tf5240 | tc3 cncftp.beckhoff.com/download/document/automation/twincat3/...classification of...

155
TF5240 | TC3 CNC Kinematic Transformation 1.01 14.01.2020 Version Date

Upload: others

Post on 20-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • TF5240 | TC3 CNCKinematic Transformation

    1.0114.01.2020

    VersionDate

  • Notes on the documentation

    Kinematic TransformationTF5240 | TC3 CNC 3Version 1.01

    Notes on the documentationThis description is only intended for the use of trained specialists in control and automation engineering whoare familiar with the applicable national standards.It is essential that the documentation and the following notes and explanations are followed when installingand commissioning the components. It is the duty of the technical personnel to use the documentation published at the respective time of eachinstallation and commissioning.

    The responsible staff must ensure that the application or use of the products described satisfy all therequirements for safety, including all the relevant laws, regulations, guidelines and standards.

    Disclaimer

    The documentation has been prepared with care. The products described are, however, constantly underdevelopment.We reserve the right to revise and change the documentation at any time and without prior announcement.No claims for the modification of products that have already been supplied may be made on the basis of thedata, diagrams and descriptions in this documentation.

    Trademarks

    Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff AutomationGmbH.Other designations used in this publication may be trademarks whose use by third parties for their ownpurposes could violate the rights of the owners.

    Patent Pending

    The EtherCAT technology is patent protected, in particular by the following applications and patents:EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702with corresponding applications or registrations in various other countries.

    EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,Germany

    Copyright

    © Beckhoff Automation GmbH & Co. KG, Germany.The reproduction, distribution and utilisation of this document as well as the communication of its contents toothers without express authorisation are prohibited.Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of apatent, utility model or design.

  • General and safety instructions

    Kinematic TransformationTF5240 | TC3 CNC4 Version 1.01

    General and safety instructionsIcons used and their meanings

    This documentation uses the following icons next to the safety instruction and the associated text. Pleaseread the (safety) instructions carefully and comply with them at all times.

    Icons in explanatory textØ Indicates an action.

    ð Indicates an action statement.

    DANGERAcute danger to life!If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life andhealth.

    CAUTIONPersonal injury and damage to machines!If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage tomachines.

    NOTICERestriction or errorThis icon describes restrictions or warns of errors.

    Tips and other notesThis icon indicates information to assist in general understanding or to provide additional informa-tion.

    General exampleExample that clarifies the text.

    NC programming exampleProgramming example (complete NC program or program sequence) of the described function or NC com-mand.

    Specific version informationOptional or restricted function. The availability of this function depends on the configuration and thescope of the version.

  • Table of contents

    Kinematic TransformationTF5240 | TC3 CNC 5Version 1.01

    Table of contentsNotes on the documentation ....................................................................................................................... 3

    General and safety instructions.................................................................................................................. 4

    1 Introduction................................................................................................................................................... 101.1 Rotary axes and direction of rotation.................................................................................................... 121.2 Linear axes and motion direction.......................................................................................................... 12

    2 Kinematic transformations .......................................................................................................................... 132.1 KIN_TYP_1 – 5-axis kinematics/single-column bed machine .............................................................. 132.2 KIN_TYP_2 – 5-axis kinematics with rotary/swivel head...................................................................... 172.3 KIN_TYP_3 – four-axis kinematics with double spindle head - top spindle.......................................... 192.4 KIN_TYP_5 – 4-axis kinematics with crosshead for 4 tools ................................................................. 212.5 KIN_TYP_6 – 4-axis kinematics with underfloor milling tool ................................................................ 252.6 KIN_TYP_7 – 5-axis kinematics with man. auxiliary axis (drilling) ....................................................... 272.7 KIN_TYP_8 – 5-axis kinematics with man. auxiliary axis (sawing) ...................................................... 312.8 KIN_TYP_9 – 5-axis kinematics (boring and milling unit)..................................................................... 342.9 KIN_TYP_10 – 5-axis kinematics (sawing) .......................................................................................... 372.10 KIN_TYP_11 – 5-axis kinematics with oblique tool head ..................................................................... 392.11 KIN_TYP_12 – Tripod kinematics ........................................................................................................ 422.12 KIN_TYP_16 – 5-axis kinematics ......................................................................................................... 462.13 KIN_TYP_17 – five-axis kinematics with 2 manual auxiliary axes ....................................................... 492.14 KIN_TYP_18 – five-axis kinematics with 2 manual auxiliary axes (sawing) ......................................... 512.15 KIN_TYP_19 – Tripod kinematics ........................................................................................................ 532.16 KIN_TYP_21 – Lambda kinematics...................................................................................................... 562.17 KIN_TYP_22 – 5-axis kinematics with X/Y workpiece table................................................................. 602.18 KIN_TYP_23 – 5-axis kinematics with X/Y/B workpiece table ............................................................. 622.19 KIN_TYP_25 – 5-axis kinematics with plasma/laser head ................................................................... 642.20 KIN_TYP_28 – 5-axis kinematics ......................................................................................................... 672.21 KIN_TYP_30 – 4-axis kinematics ......................................................................................................... 702.22 KIN_TYP_33 – 5-axis kinematics with oblique tool head ..................................................................... 722.23 KIN_TYP_34 – 4-axis kinematics with X/C workpiece table................................................................. 752.24 KIN_TYP_36 – SCARA kinematics ...................................................................................................... 772.25 KIN_TYP_52 – 5-axis kinematics with A/B workpiece table................................................................. 822.26 KIN_TYP_57 – 5-axis kinematics with B/C workpiece table................................................................. 842.27 KIN_TYP_58 – Five-axis kinematics with A/C workpiece table............................................................ 882.28 Cardanic kinematics ............................................................................................................................. 92

