermaterials.Non‐ferrousmetalproductsareloadedontotruck,andonoccasionrailcarforoff‐sitedelivery,whilewasteisloadedontotrucksanddeliveredtoalandfill. InductionSeparationFindersusemetaldetectioncoilsandairjetcontrolbyhighspeedsignalprocessingequipmenttoblowmetalfromthestream.AtthispointmaterialdroppedbytheFindersiswasteandsentbyconveyortobeloadedintotruckandsenttothelandfill.Blownmaterialisapoorquality,20%to30%metalcontent,zuricproduct.ThezuricisdroppedtothePolyFinderdeck. NearInfraredSeparationPolyFindersusemetaldetectioncoilsincombinationwithnearinfrareddetectiontoblowtheinsulatedcopperwire(ICW)inthezuricfromtheFinders.TheICWisstockpiledforsaleandthezuricisstockpiledforalaterre‐runthroughtheentireprocesstocleanittoa90%zuricproductwhichissellable.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 4-3

BuntingMagnetInadditiontotheECSandFindersprocessingasdescribedabove,theFinesProcessingUnitincludedtheuseofabuntingmagnet.Thisallowsremovalofstainlessandcopper,whichissold.TheFinesProcessingUnittakesthe<1.5”materialandusingaprocesssimilartothatdescribedabove,separatesadditionalvaluablematerialsfromthestream.Thisincludesfines,ultrafines,stainlesssteel,andshreddedcopper.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 5-1

5. PROCESS FLOW DIAGRAM

Texas Port Recycling

Process Flow Diagram

Project 191801.0067October 2019

MRP>1.5"

Shredder/Separation

MRP FinesProcessing Unit

<1.5"

Feed – Appliancesand Automobiles

Ferrous Metals to Off-site Shipping

Waste (Fluff)

Unprocessed Non-Ferrous to Metal

Recovery Plant (MRP)

Non-FerrousMetals

Waste (Fluff)

Non-FerrousMetals

Waste (Fluff)

1%

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 6-1

6. EMISSION CALCULATION METHODOLOGY

ThissectiondescribesthebackgroundoftheVOCemissionfactorchangeandtheemissioncalculationmethodologyusedtoquantifyproposedemissionratesforthemetalshredder.DetailedemissioncalculationsareincludedintheAppendixAoftheapplication.

6.1. VOC EMISSIONS GENERATION FROM THE SHREDDER

Theprocessofshreddingautomobilesandmetalscrapmaterialinthehammermillsectionoftheshreddersystemwaspreviouslythoughttoonlygenerateparticulatematter(PM)emissions.However,DJJ,aspartofitslatestperiodicreview,recentlylearnedthatrecentstudiesandreportsfromotherfacilitieshaveidentifiedshreddingoperationsasmorerelevantpotentialsourceofVOCemissionsthanpreviouslyunderstood.Fromtheavailableliterature,DJJhasnotfoundaclearconsensusonVOCformationfrommetalshreddingoperations.VOCemissionsarelikelygeneratedfromtheshreddingofVOCcontainingtanksandtubinginautomobiles.BeforeautomobilesareacceptedbyTPRforprocessingintheScrapMetalShredder,theautomobilesmustbecertifiedbythesuppliertobeappropriatelydrainedofallhazardousfluids(e.g.,gasoline,motoroil,etc.).Thatsaid,residualamountsofthefluidsoftenremainintheautomobilesevenaftertheappropriatedrainingprocedureshavebeenconducted.Whentheautomobilesareshredded,thesefluidsareexposedtotheambientairandquicklyvolatilize.Thehammermillproducesasignificantamountofheatduetofrictionalandpressureforcesexertedonthescrapmaterialfromtheshreddinghammers.ThisheatfacilitatesthevolatilizationofanyliberatedresidualVOCcontainingfluidsduringtheshreddingprocess.

6.2. VOC EMISSION FACTOR SELECTION FROM THE SHREDDER

Consistentwiththerestofthemetalrecyclingindustry,DJJhashistoricallyestimatedairemissionsformostairpollutantsfromtheshreddingprocessbasedontheemissionsfactorsfromaTitleVApplicabilityWorkbookpublishedbytheInstituteofScrapRecyclingIndustries,Inc.(ISRI).1IncludedinthereportisaVOCEFof0.00136pounds(lb)pernettonoffeedmaterial.Aspartofifitsinternalpractices,DJJperiodicallyconductsareviewoftheirfacilityoperationsandreviewspubliclyavailableinformationforsimilarscrapmetalrecyclingfacilitiesaswellasanynewliteraturewhichmightbettercharacterizefacilityoperations.Duringthelatestperiodicreview,DJJdiscoveredthepotentialforscrapmetalandautomobileshredderstogeneratemoreVOCemissionsthancharacterizedintheISRIreport.DJJrecentlyconductedadeeperanalysistodeterminetheappropriateVOCemissionfactorfortheshreddersatitsrecyclingplants,includingtheScrapMetalShredderattheTPRManchesterFacility.ThisanalysisinitiallyinvolvedobtainingstacktestreportsthatarepubliclyavailableforothermetalshreddingoperationssimilartoDJJ’sandreviewingthetestreportstoassessthequalityofthedatainthereports.Ultimately,apubliclyavailablestacktestfromtheGeneralIronplantinChicago,ILthatresultedinVOCemissions(aspropane)of

1Versar,Inc.,TitleVApplicabilityWorkbook,PreparedforTheInstituteofScrapRecyclingIndustries,Inc.,dated1996

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 6-2

0.243lbofVOCpernettonofscrapmetalwasselectedasthemostappropriatefactor.2,3Regardingairtoxics,DJJreliedonfactorsfromISRIandstacktestingconductedatOmniSourceinJackson,MI.4DJJselectedanemissionfactorof0.243lbofVOCpernettonbecauseitverylikelyconservativelyover‐estimatestheemissionsattheTPRManchesterFacility’sshredder.WhereasboththeOmniSourceandGeneralIronfacilitieshavesimilarVOCstacktestresults(0.25and0.243lb/ton,respectively),thehigherOmniSourcefactorwasactuallylimitedtotheprocesswhenshredding100%automobiles.Theoverallemissionsaremuchlesswhenfactoringinthe0.14lbpertonwhenrunning100%sheetiron.Thetypicalshredderrunsabout35‐50%autos.

6.3. SHREDDING EMISSIONS (EPNS SHREDSTK AND SHREDFUG)

EmissionfactorsforPM10,PM2.5,andHAPsweredeterminedusingdataprovidedbyISRI.Emissionfactorsareconservativelybasedonashreddersystemwithadryfeedmixtureof75%autobodiesand25%mixedscrap.TheemissionfactorforVOCwasdeterminedasdescribedinSection6.2above.ThemetalshredderattheTPRManchesterFacilityisequippedwithahoodcapturesystemandthecapturedairstreamisroutedtoabaghousefiltrationsystem.Thehoodcapturesystemisassumedtocapture80%ofthepollutantsemittedfromtheshreddingprocess.TheuncapturedemissionsarereleasedatEPNSHREDFUG.Thecapturedparticulateemissionsarecontrolledbythebaghouse(EPNSHREDSTK)witha99.9%removalefficiency.ThecapturedVOCemissionsarealsoreleasedthroughthebaghousewithnoadditionalcontrol.Hourlyemissionsareestimatedusingthefollowingequations:

1 80%

80% 1 99.9%

80%

Annualemissionsarecalculatedinasimilarmannerutilizingtheannualthroughput.Shreddingoperationsassumeamaximumthroughputof715,000tons/yearand275tons/hour.

2ShredderEmissionsTestReport–TotalHydrocarbons,ParticulateMatter,andMetals,GeneralIronIndustries,Inc.–1909N.CliftonAvenue–Chicago,Illinois60614,June25,2018–SubmittedtoU.S.EPARegion53StacktestresultsweretakenasthedifferencebetweenMethod25Aresultsfortotalhydrocarbons(THC)andMethod18resultsfornon‐VOChydrocarbons(THC),averagedacrossthreetestruns.4SourceTestReport–VOCEmissionFactorDevelopmentfortheScrapMetalShredderLocatedatOmniSourceMichiganDivision–701LewisSt,Jackson,Michigan,April2020.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-1

7. BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS

30TAC§116.111(a)(2)(C)statesthattheproposedfacilitywillutilizeBestAvailableControlTechnology(BACT),withconsiderationgiventothetechnicalpracticabilityandeconomicreasonablenessofreducingoreliminatingtheemissionsfromthefacility.TierIBACTinvolvescomparisonofemissionreductionstothoseapprovedinrecentpermitapplicationsforsimilarprocessesorindustries.Aslongasnonewtechnicaldevelopmentshavebeenmadethatwouldallowformorestringentcontrols,basedoneconomicandtechnicalreasonableness,thenthepreviouslyapprovedemissionreductionsmaybeconsideredtomeetBACTandnofurtherreviewisnecessary.IfTierIBACTisnotmet,thenaTierIIanalysismustbeperformed.TierIIBACTinvolvescomparisonofemissionreductionstothoseapprovedinrecentpermitapplicationsforsimilarairemissionstreamsindifferentprocessesorindustries.TheTierIIBACTmayinvolveamoredetailedanalysisoftechnicalpracticabilityacrossdifferentindustries/processes,butshouldnotrequireadetailedeconomicanalysis.IfTierIIBACTisnotmet,thenaTierIIIanalysismustbeperformed.TierIIIBACTinvolvesadetailedreviewofallemissionreductionoptionsonbothatechnicalandeconomicbasis.Technicalfeasibilityisdemonstratedthroughprevioussuccessofanemissionreductionstrategy,orengineeringevaluationofanewtechnology.Economicfeasibilityisdemonstratedbasedonthecosteffectivenessofcontrollingemissions(i.e.,thedollarspertonofpollutantemissionsreduced).ABACTanalysisforemissionsofparticulatematterandVOCfromthemetalshredderisprovidedbelow.

7.1. PARTICULATE MATTER (PM10 AND PM2.5) FOR SHREDDING

ThereisnoTierITCEQBACTguidanceformetalshreddingoperations.TheanalysisforthecontrolofparticulatematterfromtheshreddermovestoaTierIIanalysis.Themetalshredderisequippedwithahoodcapturesystemthatcaptures80%oftheemissionsandabaghousethatachieves99.9%controlofparticulates.TCEQBACTguidanceforcontrolusingabagfilter/baghouseis99%reductionor0.01gr/dscfoutletemissions.5ThebaghouseonthemetalshredderthereforemeetsBACTforparticulatemattercontrol.

7.2. VOC FOR SHREDDING

ThereisnoTierTCEQBACTguidanceformetalshreddingoperations.TherewerealsonoidentifiedsimilarairemissionstreamsindifferentprocessesorindustriestocompleteaTierIIBACTanalysisforVOCemissions.TheanalysisforcontrolofVOCfromtheshreddermustthereforebecompletedviaaTierIIIanalysis.