    2.28.1 KIN_TYP_59 – Cardanic kinematics with C/A head .............................................................  922.28.2 KIN_TYP_60 – Cardanic kinematics with C/B head .............................................................  100

    2.29 KIN_TYP_61 – 5-axis kinematics with Y/A workpiece table................................................................. 1042.30 KIN_TYP_63 – 5-axis kinematics with X/Y/B workpiece table ............................................................. 1092.31 KIN_TYP_64 – 6-axis kinematics with C/A/C workpiece table ............................................................. 1142.32 KIN_TYP_70 – 5-axis kinematics ......................................................................................................... 1172.33 KIN_TYP_76 – 5-axis kinematics with MTCP oblique tool head .......................................................... 1202.34 KIN_TYP_80 – 5-axis kinematics with A/B workpiece table................................................................. 1242.35 KIN_TYP_81 – 5-axis kinematics with B/A workpiece table................................................................. 129

  • Table of contents

    Kinematic TransformationTF5240 | TC3 CNC6 Version 1.01

    2.36 KIN_TYP_82 – 6-axis kinematics with C workpiece table .................................................................... 1342.37 KIN_TYP_85 – Lever arm kinematics .................................................................................................. 138

    3 Further kinematic transformations ............................................................................................................. 1403.1 KIN_TYP_24 – Hexapod kinematics .................................................................................................... 1403.2 KIN_TYP_37 – Flexpicker kinematics .................................................................................................. 1413.3 KIN_TYP_45 – 6-axis articulated robot kinematics .............................................................................. 144

    4 Classification of transformations................................................................................................................ 1484.1 Transformation type.............................................................................................................................. 1484.2 Kinematic type ...................................................................................................................................... 1504.3 Application ............................................................................................................................................ 152

    5 Definition of terms........................................................................................................................................ 154

    6 Support and Service..................................................................................................................................... 155

  • List of figures

    Kinematic TransformationTF5240 | TC3 CNC 7Version 1.01

    List of figuresFig. 1 Coordinate systems and motion directions.................................................................................. 12Fig. 2 Kinematics of the single-column bed machine ............................................................................ 14Fig. 3 Offsets in tool head...................................................................................................................... 15Fig. 4 Offsets on workpiece holder ........................................................................................................ 16Fig. 5 Kinematics of the 5-axis milling machine with rotary/swivel head ............................................... 17Fig. 6 Sizes L, TX, HD1, HD2 and HD3 of the rotary/swivel head......................................................... 18Fig. 7 Front view .................................................................................................................................... 18Fig. 8 Kinematic structure of the 4-axis milling machine with double spindle head ............................... 19Fig. 9 Side view and front view of the double spindle head................................................................... 20Fig. 10 4-axis kinematics with crosshead for 4 tools ............................................................................... 21Fig. 11 Tool crosshead ............................................................................................................................ 22Fig. 12 Tool crosshead with zero positions of the tools 1 to 4 ................................................................ 23Fig. 13 4-axis kinematics with underfloor milling tool............................................................................... 25Fig. 14 Tool head for underfloor milling (zero position where HD4 = 0) .................................................. 26Fig. 15 5-axis kinematics (boring and milling tool with manual auxiliary axis A)...................................... 28Fig. 16 5-axis boring and milling tool (zero position where HD3=0, HD4=0, CM=0) ............................... 29Fig. 17 5-axis kinematics (sawing tool with manual auxiliary axis A)....................................................... 31Fig. 18 5-axis sawing tool (zero position where HD5 = 0, HD4 = +90,CM=0) ......................................... 32Fig. 19 5-axis kinematics (boring and milling unit)................................................................................... 34Fig. 20 5-axis boring and milling tool (zero position where HD3 = 0, AM=0, HD4=0, CM=0).................. 35Fig. 21 5-axis kinematics (sawing tool).................................................................................................... 37Fig. 22 5-axis sawing tool (zero position where HD5 =0, CM=0, HD4 =0, AM =90)................................ 38Fig. 23 Axis configuration of the 5-axis machine with oblique angle head .............................................. 39Fig. 24 Angles and lengths at the oblique angle head............................................................................. 40Fig. 25 Tripod kinematics......................................................................................................................... 42Fig. 26 Vector representation of strut kinematics .................................................................................... 43Fig. 27 Offset dimensions of strut kinematics .......................................................................................... 44Fig. 28 Axis configuration of 5-axis machine ........................................................................................... 46Fig. 29 Parameters of rotary/swivel head ................................................................................................ 47Fig. 30 5-axis kinematics (boring and milling tool with manual auxiliary axes C and A).......................... 49Fig. 31 Boring and milling tool (zero position where HD3 = 0, HD4 = 0) ................................................. 50Fig. 32 5-axis kinematics (sawing tool with manual auxiliary axes C and A)........................................... 51Fig. 33 Sawing tool (zero position where HD5 = 0, HD4 = +90).............................................................. 52Fig. 34 Tripod kinematics......................................................................................................................... 53Fig. 35 Kinematic offsets ......................................................................................................................... 54Fig. 36 Lambda kinematics...................................................................................................................... 56Fig. 37 Lambda kinematics, variant 1 ...................................................................................................... 57Fig. 38 Lambda kinematics, variant 2 ...................................................................................................... 58Fig. 39 Axis configuration of 5-axis machine ........................................................................................... 60Fig. 40 Kinematic offsets ......................................................................................................................... 61Fig. 41 Axis configuration of 5-axis machine ........................................................................................... 62Fig. 42 Kinematic offsets ......................................................................................................................... 63Fig. 43 5-axis kinematics (plasma/laser head) ........................................................................................ 64Fig. 44 5-axis plasma/laser head (zero position where HD3 = 0, AM=0, HD4=0, CM=0) ....................... 65

  • List of figures

    Kinematic TransformationTF5240 | TC3 CNC8 Version 1.01

    Fig. 45 When the head is in oblique position, the torch tip is at a constant height above the workpiece,i.e. where A!= 0 is the effective length L2 > L1............................................................................ 66

    Fig. 46 5-axis kinematics ......................................................................................................................... 67Fig. 47 Tool head (zero position where HD3 = 0, A=0, HD4=0, C=0) ..................................................... 68Fig. 48 4-axis kinematics (boring and milling unit)................................................................................... 70Fig. 49 Offsets of 4-axis kinematics......................................................................................................... 71Fig. 50 5-axis oblique tool head............................................................................................................... 72Fig. 51 Oblique tool head axis in zero position, HD7=0........................................................................... 73Fig. 52 Oblique tool head with 180 degree head offset in zero position, HD7=1 .................................... 74Fig. 53 4-axis C axis kinematics ............................................................................................................. 75Fig. 54 Origin offsets in rotary C axis workpiece holder .......................................................................... 76Fig. 55 SCARA kinematics ...................................................................................................................... 78Fig. 56 SCARA kinematics in zero position (C1=0, C2=0, C3=0)............................................................ 79Fig. 57 Right-handed C2 >=0 or < 180 degrees ...................................................................................... 80Fig. 58 Left-handed C2 180 degrees ........................................................................................ 81Fig. 59 Kinematics of 5-axis milling machine........................................................................................... 82Fig. 60 Definition of offset parameters..................................................................................................... 83Fig. 61 Definition of offset parameters in front view................................................................................. 83Fig. 62 Kinematics of 5-axis machine with BC workpiece table............................................................... 84Fig. 63 Offsets in Y/Z view....................................................................................................................... 85Fig. 64 Offsets in X/Z view....................................................................................................................... 86Fig. 65 Kinematics of 5-axis machine with AC workpiece table............................................................... 88Fig. 66 Offsets in X/Z view....................................................................................................................... 89Fig. 67 Offsets in Y/Z view....................................................................................................................... 90Fig. 68 Cardanic kinematic with CA head................................................................................................ 92Fig. 69 Offsets of cardanic CA 5-axis head ............................................................................................. 93Fig. 70 Cardanic head with ideal head geometry (intersection of C-A axis is located in tool axis).......... 95Fig. 71 Cardanic head with offset C axis (C axis not located in tool axis) ............................................... 96Fig. 72 Cardanic head with saw tool and TCP at saw tooth .................................................................... 98Fig. 73 Angle representations – saw tool and TCP ................................................................................. 99Fig. 74 Cardanic kinematic with CB head ............................................................................................... 100Fig. 75 Offsets of cardanic CB 5-axis head ............................................................................................. 101Fig. 76 Cardanic head with ideal head geometry (intersection of C and B axis located in tool axis)....... 103Fig. 77 Axis configuration of 5-axis machine ........................................................................................... 104Fig. 78 Offsets of tool head...................................................................................................................... 105Fig. 79 Offsets of workpiece holder ......................................................................................................... 106Fig. 80 Ideal and real z zero position....................................................................................................... 107Fig. 81 Axis configuration of 5-axis machine ........................................................................................... 109Fig. 82 Offsets of tool head...................................................................................................................... 110Fig. 83 Offsets of workpiece holder ......................................................................................................... 111Fig. 84 Ideal and real Z zero position ...................................................................................................... 112Fig. 85 Kinematic structure of 6-axis machine with CAC workpiece table............................................... 114Fig. 86 Offset parameters of CAC workpiece table ................................................................................. 115Fig. 87 Axis configuration of 5-axis machine ........................................................................................... 117Fig. 88 Tool head parameters.................................................................................................................. 118Fig. 89 Angular offset of rotary/swivel head............................................................................................. 119

  • List of figures

    Kinematic TransformationTF5240 | TC3 CNC 9Version 1.01

    Fig. 90 Axis configuration of 5-axis machine ........................................................................................... 121Fig. 91 Tool head parameters.................................................................................................................. 122Fig. 92 Angle offset of bevel head with regard to mounting..................................................................... 123Fig. 93 Axis configuration of 5-axis machine ........................................................................................... 124Fig. 94 Offsets of tool head...................................................................................................................... 125Fig. 95 Offsets of workpiece holder ......................................................................................................... 126Fig. 96 Ideal and real Z zero position ...................................................................................................... 127Fig. 97 Axis configuration of 5-axis machine ........................................................................................... 129Fig. 98 Offsets of tool head...................................................................................................................... 130Fig. 99 Offsets of workpiece holder ......................................................................................................... 131Fig. 100 Ideal and real Z zero position ...................................................................................................... 132Fig. 101 Axis configuration of 6-axis machine ........................................................................................... 134Fig. 102 Tool head parameters.................................................................................................................. 135Fig. 103 Offsets on workpiece holder ........................................................................................................ 136Fig. 104 Position of the coordinate system................................................................................................ 138Fig. 105 Axis configuration for left-handed beam ...................................................................................... 139Fig. 106 Axis configuration for right-handed beam.................................................................................... 139Fig. 107 6-axis parallel kinematics machine .............................................................................................. 140Fig. 108 Overhead Flexpicker kinematics.................................................................................................. 141Fig. 109 Offset dimensions of Flexpicker kinematics................................................................................. 142Fig. 110 6-axis articulated robot ................................................................................................................ 144Fig. 111 HD offset data in side view .......................................................................................................... 145Fig. 112 Zero position for HD145 and HD15 ............................................................................................. 146Fig. 113 Articulated robot, top view ........................................................................................................... 146

  • Introduction

    Kinematic TransformationTF5240 | TC3 CNC10 Version 1.01

    1 IntroductionLinks to other documents

    For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for theProgramming Manual or P-AXIS-00001 for an axis parameter.