7.2.1. Step 1 – Identify Potential Control Technologies for VOC for Metal Shredders

TPR’scomprehensivesearchresultedinthefollowinglistofpotentiallyavailablecontroloptionsforreducingVOCemissionsfromthescrapmetalshredder.

Absorption Adsorption Bio‐filtration

5TCEQ,CurrentTierIBACTRequirements:Mechanical,Agricultural,andConstructionSources.VersionNo.APDG6493v1.LastRevisionDateFebruary19,2019.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-2

Condensation Flares UVOxidation CatalyticOxidation ThermalOxidation Lower‐EmittingProcesses GoodManagementPractices

Ifadd‐oncontroltechnologyisnotfeasible,analternatemethodofcontrolmaybeimplemented,suchasworkpracticestandardsandoperationallimits.Additionaldetailsontheabove‐mentionedtypesofadd‐onVOCcontroltechnologiesareprovidedbelow.

7.2.1.1. Absorption

Absorptionisacommonlyappliedoperationinchemicalprocessingthatisusedasarawmaterialorproductrecoverytechniqueintheseparationandpurificationofgaseousstreamscontaininghighconcentrationsoforganics.Inabsorption,theorganicsinthegasstreamaredissolvedinaliquid.Thecontactbetweentheabsorbingliquidandthegasstreamisaccomplishedincountercurrentspraytowers,scrubbers,orpackedorplatecolumns.Theresultingmaterialfromtheabsorptioncyclemustbetreatedordisposedoncethesolutionreachesitssaturationpoint.Thescrubbingliquidcontainingthecontaminantistypicallyregeneratedinastrippingcolumninconditionsofelevatedtemperatureorreducedpressure(vacuumconditions).Thecontaminantisthenrecoveredusingacondenser.

7.2.1.2. Adsorption

Adsorptionitselfisaphenomenonwheregasmoleculespassingthroughabedofsolidparticlesareselectivelyheldtherebyattractiveforceswhichareweakerandlessspecificthanthoseofchemicalbonds.Duringadsorption,agasmoleculemigratesfromthegasstreamtothesurfaceofthesolidwhereitisheldbyphysicalattraction.Adsorbentsinlargescaleuseincludeactivatedcarbon,silicagel,activatedalumina,syntheticzeolites,fuller'searth,andotherclays.Themostcommonlyusedisactivatedcarbon(e.g.,carbonbed).TheadsorptionofVOCsonactivatedcarbonisdependentupontwofactors.ThefirstistheequilibriumrelationshipbetweentheparticularVOC,ormixtureofVOCs,andtheactivatedcarbonadsorbent.ThesecondistherateoftransferoftheVOCfromthegasstreamtotheadsorptionsiteswithintheactivatedcarbon.TheequilibriumrelationshipbetweenthegasandthecarbonisafunctionoftheVOCconcentration,temperature,andtotalpressure.Afteradsorption,mostgasescanberemoved,ordesorbedfortheabsorbentbyheatingtoasufficientlyhightemperature,usuallyviasteamorhotcombustiongases,orbyreducingthepressuretoasufficientlylowvalue.Theadsorbatescantypicallyberecoveredandconcentratedafterbeingdesorbed.

7.2.1.3. Bio-Filtration

Bio‐filtrationsystemsaredesignedtofollowthreebasicsteps.First,apollutantinthegasphaseispassedthroughabiologicallyactivepackedbed.Thepollutantthendiffusesintothebiofilmimmobilizedonthepackingmedium.Finally,microorganismsgrowinginthebiofilmoxidizethepollutantasaprimarysubstrateorco‐metaboliteandintheprocessconvertcontaminantsintothebenignendproductsofcarbondioxide,waterandadditionalbiomass.Threeprimarybioreactorconfigurationsareavailabletotreatstationarysourcesofairpollution:bio‐filters,bio‐tricklingfilters,andbio‐scrubbers.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-3

Bio‐filtersarethesimplestandoldestofthethreevapor‐phasebioreactorsandinvolvepassingacontaminatedairstreamthroughareactorcontainingbiologicallyactivepackingmaterial.ThecontaminantsaretransferredfromtheairstreamintoabiofilmimmobilizedonthesupportmediaandareconvertedbythemicroorganismsintoCO2,water,andadditionalbiomass.Moistureistypicallysuppliedtothebiofilminahumidinletwastegasstream.Packingmediausedinbio‐filterbedscanbebroadlycategorizedaseither"natural"or"synthetic".Naturalmediaincludewoodchips,peat,andcompost,withcompostbyfarthemostwidelyused.Syntheticmediaincludeactivatedcarbon,ceramicpellets,polystyrenebeads,groundtires,plasticmedia,andpolyurethanefoam.Naturalorganicpackingmediagenerallycontainasupplyofnutrientsasanaturallyoccurringcomponentofthepackingitself.Whenasyntheticsupportmediumisused,nutrientsmustbeaddedformicrobialgrowth.

Bio‐tricklingfiltersaresimilartobio‐filterswiththeexceptionthatthereisaliquidnutrientmediumcontinuouslyrecirculatingthroughthecolumn.Tofacilitatetherecirculationoftheliquidphase,rigidsyntheticmediaisusedasthepackingmedium.Microorganismsgrowprimarilyasafixedfilmoninertpackingmediabutmayalsobepresentintheliquidphasebecausetheycanbothgrowsuspendedintheliquidphaseandbecausetheflowingliquidimpartssufficientforcetodetachbiomassfromthesolidsupportmedia.Contaminantsaretransferredfromtheairstreamintotheliquidphaseandbiofilmforsubsequentdegradation.Potentialdisadvantagesofbio‐tricklingfilteroperationsincludethefollowing:cloggingoftheporespaceifthefilteristreatinghighVOCloadsorifthefilterisprovidedexcessnutrients,andtheneedtomanagetheliquidstream.Anadditionaldisadvantageisthatbio‐tricklingfiltersmayhavemoredifficultytreatingpoorlysolublecompoundssincethespecificsurfaceareinbio‐trickingfiltersisgenerallylower.

Bio‐scrubberscombinephysicalandchemicaltreatmentwithabiologicaltreatmentintwoseparatereactors.Inthefirstreactor,thecontaminatedairstreamiscontactedwithwaterinareactorpackedwithinertmedia,resultingincontaminanttransferfromtheairphasetotheliquidphase.Theliquidisthendirectedintoanactivatedsludgereactorwherethecontaminantsarebiologicallydegraded.Theseparatedactivatedsludgetankallowsthereactortotreathigherconcentrationsofcompoundsthanbio‐filterscanhandle.Inaddition,becausecompoundtransferanddegradationoccurinseparatereactors,optimizationofeachreactorcantakeplaceseparately.Aswithbio‐tricklingfilters,bio‐scrubbersoffergreateroperatorcontrolovernutrientsupply,acidity,andthebuild‐upoftoxicby‐products.Apotentialdisadvantageofbio‐scrubbersisthatslowergrowingmicroorganismsmaybewashedoutofthesystemanddisposalofexcesssludgeisrequired.

7.2.1.4. Condensation

EmissionssourcesthathavelowflowratesofhighconcentrationVOCs(upto100%)suchastankventsareidealapplicationsforrefrigeratedandcryogeniccondensers.Thecondensedliquidisreturnedtotheprocessandnon‐condensableliquids(withlowlevelsofVOCs)areventedtotheatmosphere.

Singlestagecondensingsystems,whichcanreducetheventedgasstreamtominus20°F,canbeusedforhighboilingcompounds(suchasgasolinetankvaporsfromtanktransferoperations),andcanachieve90‐95%controlefficiencies.Highcontrolefficienciesrequirelowertemperaturesandmorecomplexitysuchasmultiplestagesandpumpingsystems.

Cascade(multi‐stage)condensingsystemsusingcryogenicscanproducetemperaturesaslowasminus120degreesFahrenheit(°F).ThesesystemsarerequiredforlowermolecularweightVOCswithhighvaporpressuresorforventstreamswithsignificantcondensablemattersuchasnitrogenfromair.

7.2.1.5. Flares

Flaresaretypicallyusedforsafetycontrolofalargevolumeofhydrocarbonpollutantresultingfromaprocessupset.Theyrequireahighheatingvaluewastegas(inexcessof300Britishthermalunitsperstandardcubicfeet

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-4

[Btu/scf]onahigherheatingvalue[HHV])orsupplementalfuel.Flarescanproduceundesirablenoise,light,andsmokeandwasteheatcannotberecovered.

7.2.1.6. UV Oxidation

UVoxidationisusedtoeliminateVOCthrougha2or3stageprocess.TheexhaustairstreamistreatedwithaUV‐Clightinthefirstphase,beginninginthephotolyticoxidationprocess.Inthesecondstage,ozoneisusedtocompletetheoxidationofcontaminants.Asneeded,athirdstagefiltrationisusedtocatalyzethereaction.Theprocessisbestsuitedfortreatmentofeasilyoxidizedorganiccompounds.

7.2.1.7. Catalytic Oxidation

Catalyticoxidationistheprocessofoxidizingorganiccontaminantsinawastegasstreamwithinaheatedchambercontainingacatalystbedinthepresenceofoxygenforsufficienttimetocompletelyoxidizetheorganiccontaminantstocarbondioxideandwater.Thecatalystisusedtolowertheactivationenergyoftheoxidationreaction.Theresidencetime;temperature;flowvelocityandmixing;theoxygenconcentration;andtypeofcatalystusedinthecombustionchamberaffecttheoxidationrateanddestructionefficiency.Catalyticoxidizerstypicallyrequirecombustionofanauxiliaryfuel(e.g.,naturalgas)tomaintaincombustionchambertemperaturehighenoughtocompletelyoxidizethecontaminantgases,andaswiththethermaloxidizers,fumepreheatingdevicesarecommonlyusedtominimizeoperatingcosts.Catalyticoxidizersaretypicallydesignedtohavearesidencetimeof0.5secondsorlessandcombustionchambertemperaturesbetween600and1,200°F.Catalyticsystemsareusuallylimitedto1,100‐1,300°Foutlettemperatures,whichlimitsVOCinputstoamaximumof25%ofalowerexplosionlimit(LEL).

PreciousMetalTypes(Platinum,Palladium,etc.):Preciousmetalscatalystchambersareusuallyconstructedofaceramicormetallicsubstratewiththecatalystappliedtothesubstrate.Thecatalystassemblyisstationary.Thesecatalystsarehighlyefficientinacleanstatebutaresubjecttodeactivationbyseveralmechanisms.Sulfur,phosphorus,halogens,bismuthandheavymetalssuchaszinc,lead,arsenic,antimony,mercury,ironoxide,tin,andsiliconcanpoisonthecatalystbedinanon‐reversiblemanner.AthoroughunderstandingoftheVOCconstituentsisnecessarytoapplythistypeofcontroldevice.