    For technical reasons, these links only function in the Online Help (HMTL5, CHM) but not in pdf files sincepdfs do not support cross-linking.

    Transformation types

    The transformations listed below are 3, 4, 5 and 6-axis kinematic transformations. They are only required onmachines with

    • non-Cartesian axis arrangement or• with rotary axes

    to adjust orientation if programming takes place in the WCS (Workpiece Coordinate System). In general, thiscase results in non-linear equations that reflect the correlation between workpiece coordinates and machinecoordinates.

    Workpiece axes are axes that are located on the workpiece side in the kinematic chain. Tool axes are axeswhich are on the tool side.

    A distinction is made between the following transformation types• RTCP Transformation (Rotation Tool Centre Point): In this case, spatial positions are programmed in

    the WCS. The tool direction is set by programming the rotary machine axes (e.g. B and C areindependent of the machine). Auxiliary functions permit automatic tool orientation to rotated coordinatesystems in space.

    Example of NC program line: N10 X100 Y20 Z30 B0 C0• Complete transformation: In this case, spatial curves and the tool machining orientation are

    programmed by position and orientation (point-vector sequences) and are always independent of themachine type with 6 coordinates (*).

    Example of NC program line: N10 X100 Y20 Z30 A0 B0 C1

    (*) Depending on the degrees of freedom of a kinematic feature, only the position may be programmed by 3coordinates (e. g. Tripod).

    Kinematics ID

    The ID required to use a specific kinematic feature results from the specified kinematic type as follows:

    KIN_TYP_1        1

    KIN_TYP_2        2

    etc.

    The HDi offsets of a kinematic feature correspond to the kinematic offsets in the channel parameters(kinematik[ID].wz_kopf_versatz[i-1] Version 2.6.0. or kinematik[ID].param[i-1] as of Version 2.6.3).Alternatively, these offsets can be entered in the corresponding value of the tool parameters (P-TOOL-00009).

    The unit of the offset parameters is 0.1μm.

  • Introduction

    Kinematic TransformationTF5240 | TC3 CNC 11Version 1.01

    NOTICEWhen kinematic transformation is active, axis-specific tool offsets in ax_versatz[] (P-TOOL-00006) are only taken into consideration if axes are not influenced by the transformation function.Depending on the transformation type, they typically refer to all axes with index > 2 when RTCP is used.The axis-specific tool offsets of the first 3 axes (index 0, 1, 2) are not considered when transformation isactive. If tool offsets should also be effective for these axes when transformation is active, enter the valuesin the kinematic offsets of the tool (P-TOOL-00009) mentioned above.

    The necessary kinematic-specific axis configuration setting must be entered in the channel parameters.

    It is essential to use the correct axis index sequence for the selected transformation.

  • Introduction

    Kinematic TransformationTF5240 | TC3 CNC12 Version 1.01

    1.1 Rotary axes and direction of rotationThe figure below shows the positive directions of rotation of rotary axes. The base is a right-handedCartesian coordinate system.

    Rotation is referred to as positive if it is counter-clockwise when viewed in the direction of the arrowhead ofthe coordinate system axes. If the rotary axis rotates around the X axis, it is referred to as the "A axis"; whenrotated around the Y axis, it is referred to as the "B axis" and so on. If not separately stated, these directionsof rotation are used in kinematic transformations involving rotary axes.

    +BM

    +CM

    +AM

    ZM

    YM

    XM

    Fig. 1: Coordinate systems and motion directions

    1.2 Linear axes and motion directionThe motion directions of linear axes must be adjusted so that the relative motion between tool and workpieceis the same as in 2.5 D mode. This means therefore, when linear axes move the workpiece, the motiondirection is opposite to the axis directions of the workpiece coordinate system.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 13Version 1.01

    2 Kinematic transformations

    2.1 KIN_TYP_1 – 5-axis kinematics/single-column bedmachine

    Kinematic structure

    The kinematic structure of this machine consists of 2 translatory axes and 1 rotary axis in the workpiece aswell as 1 translatory axis and 1 rotary axis in the tool.

    Axis configuration in NC channelAxis identifier X,Y, Z, B, C

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes Z, B X, Y, C

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC14 Version 1.01

    +X

    -X

    +Z

    -Z

    +Y

    -Y

    YwZw

    Xw

    +C -C

    -B

    +B

    Fig. 2: Kinematics of the single-column bed machine

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 15Version 1.01

    HD4

    HD6

    B

    -

    +

    HD3

    HD2

    HD1

    HD2

    TL HD5

    B+-

    Zw

    Yw

    Zw

    Xw

    Fig. 3: Offsets in tool head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC16 Version 1.01

    Yw

    Xw

    Zw

    Xw

    HD9

    C+-

    HD7

    HD8

    Fig. 4: Offsets on workpiece holder

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z offset tool holding device to rotation point B axisHD2 1 Z offset rotation point B-axis to reference point tool slideHD3 2 X offset reference point tool slide to rotation point B axisHD4 3 Y offset reference point tool slide to rotation point B axisHD5 4 X offset rotation point B axis to tool holding deviceHD6 5 Y offset rotation point B axis to tool holding deviceHD7 6 X offset machine origin MNP to rotary axis CHD8 7 Y offset machine origin MNP to rotary axis CHD9 8 Z offset machine origin MNP to rotary axis CHD10 9 Rotary offset rotary axis BHD11 10 Rotary offset rotary axis CHD13 12 Rotation direction B axis (*), 0: negative, 1 positiveHD14 13 Rotation direction C axis, 0 positive, 1 negative

    (*) The rotation direction of the B axis is mathematically negative.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 17Version 1.01

    2.2 KIN_TYP_2 – 5-axis kinematics with rotary/swivel headKinematic structure

    The kinematic structure of this machine consists of 3 translatory axes and 2 rotary axes in the tool (rotary/swivel head).

    Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, A, B -

    YwZw

    Xw

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    +A

    -A

    -B

    +B

    Fig. 5: Kinematics of the 5-axis milling machine with rotary/swivel head

    The geometry constants HD1, HD2 and HD3 are required to describe the rotary/swivel head of the machinein the figure above. The figure below shows their application. The rotary/swivel head is shown in top view.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC18 Version 1.01

    HD1

    TL

    HD3

    Z

    X

    Fig. 6: Sizes L, TX, HD1, HD2 and HD3 of the rotary/swivel head

    HD2

    Z

    Y

    Fig. 7: Front view

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Offset tool holding device to rotation point B axisHD2 1 Y offset from B axis to A axisHD3 2 X offset from B axis to A axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 19Version 1.01

    2.3 KIN_TYP_3 – four-axis kinematics with double spindlehead - top spindle

    Kinematic structure

    The kinematic structure of the machine consists of 3 translatory axes and 1 rotary axis in the tool (doublespindle head).

    KIN_TYP_3 selects the top spindle; KIN_TYP_4 selects the bottom spindle.

    Axis configuration in the NC channelAxis identifier X, Y, Z, B

    Axis index 0, 1, 2, 3,Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, B -

    -X

    +X

    -Y

    +Y

    +Z

    -Z +B

    -B

    YwZw

    Xw

    Fig. 8: Kinematic structure of the 4-axis milling machine with double spindle head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC20 Version 1.01

    L

    HD1

    TX

    HD3

    BM

    BM

    HD2

    Fig. 9: Side view and front view of the double spindle head

    The top figure shows the structure of the milling head for the zero position of the B axis. It features 2 spindles(referred to in this document as top and bottom spindle, irrespective of the current position of the B axis) sothat 2 tools can be clamped rotated by 180° relative to each other.

    A command in the NC program allows selection of the two spindles or which of the 2 tools is currently active.

    If the top spindle is active, the programmed value for the B axis must be changed as follows:

    bM=bM+180°

    Thus, changing spindles means rotating the B axis through an angle of 180° and translatory shifts of all 3linear axes. This is due to the geometry constants when RTCP is active.

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Offset tool holding device to rotation point B axisHD2 1 Y offset tool headHD3 2 X offset from tool holding device to B axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 21Version 1.01

    2.4 KIN_TYP_5 – 4-axis kinematics with crosshead for 4tools

    Kinematic structure

    The kinematic structure consists of 3 translatory axes and 1 rotary axis in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C

    Axis index 0, 1, 2, 3,Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C -

    -Y

    +Y

    +X

    -X

    +Z

    -Z

    YwZw

    Xw

    -C+C

    Fig. 10: 4-axis kinematics with crosshead for 4 tools

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC22 Version 1.01

    X

    Y

    Z

    Y

    HD4

    CM

    2

    3 1

    HD7

    L HD1

    HD8

    HD3

    HD2

    4

    CM

    1

    2

    3

    Fig. 11: Tool crosshead

    The tool that is currently active is specified by assigning tool offset HD5 to the C axis. HD5 is calculatedpositively from the zero position of the C axis (Y axis) in the direction of the tool position.

    If the 4 tools are arranged at right angles to each other as shown in the figure above, changing spindlesresults in a rotation of the C axis through 90° or 180° and translatory shifts of the X axis and Y axis. This isdue to the geometry constants when RTCP is active.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 23Version 1.01

    1

    2

    3

    4

    HD5=-90L

    HD1

    CM

    HD2

    1

    23

    4

    HD5=180

    L

    HD1CM

    HD3

    1

    2

    3

    4

    HD5=90

    CM

    HD3L

    HD1

    L

    HD1

    HD5=0

    HD2

    CM

    1

    2

    3

    4

    Fig. 12: Tool crosshead with zero positions of the tools 1 to 4

    A data record containing head parameters must be kept for each head tool. The related tool headdata record is used to select one of the tools 1 to 4.

    To measure the head offsets of the individual tools, the related tool is rotated and brought to zero position oftool 1 (positive Y direction).

    Besides the uniform head parameters HD1, HD4, HD5, head parameter HD2 is used for tools 1 and 2 andhead parameter HD3 for tools 3 and 4.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC24 Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Offset tool holding device to reference pointHD2 1 Offset reference point rotation centre point C axis tool 1 and 2HD3 2 Offset reference point rotation centre point C axis tool 3 and 4HD4 3 Z axis offset tool holding deviceHD5 4 Rotary angular offset C axis zero positionHD7 6 Static tool offset in XHD8 7 Static tool offset in Y

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 25Version 1.01

    2.5 KIN_TYP_6 – 4-axis kinematics with underfloor millingtool

    Kinematic structure

    The kinematic structure consists of 3 translatory axes and 1 rotary axis in the tool. A special feature of thiskinematic structure is that the tool points in the positive Z direction.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C

    Axis index 0, 1, 2, 3,Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C -

    +X

    -X

    -Y

    +Y

    +Z

    -Z

    +C -C

    YwZw

    Xw

    Fig. 13: 4-axis kinematics with underfloor milling tool

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC26 Version 1.01

    Y

    X

    TX=LHD2

    HD9

    HD7

    CM

    CM

    HD4

    HD8

    MZP

    HD3

    HD10

    Y

    Z

    Fig. 14: Tool head for underfloor milling (zero position where HD4 = 0)

    The axes are arranged as for a right-handed system. The zero position of the C axis is in the positivedirection of the Y axis.