Non‐PreciousMetalTypes(Chromium,Manganese,etc.):Thesesystemsareusuallylesssusceptibletopoisoninganddeactivationbutrequirelargeramountsofcatalyst.Theseareusuallyinbulkform,appliedtoaceramicsubstanceandarearrangedonagridorscreen.Catalystbedsareusuallyfixedrelativetofumeflow;however,therearefluidizedbedtypesthatnegatetheblindingbyorganicsolids.TheVOCconstituentsmustbeknowntoapplythiscontroldevice.

7.2.1.8. Thermal Oxidation

Thermaloxidizers(TOs)regularlyachieve97%to99%destructionefficienciesbecauseoftheinherentefficiencyofthecombustionprocesses.TOstypicallyconsistofanenclosedcombustionchamberwithanauxiliaryburnerfiredwithaconventionalfuel.Thefiringrateoftheburnerisautomaticallycontrolledtomaintainapresetcombustionchambertemperature.TOsprovidemaximumoperatingflexibilitybecausetheycanhandlemostknownVOCsatawiderangeofconcentrationsandflows.However,TOsrequirerelativelyhighfuelinputbecauseofoperatingtemperatures.HeatrecoveryisfrequentlyusedwithTOsystemstominimizethefueloperatingcost,especiallywithlowconcentrationsofVOC.HeatrecoverydevicesusedinVOCsystemsaremostcommonlyindirectrecuperativeheatexchangesorthermalmassregenerativeheatexchangers.ThefourmaintypesofTOsystemsincludedirectflame,regenerativeTO,recuperativeTO,andcatalyticTO,whicharedifferentiatedbythetypeofheatrecoveryequipmentused.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-5

DirectFlame:Adirectflamethermaloxidizerconsistsofonlyacombustionchamberwithnoheatrecoveryequipment.

RegenerativeThermalOxidizers:Thesesystemsemployalargethermalmasstocollecttheheatandreturnittotheincomingfume.Eachoxidizerissuppliedwithseverallarge“cells”whicharefilledwithceramicpacking.Thecellsarealternatedfromheat‐uptocool‐downcyclesforfumepreheatingbyaseriesofdampersandductsontheoutletsideofthesystem.Theseunitscanachievehighremovalefficiencies(95‐98%)atrelativelylowtemperatures(1,400‐1,500°F)becauseofthethoroughmixingintheceramicpackingsections.Thesesystemsaremoremaintenance‐intensivethanrecuperativetypesbecauseofthemechanicalsystemthatperformsthealternatingofcells.

RecuperativeThermalOxidizers:ThesesystemsemployanindirectheatexchangerdevicetopreheattheVOCladenfume.Theyareappliedtooxidizersthatoperateattemperaturesashighas1,800°F.ThemaximumdesignefficiencyisusuallydictatedbytheexchangeroutlettemperatureandtheVOCcontentinthestream.

CatalyticThermalOxidizers:Thesesystemsuseacatalysttopromoteoxidation,allowingthereactiontooccurinanormaltemperaturerangebetween640‐1,000°F.CatalyticoxidationoccursthroughachemicalreactionbetweentheVOCmoleculesandaprecious‐metalcatalystbedinternaltotheoxidizersystem.

Ingeneral,TOsarelessefficientattreatingwastegasstreamswithhighlyvariableflowrates,sincethevariableflowrateresultsinvaryingresidencetimes,combustionchambertemperature,andpoormixing.

7.2.2. Step 2 – Eliminate Technically Infeasible Options for VOC from Shredders

Inordertobeconsideredatechnicallyfeasiblecontroloption,acontroltechnologymustbeconsideredboth“available”and“applicable”.BasedontheinformationreviewedforthisBACTdetermination,thefeasibilityofeachofthepotentiallyapplicablecontroloptionsidentifiedisevaluatedbelow.

TheuseofabsorptionsystemsisinfeasiblebecauseofthelowVOCconcentrationoftheexhaustgas,andbecausethevariablespeciationprofilefromsuchscrapmetalshreddersmaycontaincertainorganicsthatarenoteasilyabsorbedintotheliquidmedia.

AdsorbersaretypicallydesignedfortreatingemissionsstreamswithasingleVOCorasmallnumberofVOCswithsimilaradsorptionisotherms;however,theuseofadsorptionsystemsasacontroloptionforthescrapmetalshredderisinfeasiblebecauseofthelowVOCconcentrationoftheexhaustgasandbecauseofthevariablespeciationprofile.

Theuseofabio‐filtrationsystemisinfeasiblebecauseabiofiltrationsystemwouldrequirethepollutantsofconcerntobebiodegradablewithinarelativelyshorttimeframe,arelimitedtoveryloworganicloadingrates,functiononlyinaverynarrowtemperaturerange,requirepHmaintenance,requireacclimationperiodsforthesystemduringperiodsofstart‐upandshut‐down,andwouldrequireextensivepilottestingsincemixturesoforganicsdegradeatdifferentrates.

ResearchindicatesthatcondensationisatechnicallyavailablecontroloptionforcontrollingVOCemissions.However,condensersusedasthesoleadd‐oncontroldevicearemosteffectiveasaVOCcontroldeviceinapplicationsinvolvinghighVOCconcentrationemissionsstreamsthatareatornearcompletesaturationoftheVOCintheexhaustair,whereastheuseofcondensationsystemsisinfeasiblebecauseofthelowVOCconcentrationoftheexhaustgas.

EventhoughaflareisanavailablecontroloptionforcontrollingVOCemissions,itistypicallyusedasasafetydevicetocontrolwastegasesduringshort‐termperiods,suchasanupsetconditionoraccidentalreleasefromaprocess.Flaresareprimarilyusedtocontrolcombustibleventstreamsfromthepetroleumandpetrochemicalindustries,inwhichthegassesarelargelycomprisedoflowmolecularweightVOCandhighheatingvalues.Intheseindustries,aflareisappropriateforcertaincontinuous,

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-6

batch,orvariableflowventexhaustapplicationswhenthecombinedheatcontentisgreaterthan300Btu/scf.TheuseofflaresisinfeasiblebecauseofthelowVOCconcentrationoftheexhaustgas.

CurrentresearchindicatesthatUVoxidationhasneverbeenappliedasanadd‐onVOCemissionscontroldeviceformanufacturingsituationssimilartothescrapmetalshredderoperations.Moreover,theuseofUVoxidationisinfeasibleduetothedifficultyinselectingtheappropriateUVlightfrequencyfortheexpectedmatrixofvolatileorganics,aswellasthepretreatmentrequirements,catalystinterferences,highenergyrequirements,andexcessivemaintenancerequirements.Assuch,UVoxidationwouldnotbeconsideredeitheratechnicallyapplicableortechnicallyfeasiblecontroloption.

Theuseofcatalyticoxidationisnottechnicallyfeasible.Duetothewidevarietyofassociatedmaterialsthatmaypassthroughthevehicle/metalshredder,itisunknownwhatchemicalconstituentsmaybeentrainedinthesematerials.ThevariationinthetypeandconcentrationofVOCentrainedintheexhaustgasflowcouldleadtothefoulingofthecatalystbed,renderingitineffectiveinenhancingVOCdestruction.

ThefollowingtablesummarizesotherBACTdeterminationsatsimilarsourcesidentifiedintheU.S.EPA'sRACT/BACT/LAERClearinghouse(RBLC),aswellasrecentIDEMandOhioEPApermits

TABLE 7-1. RECENT VOC BACT DETERMINATIONS AT SIMILAR OPERATIONS

Company/Location

YearIssued

ProcessDescription

VOCControlDevice

BACTEmissionLimits/Requirements

Reference

OmniSourceCorporationFortWayne,IN

2012 Automobile/ScrapMetalShredding

None WorkPracticeStandards.VOCemissionsshallnotexceed63.95tpyper12consecutivemonthperiod.

F003‐29387‐00057IDEMOAQ

OmniSourceIndianapolis,LLCIndianapolis,IN

2012 Automobile/ScrapMetalShredding

None WorkPracticeStandards.VOCemissionsshallnotexceed88.75tpyper12consecutivemonthperiod.

F097‐30042‐00580IDEMOAQ

OmniSourceCorporationToledo,OH

2008 Automobile/ScrapMetalShredding

None VOCemissionsshallnotexceed55.33lb/hror88.92tpy.Throughputofmaterialsshallberestrictedto720,000tonsper12consecutivemonthperiod.

PTIOP0103630OhioEPA

ToledoShreddingToledo,OH

2006 Automobile/ScrapShredding

None WorkPracticeStandards.VOCEmissionsshallnotexceed29.82lb/hror47tpy.Operationoftheshredder/hammermillshallnotexceed3,000hrsper12consecutivemonthperiod

PTI0400529OhioEPA

ThefollowingtablesummarizessimilarsourcesinoperationwithVOCadd‐oncontrols.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-7

TABLE 7-2. SIMILAR OPERATIONS WITH VOC ADD-ON CONTROLS

Company/Location

PMControlDevice

VOCControlDevice

AcidGasControlDevice

OperationalLimits

Reference

GeneralIronIndustries,Inc.Chicago,IL

WaterSpray,Cyclone,andRollMediaFilter

RegenerativeThermalOxidizer

Quench/PackedTowerScrubber

N/A 170000043904IEPA

SATerminalIslandLongBeach,CA

WaterSpray,OilDemisters,andFilters

RegenerativeThermalOxidizer

ChemicalScrubber

108,333tonspermonth

R‐G27565SCAQMD

SAAnaheimAnaheim,CA

WaterSpray,OilDemisters,andFilters

RegenerativeThermalOxidizer

ChemicalScrubber

56,160tonspermonth

G16984SCAQMD

EcologyAutoPartsColton,CA

WaterSprayandFilters

RegenerativeThermalOxidizer

None 40,000tonspermonth

G32848SCAQMD

Foreachofthemetalshreddingoperationswithadd‐onVOCcontrols,eachhasreliedonaRegenerativeThermalOxidizers(RTO).TheRTOusesasubstratebedofceramicmaterialtoabsorbheatfromtheexhaustgas.Incominggasesarepassedoverthisheatedbed,whichdestroystheorganiccompoundsbyoxidizing(burning)them.TheRTOrequiresadust‐freeairstream,sodemistersandPMfiltersareplacedbeforetheoxidizer.AnydustcontainingmetalparticlesthatentertheRTOcanformslag,whichreducesperformanceandcandamagetheunit.Subjectingorganiccompoundstothehightemperaturesintheoxidizerideallyyieldsonlycarbondioxideandwatervapor.Anyhalogenatedcompoundsintheincomingexhauststream,suchasremainingchlorofluorocarbons(CFCs)invehicleandappliancerefrigerantsystems,cancreateacidgasseswhenburnedintheoxidizer,andareremovedusingawetscrubberatthefinalstageoftheairpollutioncontrolsystemfollowingtheRTO.Insummary,ametalshreddingoperationwouldentailathree‐stagecontrolsystem:theprimarystagewouldcontrolfordustandparticulates,thesecondarywouldcontrolforVOCs,andthetertiarywouldcontrolforacidgases.Asamplecomprehensivecontrolsystemissummarizedbelow:

OverheadexhausthoodtocollectparticulatematterandVOCsgeneratedfromshredding; Watersprayinsidetheshredderchambertocontroltemperatureandreducedustgeneration; Dust/mistcollectortocaptureoils,particulatematter,andmoisturefromshredderexhaust; Variousmoisture‐coalescingfiltersandhigh‐efficiencydustfilters; RTOforcontrolofVOCs;and, Achemicalscrubbertoneutralizeandremoveacidgasesfromtheshredderexhaust.

ItshouldbenotedthatmostofthefacilitieslistedabovearerequiredtocompletedworkpracticesstandardsforVOC.TheserequirementsincludedrainingandremovingVOC‐containingfluids(e.g.,gasoline,motoroil)fromvehicles,appliances,andothermetalscrappriortoshreddingaswellasdocumentationofinspectionsofnon‐existenceofsuchVOC‐containingfluids.Itcanalsobenotedthatallthefacilitiesalsofollowfugitivedustmitigationplans,whichinclude(butarenotlimitedto)applicationofwatertotrafficsurfaces,periodicsweepingofmaterialstackingareas,enclosureofconveyancesystems.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-8

7.2.3. Step 3 – Rank the Remaining Control Technologies by Control Effectiveness for VOC from the Shredder

TheremainingtechnicallyfeasibleoptionsforcontrollingVOCemissionsfromtheScrapMetalShredderareasfollows(listedindescendingorderofmosttechnicallyfeasible):1. RegenerativeThermalOxidation(RTO)–95‐98%destructionefficiency2. WorkPracticeStandardsandOperationalLimits

7.2.4. Step 4 – Evaluate the Most Effective Controls and Document the Results for VOC from the Shredder

Furtherevaluationincludingeconomic,energy,andenvironmentalimpactsarerequiredforcontrollingVOCemissionsfromvehicleandmetalshreddingoperationattheTPRManchesterFacility.AnnualizedcostsweredeterminedinaccordancewiththeEPAguidance(EPA’sOfficeofAirQualityPlanningandStandardsControlCostManual),withotherrelevantinformationprovidedbytherespectiveequipmentvendors,inputsfromplantpersonnel,andengineeringjudgment.PursuanttoSectionIV.D.2.cofEPA'sBACTGuidanceDocument,coststhatarewithintherangeofnormalcostsforacontrolmethodmaybereviewedincomparisontosimilarsources.Thiscomparisonallowstheeliminationofatechnologically‐andotherwiseeconomicallyfeasiblecontroloption,providedthatthecostsofpollutantremovalforthesourceareundulyhighcomparedtothosefromsourcesinrecentBACTdeterminations.ThetechnologicallyfeasibleoptionsforcontrollingVOCemissionsfromthevehicleandmetalshreddingoperationsandthecostsestimatedforTPRtopurchaseandoperatesuchacontrolsystemaresummarizedbelow.ThecosteffectivenessforsimilarcontrolsatsimilarfacilitiesarenotavailableforcomparisonforthevehicleandmetalshreddingoperationbecausetherewerenorecordsreadilyavailableforacomprehensivecontrolsystemincludinganewexhausthoodtocaptureparticulateandVOCemissions,newPMcontrols(e.g.,oildemister,filters),anRTOsystemitself,andascrubbersystemtocontrolforacidgases.Instead,thefollowingcostsfromsimilaroperationswereused.

Circa2010,TPRpaidforthedesignandinstallationofanexhaustcapturesystemfortheshredderwiththeintentofreducingdustandvisibleemissions.Whilethissystemisstillinplace,thecaptureefficiencyisnotsufficient,anditisnotexpectedthattheparticulateremovaldevicewillachieveastreamthatiscleanenoughtobecontrolledbytheRTO.o Basedonthetotalcostfortheexistingsystem,TPRisconfidentthattheequivalentcapitalcostofan

upgradedsystemwithcompletecaptureandupgradedparticulatemattercontrolwouldstartat$2million;therefore,thiscostanalysisassumesthatvalueasthetotalcapitalinvestment(whichincludesequipmentcost,foundationcosts,engineeringandcontractorfees,etc.).

o BasedonexperiencewiththecurrentsystemanditsunderstandingofanRTO‐equippedCaliforniametalrecyclingfacility,whosecosttooperateandmaintain(O&M)thehoodandDCsystemequatesto$1pergrosstonofannualthroughput,TPRisconfidentthattheequivalentO&McostfortheupgradedsystemattheTPRManchesterFacilitywouldbeasmuch.

Asimilarmetalshreddingoperation,ownedbyGeneralIronIndustries,Inc.andsitedinChicago,Illinois,finishedinstallationofandbeganoperationofatwo‐stagecontrolsystem:anRTOtocontrolforVOCsandaQuench/PackedTowerScrubbertocontrolforacidgases.Thepublishedcostforthesystemis$2million.BecausesuchacapitalcostisbasedonactualcostspaidandreasonablywithinrangeofcalculatedcostsforeachcontroltechnologybasedontheUSEPACostControlManual,$2millionisassumedtoforthetotalcapitalinvestmentforanRTO‐scrubbersystemtocontrolforVOCandacidgases,respectively.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-9

TPRhasagreedtolimitVOCemissionsfromthescrapmetalshreddertolessthan86.87tpyper12consecutivemonthperiod.Therefore,thecostanalysisisbasedontheestimatedVOCcontrolledof85.14tpy,whichtakesintoconsiderationtheestimated98%controlefficiency.InorderforanRTOsystemtobeatechnicallyfeasibleVOCremovaloptionforthistypeofoperation,particulatesintheexhauststreamwouldneedtoberemovedpriortotheexhauststreamenteringtheVOCcontroldevice.HighparticulateloadingscancausesignificantoperationalproblemswhichcanreduceVOCcontrolefficiencyandthelifeoftheadd‐oncontrol.Forthatreason,thecostanalysiscontainsthecostsforinstallinganupgradedparticulatecontroldevice,inadditiontoanRTO.Relatedly,theexistingexhaustcapturesysteminplaceisinsufficientforcompletecaptureoftheemissions.Assuch,thecostanalysessubmittedalsoincludethecostsassociatedwiththeretrofittingofthevehicle/metalshredder,theconstructionofabuildingtohousethevehicle/metalshredder,andtheconstructionandoperationcostsoftheadditionalairhandlersthatwouldberequiredtoducttheemissionstotheadd‐oncontroldevices.Importantly,becauseanyhalogenatedcompounds(e.g.,CFCs)intheincomingexhauststreamcancreateacidgasseswhenburnedintheoxidizer,theenvironmentalimpactofsuchpotentialacidgasesgeneratedfromtheRTOasaVOCremovaloptionmustbeevaluatedfurther.Specifically,suchacidgaseswouldneedtoberemovedbyusingawetscrubberatthefinalstageoftheairpollutioncontrolsystemfollowingtheRTO.ToaccountforenvironmentalimpactsoftheformationofacidgasesasaresultofthedestructionofVOCemissionsfromanRTO,thecostanalysessubmittedincludethecostsassociatedwithpurchasing,installing,oroperatingsuchawetscrubbersystemThefollowingtablesummarizesthecosteffectivenessevaluationfortheScrapMetalShredderatTPR’sManchesterFacility,consistentwiththeconsiderationslistedabove.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-10

TABLE 7-3. COST EFFECTIVENESS SUMMARY FOR A VOC CONTROL SYSTEM

Insummary,takingintoconsiderationenergy,environmental,safetyconcerns,economicimpactsandothercosts,thisVOCBACTanalysisclearlydemonstratesthatavailableadd‐oncontroltechnologyisnotfeasibleforthescrapmetalshredderoperations.Furthermore,TPRproposesthatrequiringadd‐oncontrolsforthevehicleandmetalshreddingoperationwouldplacethematasignificanteconomicdisadvantageinthemetalrecyclingindustry.Therefore,TPRproposestotakeaVOCemissionlimitandtoreducepotentialemissionsthroughoperationallimitationsandworkpracticestandards.

7.2.5. Step 5 – Select BACT for VOC from the Shredder

ThefollowinghavebeenproposedasBACTforVOCemissionsfromthescrapmetalshredder.

VOCemissionsfromthesteelshreddershallbenomorethan86.87tpyonarolling12‐monthperiod,withcompliancedeterminedattheendofeachmonth,wheretheproposedemissionlimitcorrespondstoanetscrapmaterialthroughputlimitof715,000tpy.

TPRshalldrainandremove,totheextentpracticable,VOCandVHAPcontainingfluidsfromvehicles,appliances,industrialmachinery,andothermetalscrapreceivedpriortoshredding;orTPRshall

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 7-11

documentthatinspectionshavebeenperformedtoconfirmthenon‐existenceofVOCandVHAPcontainingfluids.Fluidsshallinclude,butarenotlimitedto,gasoline,motoroil,transmissionoil,andhydraulicfluid.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 8-1

8. IMPACTS ANALYSIS

Animpactsanalysiswasperformedtodemonstratetherewouldbenoadverseimpactsfromthemetalshreddingoperation.The impactsanalysis includedaStateNAAQSanalysis forparticulatematterand leadandaHealthEffectsReviewforspeciatedVOCandmetals.

8.1. STATE NAAQS ANALYSIS

AMinorNSRNAAQSAnalysisisrequiredtoshowthatemissionsofparticulatematterlessthan10microns(PM10),particulatematterlessthan2.5microns(PM2.5),andlead(Pb)willnotcauseorcontributetoaviolationofanyapplicableNAAQS.ForPM10andPM2.5,aqualitativeanalysisisperformedbasedonmonitoringdatafromthenearbyClintonMonitor(AQS482011035).TheClintonMonitorislocated1.5kmfromtheTPRManchesterFacility.Asthemetalshredderhasbeeninoperationsince2007andnoincrease inthroughput isproposedwiththisapplication, thenearbymonitorwouldincludeemissionsofPM10andPM2.5fromthemetalshredder.Table8‐1summarizestheaverageofthemostrecentthreeyearsofmonitoringdataandthecorrespondingNAAQS.