    Offset data of kinematics

    HD offset param[i] DescriptionHD2 1 Z axis offset tool holding deviceHD3 2 Y axis offset rotary axis C axis to tool rotary axisHD4 3 Rotary angular offset C axis zero positionHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 27Version 1.01

    2.6 KIN_TYP_7 – 5-axis kinematics with man. auxiliary axis(drilling)

    Kinematic structure

    The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool. A manuallyadjustable rotary 5th axis continues to be available. This fifth axis cannot be addressed from the NCprogram.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C

    Axis index 0, 1, 2, 3,Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, A, C -

    Auxiliary axes A -

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC28 Version 1.01

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A

    -A

    Fig. 15: 5-axis kinematics (boring and milling tool with manual auxiliary axis A)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 29Version 1.01

    Y

    X

    AMHD3

    HD1

    L

    HD2

    HD6

    CM

    CM

    HD4

    HD7

    HD8HD5

    Z

    YFig. 16: 5-axis boring and milling tool (zero position where HD3=0, HD4=0, CM=0)

    The axes are arranged as for a right-handed system. The zero position of the A axis is in the negativedirection of the Z axis.

    The automatic orientation setting of the 5-axis tool head with manually adjustable A axis depends on theposition of the A axis. If the physical machine axis position and the value in the HD parameter of the A axisdo not match, no correct automatic alignment is possible.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC30 Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point of A axis (swivel axis)HD2 1 Z axis offset rotation point A axis to tool head reference pointHD3 2 Fixed angle setting of rotary A axis (swivel axis)HD4 3 Angular offset tool to C axis zero positionHD5 4 Y axis offset rotation point A axis to rotation point C axis (offset)HD6 5 X axis offset tool head reference point to rotation point C axis (offset)HD7 6 Static tool offset in XHD8 7 Static tool offset in Y

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 31Version 1.01

    2.7 KIN_TYP_8 – 5-axis kinematics with man. auxiliary axis(sawing)

    Kinematic structure

    The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool. A manuallyadjustable rotary 5th axis continues to be available. This axis cannot be addressed from the NC program.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C

    Axis index 0, 1, 2, 3,Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, A, C -

    Auxiliary axes A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A

    -A

    Fig. 17: 5-axis kinematics (sawing tool with manual auxiliary axis A)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC32 Version 1.01

    HD3

    side view

    AM

    HD4

    HD2

    TX=L

    TCP

    CM

    CM

    HD10

    HD9

    HD7HD8

    HD5

    MZP

    Top view

    Y

    X

    Z

    Y

    Fig. 18: 5-axis sawing tool (zero position where HD5 = 0, HD4 = +90,CM=0)

    The automatic orientation setting of the 5-axis tool head with manually adjustable A axis depends on theposition of the A axis.

    If the physical machine axis position and the value in the HD parameter of the A axis do not match, nocorrect automatic alignment is possible.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 33Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD2 1 Y axis offset from tool holding device to rotation point A axis (swivel

    axis)HD3 2 Z axis offset from rotation point A axis to tool reference pointHD4 3 Fixed angle setting of rotary A axis (swivel axis)HD5 4 Rotary angular offset C axisHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC34 Version 1.01

    2.8 KIN_TYP_9 – 5-axis kinematics (boring and millingunit)

    Kinematic structure

    The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C, A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A

    - A

    Fig. 19: 5-axis kinematics (boring and milling unit)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 35Version 1.01

    Y

    X

    TCP

    HD6

    A-Axis

    MK K M

    HD5

    HD2

    HD8

    HD1

    L

    C-Axis

    HD9

    HD7

    MHD8

    K

    Yprog

    Z

    Y

    Z

    XXprog

    Zprog

    Fig. 20: 5-axis boring and milling tool (zero position where HD3 = 0, AM=0, HD4=0, CM=0)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC36 Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset from tool holding device to rotation point A axis (swivel

    axis)HD2 1 Z axis offset rotary axis A to tool head reference pointHD3 2 Rotary angular offset A axis (default 0)HD4 3 Rotary angular offset C axis (default 0)HD5 4 Y axis offset rotation point C axisHD6 5 X axis offset rotation point C axisHD7 6 Static head offset in X (default 0)HD8 7 Static head offset in Y (default 0)HD9 8 Y axis offset milling tool axis to rotation point A axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 37Version 1.01

    2.9 KIN_TYP_10 – 5-axis kinematics (sawing)Kinematic structure

    The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C, A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A

    -A

    Fig. 21: 5-axis kinematics (sawing tool)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC38 Version 1.01

    HD3

    side view

    AM

    HD4

    HD2

    TX=L

    TCP

    CM

    CM

    HD10

    HD9

    HD7HD8

    HD5

    MZP

    Top view

    Y

    X

    Z

    Y

    Fig. 22: 5-axis sawing tool (zero position where HD5 =0, CM=0, HD4 =0, AM =90)

    Offset data of kinematics

    HD offset param[i] DescriptionHD2 1 Y axis offset from tool holding device to rotation point A axis (swivel

    axis)HD3 2 Z axis offset from rotation point A axis (swivel axis) to tool reference

    pointHD4 3 Rotary angular offset A axisHD5 4 Rotary angular offset C axisHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 39Version 1.01

    2.10 KIN_TYP_11 – 5-axis kinematics with oblique tool headKinematic structure

    The kinematic structure consists of 3 translatory Cartesian axes and 2 rotary axes. As a special feature themachine has an oblique B axis.

    Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, B Z, A

    +Z

    -Z

    YwZw

    Xw

    -A

    -X

    +X

    -Y

    +Y+B

    -B

    +A

    Fig. 23: Axis configuration of the 5-axis machine with oblique angle head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC40 Version 1.01

    Z

    Y

    HDZ=HD2

    HD1

    L

    DI

    a= HD3

    b

    Fig. 24: Angles and lengths at the oblique angle head

    The design of the oblique B axis is the most striking feature of the kinematic structure. If the tool length isselected such that the TCP (tool centre point) lies exactly on the extension of the B axis (tool offset HDZ), nocompensation motions are required in the translatory axes when the tool orientation via the B axis changes(compensation motions due to changes in A axis orientation are always present). If the selected tool length isnot ideal (i.e. if the TCP is not exactly on the extension of the B axis), there are minor additionalcompensation motions on the linear axes depending on the deviation from the ideal length.