TABLE 8-1. CLINTON MONITOR DATA AND NAAQS VALUES

Pollutant AveragingPeriod

3‐YearAverageMonitorData(g/m3)

NAAQS(g/m3)

PM10 24‐hour 82 150PM2.5 24‐hour 25.3 35

Annual 10.4 12AsshowninTable8‐1,theNAAQSforPM10andPM2.5havenotbeenexceededwhilethemetalshredderisinoperation.ContinuedoperationofthemetalshredderisnotexpectedtocauseorcontributetoaviolationoftheNAAQS.Therearenonearbymonitorsforlead.Therefore,adispersionmodelinganalysiswasperformedtodemonstratethatemissionsfromthemetalshredderwouldnotcauseorcontributetoaviolationoftheNAAQS.Detailsoftheanalysis(performedusingEPA’sSCREEN3model)arecontainedintheattachedEMEWworkbook.Table8‐2summarizestheresults,whichindicatethatcontinuedoperationofthemetalshredderisnotexpectedtocauseorcontributetoaviolationoftheNAAQS.

TABLE 8-2. LEAD NAAQS MODELING ANALYSIS RESULTS

Pollutant AveragingPeriod

GLCmax(g/m3)A

BackgroundConcentration(g/m3)

TotalImpact(g/m3)

NAAQS(g/m3)

Lead Rolling3‐monthaverage

0.026 0.01 0.04 0.15

A GLCmax conservatively reported as the 24-hour averaging period value as there is no multiplier for 3-month averaging period.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 8-2

8.2. STATE HEALTH EFFECTS EVALUATION

AStateHealthEffectsEvaluationisrequiredforemissionsofspeciatedcompoundstodemonstratecompliancewithTCEQToxicologyDivision’sEffectsScreeningLevels(ESL)guidelines.TheevaluationiscompletedfollowingtheMarch2018TCEQModelingEffectsandReviewApplicability(MERA)guidancepackage.TheTCEQMERAguidancedocumentprovidesaflowcharttobeusedtodeterminetherequiredscopeofthemodelingandeffectsreviewforeachcompoundrequiredtobeincludedintheanalysis.Theflowchartprovidesaprocesstodetermineifrefinedairdispersionmodelingoreffectsreviewisrequiredforapermittingproject,andifrequired,theminimumrequirementsforthescopeofthemodelingandeffectsreview.TheMERAguidancedocumentrequirescomparisontotheESLforeachcompoundunderconsideration.Alistofthecompoundsevaluatedinthisanalysis,alongwiththecorrespondinghourlyandannualESLsforeachareprovidedinTable8‐3.

TABLE 8-3. POLLUTANTS TO BE EVALUATED AND ASSOCIATED EFFECTS SCREENING LEVELS

Component CASNo.Short‐termESL

(µg/m3)ALong‐termESL(µg/m3)A

1,1‐Dichloroethene 75‐35‐4 210 100Propene 115‐07‐1 SimpleAsphyxiant SimpleAsphyxiantEthanol 64‐17‐5 18,800 1,8802‐Propanol 67‐63‐0 4,920 4922‐Butanone 78‐93‐3 18,000 2,600EthylAcetate 141‐78‐6 3,100 1,440n‐Hexane 110‐54‐3 5,600 200Tetrahydrofuran 109‐99‐9 1,500 150Benzene 71‐43‐2 170 4.5Cyclohexane 110‐82‐7 3,400 340.0MethylMethacrylate 80‐62‐6 860 210n‐Heptane 142‐82‐5 10,000 2,700Methylisobutylketone 108‐10‐1 820 82Toluene 108‐88‐3 4,500 1,200n‐ButylAcetate 123‐86‐4 11,000 1,400n‐Octane 111‐65‐9 5,600 540Ethylbenzene 100‐41‐4 26,000 570Xylenes 1330‐20‐7 2,200 180Styrene 100‐42‐5 110 140n‐Nonane 111‐84‐2 4,800 450Cumene 98‐82‐8 650 250alpha‐Pinene 80‐56‐8 1,120 112n‐Propylbenzene 103‐65‐1 2,500 2504‐Ethyltoluene 622‐96‐8 1,250 1251,3,5‐Trimethylbenzene 108‐67‐8 4,400 541,2,4‐Trimethylbenzene 95‐63‐6 4,400 54d‐Limonene 5989‐27‐5 1,100 110Naphthalene 91‐20‐3 440 50MethyleneChloride 75‐09‐2 3,600 350Trichloroethylene 79‐01‐6 540 54Tetrachloroethane 79‐34‐5 70 7Cadmium(Cd) 7440‐43‐9 5.4 0.003Chromium(Cr) 7440‐47‐3 3.6 0.041

A Texas Air Monitoring Information System (TAMIS), Tox ESL-Summary Report, Effective Date: 8/30/2019.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 8-3

8.2.1. Step 1

Step1oftheMERAanalysisallowspollutantswithnonetincreasetodropoutoftheanalysis.AsthemetalshredderisbeingpermittedunderanNSRpermitforthefirsttime,therearenoemissiondecreasesassociatedwiththisprojectandthisstepdoesnotapply.

8.2.2. Step 2

AccordingtotheMERAguidance,iftheshort‐termemissionrateofapollutantmeetsoneoftheconditionsinTable8‐4andthelong‐termESLofthepollutantisnolessthan10%oftheshort‐termESL,thispollutantpassestheMERAanalysis.AsshowninAppendixB;1,1‐dichloroethane,2‐butanone,ethylacetate,methylmethacrylate,n‐butylacetate,cumene,alpha‐pinene,d‐limonene,trichloroethylene,andtetrachloroethylenepassthehealthimpactanalysisatStep2andnofurtherreviewisrequiredforthesechemicals.

TABLE 8-4. MERA STEP 2

Short‐termESL,µg/m3 Short‐termEmissionIncrease,lb/hr2≤ESL<500 ≤0.04

500≤ESL<3500 ≤0.1ESL≥3500 ≤0.4

8.2.3. Step 3

Thisstepinvolvesdeterminingiftheimpactsfromeachpollutantwillresultinaconcentrationnogreaterthan10%oftheairtoxic’srespectiveESL.TPRchoosetomodeltheindividualsourcesinSCREEN3fortheanalysisinStep3.DetailsonthemodeledparametersareprovidedintheattachedEMEWworkbook.AccordingtoMERAguidance,apollutantwillfalloutatStep3ifthefollowingequationistrue:

i1

(X ER ) 0.1 ESLn

ii

ThelistofpollutantsthatscreenoutthroughStep3ispresentedinTable8‐5.

TABLE 8-5. CHEMICALS THAT PASS MERA AT STEP 3

Ethanol Toluene 1,3,5‐Trimethylbenzene2‐Propanol n‐Octane 1,2,4‐Trimethylbenzenen‐Hexane Ethylbenzene NaphthaleneTetrahydrofuran Xylenes MethyleneChlorideCyclohexane n‐Nonane Cadmium(shorttermonly)n‐Heptane n‐Propylbenzene ChromiumMethylIsobutylKetone 4‐Ethyltoluene

Benzene(shorttermandlongterm),styrene(shortterm),andcadmium(longterm)arenotscreenedoutthroughStep3.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 8-4

8.2.4. Steps 4 and 5

Step4allowsforareviewofprojectimpactsandotherincreasessincethelastsitewidemodeling.Nopreviousmodelinghasbeenperformedforthesite;therefore,thisstepisnotutilized.Step5addressesonlyMSSimpactsandmaynotbeusedinthisanalysisastherearenoMSSemissionsassociatedwiththeproject.

8.2.5. Step 6

Step6appliestheratiotesttodetermineifimpactsfromtheprojectwillbeacceptablewhencomparedtototalemissionsfromthesite.TheMERAanalysisiscompletedatStep6ifthefollowingequationistrue:

max P

S

GLC ER

ESL ER

AsdocumentedinAppendixB,impactsofbenzene,styrene,andcadmiumpasstheratiotestandnofurtheranalysisisrequiredforthisproject.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 9-1

9. FEDERAL NEW SOURCE REVIEW ANALYSIS

TheTPRManchesterFacilityislocatedHarrisCountywhichiscurrentlydesignatedas“serious”non‐attainmentfor8‐hourozoneandattainmentforotherpollutants.Accordingly,thesiteissubjecttoChapter116requirementsrelatedtoFederalNewSourceReview(FNSR)analysis.Forpollutantsdesignatedasattainment,projectincreaseornettinganalysisisrequiredtodeterminePreventionofSignificantDeterioration(PSD)applicability.Forpollutantsdesignatedasnon‐attainment,projectincreaseornettinganalysisisrequiredtodeterminenon‐attainment(NA)reviewapplicability.AtthetimetheTPRManchesterFacilitywasoriginallyauthorizedandbuilt(2007),theHGBareawasdesignatedas“moderate”non‐attainmentfor8‐hourozoneandattainmentforotherpollutants.ThisapplicationisthereforebeingsubmittedaswitharetrospectiveFederalNSR(FNSR)applicabilityanalysisbasedonthenonattainmentstatusatthetimethemetalshredderwasinitiallypermittedandconstructed.Theretrospectiveanalysisisconductedwiththeupdatedemissionratesforthemetalshredderandtheemissionsauthorizedin2007fortheremainingsourcesatthesite.Table9‐1summarizestheemissionsandmajorsourcethresholdsforeachpollutant.Asshownbelow,nopollutantsexceedthemajorsourcethresholdandFNSRisnottriggeredforthisproject.

TABLE 9-1. FNSR ANALYSIS

VOC NOx PM10 PM2.5 CO SO2 PbMetalShredderEmissions(tpy)

86.87 ‐‐ 2.89 2.89 ‐‐ ‐‐ <0.01

OtherSourcesAuthorizedin2007(tpy)

‐‐ ‐‐ 2.91 2.91A ‐‐ ‐‐ ‐‐

NNSRMajorSourceThreshold(tpy)

100 100 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

PSDMajorSourceThreshold(tpy)

‐‐ 250 250 250 250 250 250

NNSRMajorSource? NO NO ‐‐ ‐‐ ‐‐ ‐‐ ‐‐PSDMajorSource? ‐‐ NO NO NO NO NO NO

A PM2.5 was not reported in the original authorization. Emissions are conservatively assumed to equal PM10.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 10-1