    Due to the particular design of the B axis, there can be no singular points in the backward transformation ofthe orientation axes. On the other hand, not all tool orientations can be selected (see below).

    The zero positions of machine axes XM, YM, ZM are selected such that the fictitious extensions of AM andBM intersect. The zero position of BM is selected such that the tool is in a vertical position and,consequently, parallel to Z0 if bM=0 (The figure “Axis configuration of the 5-axis machine with oblique anglehead” shows the zero position of BM). Expediently, the zero position of AM should be selected such that theY0, Z0 workpiece axes run parallel to the directions of the machine axes.

    HDZ represents the ideal tool length as geometry parameter of the machine kinematics; HD1 represents thefirst tool head parameter; L is the actual tool length (milling cutter length).

    Please note that l is a signed value and may also be negative.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 41Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to tool head reference pointHD2 1 Ideal tool lengthHD3 2 Angle between B axis and Z axis (oblique angle)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC42 Version 1.01

    2.11 KIN_TYP_12 – Tripod kinematicsKinematic structure

    The strut kinematic structure (referred to as “tripod”) consists of 3 translatory axes in a non-Cartesianarrangement. Strut pairs parallel to each other carry the tool holder platform. Tool orientation is constant.

    Axis configuration in the NC channelAxis identifier X, Y, Z (Z1, Z2, Z3)

    Axis index 0, 1, 2Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z -

    YwZw

    Xw

    +Z2

    -Z2

    +Z1

    -Z1

    +Z3

    -Z3

    Fig. 25: Tripod kinematics

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 43Version 1.01

    B2

    B3

    B1

    R1

    R3

    R2

    e2

    e3

    e1 R1

    B1

    P

    B2

    I2

    I3

    I1

    r1

    r1

    r2

    r3

    Z

    X

    Y

    X´Y´

    Fig. 26: Vector representation of strut kinematics

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC44 Version 1.01

    Yw

    Xw

    R=HD5

    W_Z1Z3=HD9

    W_Z2Z3=HD10

    W_Z1Z2=360°-W_Z1Z3W_Z2Z3

    Z1

    Z2

    Z3

    Machine axis carrier tool holder platform

    (Stewardplatform)

    r=HD6

    Z1 Z3 Z2

    HD4

    SL=HD7

    0

    TXHD1

    L

    Fig. 27: Offset dimensions of strut kinematics

    The parameter HD8 is used to toggle between an ideal (1) and non-ideal (0) tripod. An ideal tripod has anangle of 120° between all columns. A non-ideal tripod must be defined by the angles HD9 and HD10. The third angle between columns is calculated as follows:

    W_Z1Z2 = 360° - HD9 – HD10 = 360° - W_Z2Z3 – W_Z1Z3

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 45Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Tool offset ZHD2 1 Tool offset YHD3 2 Tool offset XHD4 3 Z axis offset machine originHD5 4 Radius to connecting line joint centre points drive columns (large

    circle)HD6 5 Radius to connecting line joint centre points Stewart platform joints

    (small circle)HD7 6 Strut length to each joint centre pointHD8 7 Switch to switch over to non-ideal tripod

    0 : ideal tripod1 : non-ideal tripod and enable HD9 / HD 10

    HD9 8 Angle column / joint 3 to column / joint 1 in 1x10-4°HD10 9 Angle column / joint 3 to column / joint 2 in 1x10-4°

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC46 Version 1.01

    2.12 KIN_TYP_16 – 5-axis kinematicsKinematic structure

    The kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, B, A

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, B, A -

    -X

    +X

    -Y

    +Y

    +Z

    -Z

    YwZw

    Xw

    -B

    +B

    +A

    -A

    Fig. 28: Axis configuration of 5-axis machine

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 47Version 1.01

    Z

    Y

    X

    Y

    +

    TX

    AMHD4

    HD6

    HD1

    HD3

    +

    BM

    +

    BM

    Side view

    Top view

    + AM

    HD5 HD2

    Fig. 29: Parameters of rotary/swivel head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC48 Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offsetHD3 2 Y offsetHD4 3 Z offsetHD5 4 X offsetHD6 5 Y axis offset to toolHD7 6 Rotary offset A axisHD8 7 Rotary offset B axisHD9 8 Sign for direction of rotation A axisHD10 9 Sign for direction of rotation B axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 49Version 1.01

    2.13 KIN_TYP_17 – five-axis kinematics with 2 manualauxiliary axes

    Kinematic structure

    The kinematic structure consists of 3 translatory NC axes. In addition, 2 manually adjustable rotary axes areavailable. These axes cannot be addressed from the NC program.

    Axis configuration in the NC channelAxis identifier X, Y, Z

    Axis index 0, 1, 2Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z -

    Auxiliary axes C, A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A

    -A

    Fig. 30: 5-axis kinematics (boring and milling tool with manual auxiliary axes C and A)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC50 Version 1.01

    Y

    X

    AMHD3

    HD1

    L

    HD2

    HD6

    CM

    CM

    HD4

    HD7

    HD8HD5

    Z

    YFig. 31: Boring and milling tool (zero position where HD3 = 0, HD4 = 0)

    The axes are arranged as for a right-handed system. The zero position of the A axis is in the negativedirection of the Z axis. No automatic orientation setting is possible for the 2-axis tool head with manuallyadjustable C and A axes.