10. GENERAL APPLICATION REQUIREMENTS

AccordingtotheinstructionsforfilinganAirQualityPermitPI‐1form,thepermitapplicationmustaddresstheGeneralApplicationrequirements,asspecifiedin30TAC§116.111.Therequirementsarelistedandaddressedinthissection.§116.111.GeneralApplication.Inordertobegrantedapermit,amendment,orspecialpermitamendment,theapplicationmustinclude:(1)acompletedFormPI‐1GeneralApplicationsignedbyanauthorizedrepresentativeoftheapplicant.Alladditionalsupportinformationspecifiedontheformmustbeprovidedbeforetheapplicationiscomplete;AcompletedPI‐1workbookisbeingcertifiedandsubmittedviaSTEERS.Additionalsupportinginformation,asspecifiedintheapplicationworkbook,isincludedinvarioussectionsofthisapplication.(2)Informationwhichdemonstratesthatemissionsfromthefacility,includingandanyassociateddocksidevesselemissions,meetallofthefollowing.(2)(A)Protectionofpublichealthandwelfare.(2)(A)(i)TheemissionsfromtheproposedfacilitywillcomplywithallrulesandregulationsofthecommissionandwiththeintentoftheTexasCleanAirAct(TCAA),includingprotectionofthehealthandpropertyofthepeople.OperationsatTPR’sManchesterFacilityareconsistentwiththegoalofprotectingthepublichealth,welfare,andpropertyofthepeople.Thisisdemonstratedbythefacility’scompliancewithallapplicableairqualityrulesintheTexasAdministrativeCode,asoutlinedbelow.Chapter101‐GeneralAirQualityRules:TPR’sManchesterFacilitywillbeoperatedinaccordancewiththegeneralrulesrelatingtocircumvention,nuisance,traffichazard,notificationandrecordkeepingrequirementsformajoremissioneventsandforstartup/shutdown/maintenance,sampling/samplingport/samplingprocedures,emissionsinventoryrequirements,compliancewithEnvironmentalProtectionAgencyStandards,theNationalPrimaryandSecondaryAirQualityStandards,inspectionfees,emissionsfees,andallotherapplicableGeneralRules.Chapter111–ControlofAirPollutionfromVisibleEmissionsandParticulateMatter:TheTPRManchesterFacilitywillcomplywiththeallowablevisibleemissionrequirementsin30TAC§111.111andtheparticulatematter(PM)emissionratespecifiedin30TAC§111.151.Inaddition,TPRwillcomplywiththeoutdoorburningrestrictionsin30TAC§111.201.Chapter112–ControlofAirPollutionfromSulfurCompounds:ThemetalshredderisnotsubjecttoChapter112–ControlofAirPollutionfromSulfurCompounds.Chapter113–StandardsofPerformanceforHazardousAirPollutantsandforDesignatedFacilitiesandPollutants:Chapter113regulatestheemissionofradionuclides(40CFR61,SubpartR),municipalsolidwastelandfills,hospital/medical/infectiouswasteincinerators,andhazardousairpollutantsforsourcecategories(40CFR63).TherewillbenoemissionsofradionuclidesandTPR’sManchesterFacilityisnotamunicipalsolidwastelandfillanddoesnothaveahospital/medical/infectiouswasteincinerator.Therefore,thesesectionsof

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 10-2

theregulationdonotapply.EmissionsfromhazardousairpollutantsareregulatedundertheMACTprogram,addressedintheresponsetoChapter122,item(2)(F)below.Chapter114–ControlofAirPollutionfromMotorVehicles:AllmotorvehiclesownedoroperatedbyTPRwillcomplywiththeapplicableprovisionsofthisregulationincludingmaintenanceandoperationofairpollutioncontrolsystemsordevices,inspectionrequirements,equipmentevaluationproceduresforvehicleexhaustgasanalyzers,anduseofoxygenatedfuels. Chapter115–ControlofAirPollutionfromVolatileOrganicCompounds(VOC):TPR’sManchesterFacilitywillcomplywiththeapplicableregulationsinChapter115.Allmonitoring,recordkeeping,andreportingrequirementswillbefollowed.Chapter117–ControlofAirPollutionfromNitrogenCompounds:ThemetalshredderisnotsubjecttoChapter117–ControlofAirPollutionfromNitrogenCompounds.Chapter118–ControlofAirPollutionEpisodes:TPR’sManchesterFacilitywillbeoperatedincompliancewiththerulesrelatingtogeneralizedandlocalizedairpollutionepisodes.Chapter122–FederalOperatingPermits:Basedontherecent(August2019)redesignationoftheHGBareatoseriousnon‐attainmentforozone,TPR’sManchesterFacilityisamajorsource.ATitleVapplicationwillbesubmittedpriortoAugust2020pertherequirementsof30TAC122.130(b)(2).(2)(A)(ii)Forissuanceofapermitforconstructionormodificationofanyfacilitywithin3,000feetofanelementary,juniorhigh/middle,orseniorhighschool,thecommissionshallconsideranypossibleadverseshort‐termorlong‐termsideeffectsthatanaircontaminantornuisanceodorfromthefacilitymayhaveontheindividualsattendingtheschool(s).JRHarrisElementarySchoolislocatedwithin3,000feetofthefacility.AsdemonstratedinSection8,therearenoexpectedadverseimpactsfromthefacilityonthesurroundingarea.(2)(B)Measurementofemissions.Theproposedfacilitywillhaveprovisionsformeasuringtheemissionofsignificantaircontaminantsasdeterminedbytheexecutivedirector.Thismayincludetheinstallationofsamplingportsonexhauststacksandconstructionofsamplingplatformsinaccordancewithguidelinesinthe“TexasCommissiononEnvironmentalQualitySamplingProceduresManual.”EmissionsfromanysourceaddressedintheapplicationwillbesampleduponrequestoftheExecutiveDirectoroftheTCEQ,andsamplingports,etc.willbeinstalledasneeded.(2)(C)Bestavailablecontroltechnology(BACT)mustbeevaluatedforandappliedtoallfacilitiessubjecttotheTCAA.PriortoevaluationofBACTundertheTCAA,allfacilitieswithpollutantssubjecttoregulationunderTitleIPartCoftheFederalCleanAirAct(FCAA)shallevaluateandapplyBACTasdefinedin§116.160(c)(1)(A)ofthistitle(relatingtoPreventionofSignificantDeteriorationRequirements).PleaseseeSection7foradetailedBACTdiscussion.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 10-3

(2)(D)NewSourcePerformanceStandards(NSPS).TheemissionsfromtheproposedfacilitywillmeettherequirementsofanyapplicableNSPSaslistedunder40CodeofFederalRegulations(CFR)Part60,promulgatedbytheUnitedStatesEnvironmentalProtectionAgency(EPA)underFCAA,§111,asamended.TheoperationscoveredunderthispermitarenotsubjecttotheNewSourcePerformanceStandards(NSPS)regulationsof40CFRPart60.(2)(E)NationalEmissionStandardsforHazardousAirPollutants(NESHAP).TheemissionsfromtheproposedfacilitywillmeettherequirementsofanyapplicableNESHAP,aslistedunder40CFRPart61,promulgatedbyEPAunderFCAA,§112,asamended.TheoperationscoveredunderthispermitarenotsubjecttotheNationalEmissionStandardsforHazardousAirPollutant(NESHAP)regulationsof40CFRPart61.(2)(F)NESHAPforsourcecategories.Theemissionsfromtheproposedfacilitywillmeettherequirementsofanyapplicablemaximumachievablecontroltechnologystandardaslistedunder40CFRPart63,promulgatedbytheEPAunderFCAA,§112oraslistedunderChapter113,SubchapterCofthistitle(relatingtoNationalEmissionsStandardsforHazardousAirPollutantsforSourceCategories(FCAA§112,40CFR63)).TheoperationscoveredunderthispermitarenotsubjecttotheNationalEmissionStandardsforHazardousAirPollutant(NESHAP)regulationsof40CFRPart63.(2)(G)Performancedemonstration.Theproposedfacilitywillachievetheperformancespecifiedinthepermitapplication.Theapplicantmayberequiredtosubmitadditionalengineeringdataafterapermithasbeenissuedinordertodemonstratefurtherthattheproposedfacilitywillachievetheperformancespecifiedinthepermitapplication.Inaddition,dispersionmodeling,monitoring,orstacktestingmayberequired.TPR’sManchesterFacilitywillachievetheperformanceasrepresentedinthispermitapplication.(2)(H)Nonattainmentreview.Iftheproposedfacilityislocatedinanonattainmentarea,itshallcomplywithallapplicablerequirementsinthischapterconcerningnonattainmentreview.RefertoSection9ofPermitApplication.(2)(I)PreventionofSignificantDeterioration(PSD)review.Iftheproposedfacilityislocatedinanattainmentarea,itshallcomplywithallapplicablerequirementsinthischapterconcerningPSDreview.RefertoSection9ofPermitApplication.(2)(J)Airdispersionmodeling.Computerizedairdispersionmodelingmayberequiredbytheexecutivedirectortodetermineairqualityimpactsfromaproposednewfacilityorsourcemodification.Indeterminingwhethertoissue,orinconductingareviewof,apermitapplicationforashipbuildingorshiprepairoperation,thecommissionwillnotrequireandmaynotconsiderairdispersionmodelingresultspredictingambientconcentrationsofnon‐criteriaaircontaminantsovercoastalwatersofthestate.Thecommissionshalldeterminecompliancewithnon‐criteriaambientaircontaminantstandardsandguidelinesatland‐basedoff‐propertylocations.

Texas Port Recycling LP | NSR Permit Application Trinity Consultants 10-4

RefertoSection8ofPermitApplicationandtheattachedEMEWworkbook.(2)(K)Hazardousairpollutants.Affectedsources(asdefinedin§116.15(1)ofthistitle(relatingtoSection112(g)Definitions))forhazardousairpollutantsshallcomplywithallapplicablerequirementsunderSubchapterEofthischapter(relatingtoHazardousAirPollutants:RegulationsGoverningConstructedorReconstructedMajorSources(FCAA,§112(g),40CFRPart63)).TherearenoaffectedsourcessubjecttoSection112(g)asdefinedin§116.15(1).(2)(L)Masscapandtradeallowances.IfsubjecttoChapter101,SubchapterH,Division3,ofthistitle(relatingtoMassEmissionsCapandTradeProgram),theproposedfacility,groupoffacilities,oraccountmustobtainallowancestooperate.TPR’sManchesterFacilityisnotsubjecttothemasscapandtradeprogram.(b)Inordertobegrantedapermit,amendment,orspecialpermitamendment,theowneroroperatormustcomplywiththefollowingnoticerequirements.(1)ApplicationsdeclaredadministrativelycompletebeforeNovember1,1999,aresubjecttotherequirementsofDivision3ofthissubchapter(relatingtoPublicNotificationandCommentProcedures).Notapplicable.ThepermitapplicationisbeingsubmittedtotheTCEQin2019.(2)ApplicationsdeclaredadministrativelycompleteonorafterSeptember1,1999,aresubjecttotherequirementsofChapter39ofthistitle(relatingtoPublicNotice)andChapter55ofthistitle(relatingtoRequestforReconsiderationandContestedCaseHearings;PublicComment).Uponrequestbytheowneroroperatorofafacilitywhichpreviouslyhasreceivedapermitorspecialpermitfromthecommission,theexecutivedirectorordesignatedrepresentativemayexempttherelocationofsuchfacilityfromtheprovisionsinChapter39ofthistitleifthereisnoindicationthattheoperationofthefacilityattheproposednewlocationwillsignificantlyaffectambientairqualityandnoindicationthatoperationofthefacilityattheproposednewlocationwillcauseaconditionofairpollution.TPRwillfollowtherequirementsofChapter39andChapter55asrequired.

Texas Port Recycling LP | NSR Permit Application 11-1 Trinity Consultants

11. PERMIT FEE

Eachpermitapplicationrequiresanapplicationfeethatisbaseduponthetotalestimatedcapitalcostassociatedwiththeinstallationofthenewequipment.Pursuantto30TAC§116.141,thefeedueonastatepermitapplicationisbasedonthecapitalcostoftheproject.AsdocumentedinthePI‐1Workbook,thereisnocapitalcostassociatedwiththisapplication.Per30TAC§116.163,forprojectswithatotalestimatedcapitalcostlessthan$300,000,thepermitapplicationfeeis$900.ThepermitfeewaspaidonlinethroughtheTCEQePaysystem.

Texas Port Recycling LP | NSR Permit Application A-1 Trinity Consultants

APPENDIX A: DETAILED EMISSION CALCULATIONS

>

Description and NomenclatureType of Unit (Make, Model): Houston Shredder

Construction Date: 7/1/2007Control Device: Baghouse

Control of Fugitives: NonePlant ID: H-1

Maximum Process Rates>

(1) Hammer MillMaximum Short-Term Capacity 275.0 tph Max Capacity of Houston Shredder for autos and metal scrap

2,600 hr/yrMaximum Long-Term Capacity 715,000 tpy Calculated

Maximum Actual(1) Hammer Mill

Max Actual Short-Term Capacity 255.1 tph Based on throughput and operating hours from July 20182,149 hr/yr

Maximum Long-Term Capacity 548,067 tpy Calculated

Source Classification Code(1) Hammer Mill

SCC: 39999999SCC Description: See Comment ** (3-99-999-99)SCC Units: Tons Material Processed

This metal separation system shreds automobiles, appliances, and miscellaneous metal to separate the steel from the non-metallic residue. The three main elements are the mill box, magnetic separation, and conveyor transfers. Houston Shredder, Built 2007, Vent Hood and Baghouse

1. Houston Shredder (Shredder)

1.1

1.2

This metal separation system shreds automobiles, appliances, and miscellaneous metal to separate the steel from the non-metallic residue. The three main elements are the mill box, magnetic separation, and conveyor transfers. This application addresses the mill box portion only.

1.3

Page 1 of 3 October 2019

Documentation of Emission Factors Used>

Process Description Pollutant CAS

Uncont. Emission

Factor(lbs/ton) Basis

(1) Hammer Mill PM na 0.0403 From the Institute of Scrap Recycling Industries, Inc. "Title V Applicability Workbook" Appendix D, Table D-10.EPM10 na 0.0403 for 80% Auto & 20% Scrap throughput mixture. We did not use the lower uncontrolled PM EF of 0.00257 lbs/ton PM2.5 na 0.0403 from Table D-10.F. Assume all PM = PM10 = PM2.5.VOC NA 0.243 Revised VOC EF from stack testing at General Iron, Chicago IL, tested on 5/25/20181,1-Dichloroethene 75-35-4 6.15E-05 Max of auto and sheet testing from Omi Source Jackson, MS Propene 115-07-1 3.14E-04 ibid.Ethanol 64-17-5 1.26E-02 ibid.2-Propanol 67-63-0 5.33E-03 ibid.2-Butanone 78-93-3 8.44E-04 ibid.Ethyl Acetate 141-78-6 5.42E-05 ibid.n-Hexane 110-54-3 3.72E-03 ibid.Tetrahydrofuran 109-99-9 3.95E-04 ibid.Benzene 71-43-2 1.93E-03 ibid.Cyclohexane 110-82-7 6.80E-04 ibid.Methyl Methacrylate 80-62-6 6.70E-05 ibid.n-Heptane 142-82-5 2.03E-03 ibid.Methyl isobutyl k t

108-10-1 6.05E-04 ibid.Toluene 108-88-3 8.34E-03 ibid.n-Butyl Acetate 123-86-4 4.45E-04 ibid.n-Octane 111-65-9 9.80E-04 ibid.Ethylbenzene 100-41-4 1.93E-03 ibid.Xylenes 1330-20-7 9.31E-03 ibid.Styrene 100-42-5 8.50E-04 ibid.n-Nonane 111-84-2 9.61E-04 ibid.Cumene 98-82-8 2.01E-04 ibid.alpha-Pinene 80-56-8 1.85E-04 ibid.n-Propylbenzene 103-65-1 5.85E-04 ibid.4-Ethyltoluene 622-96-8 9.08E-04 ibid.1,3,5-Trimethylbenzene

108-67-8 1.03E-03 ibid.

1,2,4-Trimethylbenzene

95-63-6 3.05E-03 ibid.

d-Limonene 5989-27-5 1.46E-04 ibid.Naphthalene 91-20-3 1.60E-04 ibid.Methylene Chloride 75-09-2 6.00E-05 From the Institute of Scrap Recycling Industries, Inc. "Title V Applicability Workbook" Appendix D, Table D-11.F Trichloroethylene 79-01-6 6.67E-05 ibid.Tetrachloroethane 79-34-5 2.67E-06 ibid.Lead (Pb) 7439-92-1 7.89E-06 ibid.Cadmium (Cd) 7440-43-9 1.16E-05 ibid.Chromium (Cr) 7440-47-3 1.28E-06 ibid.

1.4

Page 2 of 3 October 2019

Emission Calculations Based on Documented FactorsPrimary Pollutants

ThroughputCapture

EfficiencyDevice

Efficiency2 Fugitive Emissions Stack EmissionsProcess Pollutant CAS Value Units (tph) (lb/hr) (tpy) (%) (%) (lb/hr) (tpy) (lb/hr) (tpy)

(1) Hammer Mill PM na 0.04030 lbs/ton 275 11.083 14.407 80.0% 99.9% 2.22 2.88 0.01 0.01 PM10 na 0.04030 lbs/ton 275 11.083 14.407 80.0% 99.9% 2.22 2.88 0.01 0.01 PM2.5 na 0.04030 lbs/ton 275 11.083 14.407 80.0% 99.9% 2.22 2.88 0.01 0.01 VOC NA 0.24300 lbs/ton 275 66.825 86.873 80.0% 13.37 17.37 53.46 69.50 1,1-Dichloroethene 75-35-4 6.15E-05 lbs/ton 275 0.017 0.022 80.0% 0.003 0.004 0.01 0.02 Propene 115-07-1 3.14E-04 lbs/ton 275 0.086 0.112 80.0% 0.017 0.022 0.07 0.09 Ethanol 64-17-5 1.26E-02 lbs/ton 275 3.468 4.508 80.0% 0.694 0.902 2.77 3.61 2-Propanol 67-63-0 5.33E-03 lbs/ton 275 1.465 1.904 80.0% 0.293 0.381 1.17 1.52 2-Butanone 78-93-3 8.44E-04 lbs/ton 275 0.232 0.302 80.0% 0.046 0.060 0.19 0.24 Ethyl Acetate 141-78-6 5.42E-05 lbs/ton 275 0.015 0.019 80.0% 0.003 0.004 0.01 0.02 n-Hexane 110-54-3 3.72E-03 lbs/ton 275 1.022 1.329 80.0% 0.20 0.27 0.82 1.06 Tetrahydrofuran 109-99-9 3.95E-04 lbs/ton 275 0.109 0.141 80.0% 0.02 0.03 0.09 0.11 Benzene 71-43-2 1.93E-03 lbs/ton 275 0.529 0.688 80.0% 0.11 0.14 0.42 0.55 Cyclohexane 110-82-7 6.80E-04 lbs/ton 275 0.187 0.243 80.0% 0.04 0.05 0.15 0.19 Methyl Methacrylate 80-62-6 6.70E-05 lbs/ton 275 0.018 0.024 80.0% 0.004 0.005 0.01 0.02 n-Heptane 142-82-5 2.03E-03 lbs/ton 275 0.559 0.726 80.0% 0.112 0.145 0.45 0.58 Methyl isobutyl ketone 108-10-1 6.05E-04 lbs/ton 275 0.166 0.216 80.0% 0.03 0.04 0.13 0.17 Toluene 108-88-3 8.34E-03 lbs/ton 275 2.294 2.982 80.0% 0.46 0.60 1.84 2.39 n-Butyl Acetate 123-86-4 4.45E-04 lbs/ton 275 0.122 0.159 80.0% 0.02 0.03 0.10 0.13 n-Octane 111-65-9 9.80E-04 lbs/ton 275 0.269 0.350 80.0% 0.05 0.07 0.22 0.28 Ethylbenzene 100-41-4 1.93E-03 lbs/ton 275 0.532 0.691 80.0% 0.11 0.14 0.43 0.55 Xylenes 1330-20-7 9.31E-03 lbs/ton 275 2.561 3.329 80.0% 0.51 0.67 2.05 2.66 Styrene 100-42-5 8.50E-04 lbs/ton 275 0.234 0.304 80.0% 0.05 0.06 0.19 0.24 n-Nonane 111-84-2 9.61E-04 lbs/ton 275 0.264 0.344 80.0% 0.05 0.07 0.21 0.27 Cumene 98-82-8 2.01E-04 lbs/ton 275 0.055 0.072 80.0% 0.01 0.01 0.04 0.06 alpha-Pinene 80-56-8 1.85E-04 lbs/ton 275 0.051 0.066 80.0% 0.01 0.01 0.04 0.05 n-Propylbenzene 103-65-1 5.85E-04 lbs/ton 275 0.161 0.209 80.0% 0.03 0.04 0.13 0.17 4-Ethyltoluene 622-96-8 9.08E-04 lbs/ton 275 0.250 0.324 80.0% 0.05 0.06 0.20 0.26 1,3,5-Trimethylbenzene

108-67-8 1.03E-03 lbs/ton 275 0.283 0.368 80.0% 0.06 0.07 0.23 0.29

1,2,4-Trimethylbenzene

95-63-6 3.05E-03 lbs/ton 275 0.837 1.089 80.0% 0.17 0.22 0.67 0.87

d-Limonene 5989-27-5 1.46E-04 lbs/ton 275 0.040 0.052 80.0% 0.01 0.01 0.03 0.04 Naphthalene 91-20-3 1.60E-04 lbs/ton 275 0.044 0.057 80.0% 0.01 0.01 0.04 0.05 Methylene Chloride 75-09-2 6.00E-05 lbs/ton 275 1.65E-02 0.02 80.0% 3.30E-03 4.29E-03 0.01 0.02 Trichloroethylene 79-01-6 6.67E-05 lbs/ton 275 1.83E-02 0.02 80.0% 3.67E-03 4.77E-03 0.01 0.02 Tetrachloroethane 79-34-5 2.67E-06 lbs/ton 275 7.34E-04 0.00 80.0% 1.47E-04 1.91E-04 5.87E-04 7.64E-04Lead (Pb) 7439-92-1 7.89E-06 lbs/ton 275 2.17E-03 0.00 80.0% 99.9% 4.34E-04 5.64E-04 1.74E-06 2.26E-06Cadmium (Cd) 7440-43-9 1.16E-05 lbs/ton 275 3.19E-03 0.00 80.0% 99.9% 6.38E-04 8.29E-04 2.55E-06 3.32E-06Chromium (Cr) 7440-47-3 1.28E-06 lbs/ton 275 3.52E-04 0.00 80.0% 99.9% 7.04E-05 9.15E-05 2.82E-07 3.66E-07

Notes12

UncontrolledEmissions

99.9% emission removal efficiency of particulate matter guaranteed by Donaldson Company, Inc.80% capture efficiency for hood system on shredder.

1.5

UncontrolledEmission Factor

Page 3 of 3 October 2019

Texas Port Recycling LP | NSR Permit Application B-1 Trinity Consultants

APPENDIX B: MERA ANALYSIS

TableB‐1.StateHealthEffectsEvaluation(MERAAnalysis)

Level1 Level2 Level3

Short‐term Long‐term GLCmaxSite‐wideEmissions GLCmax

Site‐wideEmissions

(µg/m3) (µg/m3) (lb/hr) (tpy) (µg/m3) (lb/hr) (µg/m3) (tpy)

1,1‐Dichloroethene75‐35‐4 210 100 0.02 0.02 Yes 1 Yes ‐‐ ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Propene115‐07‐1

SimpleAsphyxiant

SimpleAsphyxiant

0.09 0.11 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Ethanol64‐17‐5 18,800 1,880 3.47 4.51 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

294.76 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

2‐Propanol67‐63‐0 4,920 492 1.46 1.90 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

124.50 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

2‐Butanone78‐93‐3 18,000 2,600 0.23 0.30 Yes 3 ‐‐ ‐‐ Yes

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

EthylAcetate141‐78‐6 3,100 1,440 0.01 0.02 Yes 2 ‐‐ Yes ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

n‐Hexane110‐54‐3 5,600 200 1.02 1.33

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

86.91 Yes 2.06 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Tetrahydrofuran109‐99‐9 1,500 150 0.11 0.14 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

9.23 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Benzene71‐43‐2 170 4.5 0.53 0.69

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

45.01 No 1.07 No Yes 45.01 0.53 Yes Yes 1.069 0.690 Yes No No

Cyclohexane110‐82‐7 3,400 340.0 0.19 0.24 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

15.90 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

MethylMethacrylate80‐62‐6 860 210 0.02 0.02 Yes 2 ‐‐ Yes ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

n‐Heptane142‐82‐5 10,000 2,700 0.56 0.73 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

47.47 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Methylisobutylketone

108‐10‐1 820 82 0.17 0.22 YesN/A,

ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

14.13 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Toluene108‐88‐3 4,500 1,200 2.29 2.98 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

194.98 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

n‐ButylAcetate123‐86‐4 11,000 1,400 0.12 0.16 Yes 3 ‐‐ ‐‐ Yes

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

n‐Octane111‐65‐9 5,600 540 0.27 0.35

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

22.90 Yes 0.54 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Ethylbenzene100‐41‐4 26,000 570 0.53 0.69

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

45.18 Yes 1.07 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Xylenes1330‐20‐7 2,200 180 2.56 3.33

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

217.68 Yes 5.17 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Styrene100‐42‐5 110 140 0.23 0.30 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

19.88 No ‐‐ ‐‐ Yes 19.880 0.234 Yes ‐‐ ‐‐ ‐‐ ‐‐ No No

n‐Nonane111‐84‐2 4,800 450 0.26 0.34

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

22.46 Yes 0.53 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

ChemicalCompound CASNo.

TCEQESL1

TotalProjectIncreases

Step2

Requiredfor

Annual?

Step6

Site‐wideModeling

LTESL≥10%STESL?

(Yes/No)

Step2DeMinimisLevels

DeMinimisIncrease?(Yes/No)

Short‐termEvaluation Long‐termEvaluationIs

Increase≤0.04

lb/hrand2 ≤ ST ESL

IsIncrease≤0.1

lb/hrand500 ≤ ST

IsIncrease≤0.4

lb/hrandST ESL ≥

Step32

Short‐TermGLCmax(µg/m3)

Short‐Term

GLCmax≤0.1*ST

Long‐TermGLCmax(µg/m3)

Long‐Term

GLCmax≤0.1*LT

EvaluationRequired?

GLCmax/ESL≤

ERp/ERs?EvaluationRequired?

GLCmax/ESL≤

ERp/ERs?

Requiredfor

Hourly?

Level1 Level2 Level3

Short‐term Long‐term GLCmaxSite‐wideEmissions GLCmax

Site‐wideEmissions

(µg/m3) (µg/m3) (lb/hr) (tpy) (µg/m3) (lb/hr) (µg/m3) (tpy)ChemicalCompound CASNo.

TCEQESL1

TotalProjectIncreases

Step2

Requiredfor

Annual?

Step6

Site‐wideModeling

LTESL≥10%STESL?

(Yes/No)

Step2DeMinimisLevels

DeMinimisIncrease?(Yes/No)

Short‐termEvaluation Long‐termEvaluationIs

Increase≤0.04

lb/hrand2 ≤ ST ESL

IsIncrease≤0.1

lb/hrand500 ≤ ST

IsIncrease≤0.4

lb/hrandST ESL ≥

Step32

Short‐TermGLCmax(µg/m3)

Short‐Term

GLCmax≤0.1*ST

Long‐TermGLCmax(µg/m3)

Long‐Term

GLCmax≤0.1*LT

EvaluationRequired?

GLCmax/ESL≤

ERp/ERs?EvaluationRequired?

GLCmax/ESL≤

ERp/ERs?

Requiredfor

Hourly?

Cumene98‐82‐8 650 250 0.06 0.07 Yes 2 ‐‐ Yes ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

alpha‐Pinene80‐56‐8 1,120 112 0.05 0.07 Yes 2 ‐‐ Yes ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

n‐Propylbenzene103‐65‐1 2,500 250 0.16 0.21 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

13.67 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

4‐Ethyltoluene622‐96‐8 1,250 125 0.25 0.32 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

21.21 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

1,3,5‐Trimethylbenzene

108‐67‐8 4,400 54 0.28 0.37No,

ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

24.06 Yes 0.57 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

1,2,4‐Trimethylbenzene

95‐63‐6 4,400 54 0.84 1.09No,

ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

71.19 Yes 1.69 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

d‐Limonene5989‐27‐5 1,100 110 0.04 0.05 Yes 2 ‐‐ Yes ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Naphthalene91‐20‐3 440 50 0.04 0.06 Yes

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

3.74 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

MethyleneChloride75‐09‐2 3,600 350 0.02 0.02

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

1.40 Yes 0.03 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Trichloroethylene79‐01‐6 540 54 0.02 0.02 Yes 2 ‐‐ Yes ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Tetrachloroethane79‐34‐5 70 7 7.34E‐04 9.55E‐04 Yes 1 Yes ‐‐ ‐‐

Yes,CompliancewithStep2

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Lead(Pb)7439‐92‐1

MustmeetNAAQS

MustmeetNAAQS

4.36E‐04 5.66E‐04 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

Cadmium(Cd)7440‐43‐9 5.4 0.003 6.41E‐04 8.33E‐04

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

0.10 Yes 2.30E‐03 No ‐‐ ‐‐ ‐‐ ‐‐ Yes 0.002 0.001 Yes No No

Chromium(Cr)7440‐47‐3 3.6 0.041 7.07E‐05 9.19E‐05

No,ContinuetoStep3

N/A,ContinuetoStep3

‐‐ ‐‐ ‐‐N/A,

ContinuetoStep3

0.01 Yes 2.54E‐04 Yes ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ No No

1Short‐andLong‐termEffectsScreeningLevels(ESLs)fromtheTCEQTexasAirMonitoringInformationSystem(TAMIS)retrievedonAugust30,2019.2PerSCREENunitrunmodelresultsincludedwiththisMERAAnalysis.

ID Dist to PL (ft) Unit ImpactShredFug 230 151.8ShredStk 196 68.3

Hourly Step 3 Analysis

Chemical Ei XiEi Ei XiEi TotalEthanol 0.69 105.28 2.77 189.48 294.762-Propanol 0.29 44.47 1.17 80.03 124.50n-Hexane 0.20 31.04 0.82 55.87 86.91Tetrahydrofuran 0.02 3.30 0.09 5.93 9.23Benzene 0.11 16.08 0.42 28.93 45.01Cyclohexane 0.04 5.68 0.15 10.22 15.90n-Heptane 0.11 16.96 0.45 30.52 47.47Methyl isobutyl ketone 0.03 5.05 0.13 9.08 14.13Toluene 0.46 69.64 1.84 125.34 194.98n-Octane 0.05 8.18 0.22 14.72 22.90Ethylbenzene 0.11 16.14 0.43 29.05 45.18Xylenes 0.51 77.75 2.05 139.93 217.68Styrene 0.05 7.10 0.19 12.78 19.88n-Nonane 0.05 8.02 0.21 14.44 22.46Cumene 0.01 1.68 0.04 3.02 4.70n-Propylbenzene 0.03 4.88 0.13 8.79 13.674-Ethyltoluene 0.05 7.58 0.20 13.64 21.211,3,5-Trimethylbenzene 0.06 8.59 0.23 15.47 24.061,2,4-Trimethylbenzene 0.17 25.43 0.67 45.76 71.19Naphthalene 0.01 1.34 0.04 2.41 3.74Methylene Chloride 0.00 0.50 0.01 0.90 1.40Cadmium (Cd) 6.38E-04 0.10 2.55E-06 0.00 0.10Chromium (Cr) 7.04E-05 0.01 2.82E-07 0.00 0.01

Annual Step 3 Analysis

Chemical Ei XiEi Ei XiEi Totaln-Hexane 0.061 0.74 0.24 1.33 2.06Benzene 0.031 0.38 0.13 0.69 1.07n-Octane 0.016 0.19 0.06 0.35 0.54Ethylbenzene 0.032 0.38 0.13 0.69 1.07Xylenes 0.152 1.85 0.61 3.32 5.17n-Nonane 0.016 0.19 0.06 0.34 0.531,3,5-Trimethylbenzene 0.017 0.20 0.07 0.37 0.571,2,4-Trimethylbenzene 0.050 0.60 0.20 1.09 1.69Methylene Chloride 9.79E-04 0.01 0.004 0.02 0.03Cadmium (Cd) 1.89E-04 0.002 7.57E-07 4.14E-06 0.002Chromium (Cr) 2.09E-05 0.0003 8.36E-08 4.57E-07 0.0003

ShredFug ShredStk

ShredFug ShredStk