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point of A axis (swivel axis)HD2 1 Z axis offset rotation point A axis to tool head reference pointHD3 2 Fixed angle setting of rotary A axis (swivel axis)HD4 3 Fixed angle setting of rotary C axisHD5 4 Y axis offset rotation point A axis to rotation point C axis (offset)HD6 5 X axis offset tool head reference point to rotation point C axis (offset)HD7 6 Static tool offset in XHD8 7 Static tool offset in Y

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 51Version 1.01

    2.14 KIN_TYP_18 – five-axis kinematics with 2 manualauxiliary axes (sawing)

    Kinematic structure

    The kinematic structure consists of 3 translatory NC axes. In addition, 2 manually adjustable rotary axes areavailable. These axes cannot be addressed from the NC program.

    Axis configuration in the NC channelAxis identifier X, Y, Z

    Axis index 0, 1, 2Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z -

    Auxiliary axes C, A -

    -Y

    +Y

    +X

    -X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    -A

    +A

    Fig. 32: 5-axis kinematics (sawing tool with manual auxiliary axes C and A)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC52 Version 1.01

    HD3

    side view

    AM

    HD4

    HD2

    TX=L

    TCP

    CM

    CM

    HD10

    HD9

    HD7HD8

    HD5

    MZP

    Top view

    Y

    X

    Z

    Y

    Fig. 33: Sawing tool (zero position where HD5 = 0, HD4 = +90)

    Offset data of kinematics

    HD offset param[i] DescriptionHD2 1 Y axis offset from tool holding device to rotation point A axis (swivel

    axis)HD3 2 Z axis offset from rotation point A axis to tool reference pointHD4 3 Fixed angle setting of rotary A axis (swivel axis)HD5 4 Fixed angle setting of rotary C axisHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 53Version 1.01

    2.15 KIN_TYP_19 – Tripod kinematicsKinematic structure

    The strut kinematics consists of 3 translatory axes in a non-Cartesian arrangement and 2 Cartesian axes. 3struts with ball joints support the workpiece platform. This may affect the Z height and orientation of theworkpiece.

    Axis configuration in the NC channelAxis identifier X, Y, Z, U, V, W ( X, Y, Z1, Z2, Z3, W)

    Axis index 0, 1, 2, 3, 4, 5Kinematic structure

    Tool axes Workpiece axesNC axes X, Y Z1, Z2, Z3

    +Z1

    -Z1

    Xw

    ZwYw

    +Z2

    -Z2

    +Z3

    -Z3

    -Y

    +Y

    +X

    -X

    Fig. 34: Tripod kinematics

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC54 Version 1.01

    Yw

    Xw

    R=HD4

    Z3 Z1

    Z2

    Machine axes carrier

    Workpiece holderplatform

    120°

    r=HD3

    Yw

    Xw

    Z3 Z2 Z1

    HD2

    0

    Zw

    Xw

    HD5

    HD1

    Fig. 35: Kinematic offsets

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 55Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Tool offset in ZHD2 1 Strut length to joint centre pointHD3 2 Radius to connecting line joint centre points Stewart platform joints

    (small circle)HD4 3 Radius to connecting line joint centre points drive columns (large

    circle)HD5 4 Distance between workpiece holder platform and joint centre points

    on the Stewart platform

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC56 Version 1.01

    2.16 KIN_TYP_21 – Lambda kinematicsKinematic structure

    The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C (X1, X2, Z, C)

    Axis index 0, 1, 2, 3Kinematic structure

    Tool axes Workpiece axesNC axes X,Y, Z, C -

    YwZw

    Xw

    +C -C

    -X1+X1

    -X2+X2

    +Z

    -Z

    Fig. 36: Lambda kinematics

    The XY plane kinematics are known as a variant of shear kinematics. The struts (lengths l2, l1) that areconnected to each other at point D and are also rotatable are located on 2 linear slides XM1 and XM2 atrotary joints C and B.

    Strut CA (length I3) is attached to strut CD via the fixed angle ß. The C axis is located at the top of this strut.The actual tool holding strut (length l4) starts at the rotation point of the C axis and ends in the TCP.

    Related to the Cartesian axes the C axis is not mechanically guided, i.e. it must be compensated dependingon the joint position.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 57Version 1.01

    CM

    Am1_off

    XM1

    d1 d2

    TCPXP, YP

    I4

    g_s

    D

    B

    XM2

    C

    I2 I1

    I3

    b

    f

    YW YM

    XWXM

    Fig. 37: Lambda kinematics, variant 1

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC58 Version 1.01

    CM

    A

    m1_offXM1

    d1 d2

    TCPXP, YP

    I4

    g_s

    D

    BXM2

    C

    I2 I1

    I3

    b

    f

    YW YM

    XWXM

    Fig. 38: Lambda kinematics, variant 2

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 59Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z offset to tool holding pointHD2 1 l1: Strut length 1HD3 2 l2: Strut length 2HD4 3 l3: Strut length 3HD5 4 g_s : Offset joint points C to BHD6 5 ß= fixed angle between strut CD and strut CAHD7 6 m1_off: Y position of drive 1 referred to Y origin WCSHD8 7 phi_min: Minimum value for angle j (0°)HD9 8 phi_max: Maximum value for angle j (90°)HD10 9 X-OffsetHD11 10 L4= gripper offsetHD12 11 Kinematic variant

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC60 Version 1.01

    2.17 KIN_TYP_22 – 5-axis kinematics with X/Y workpiecetable

    Kinematic structure

    The kinematic structure consists of 2 translatory NC axes in the workpiece, 2 rotary NC axes and 1translatory axis in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes Z, A, B X, Y

    -X

    +X

    +Y

    -Y

    +Z

    -Z

    YwZw

    Xw

    +A

    -A+B

    -B

    Fig. 39: Axis configuration of 5-axis machine

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 61Version 1.01

    Zw

    Yw

    Zw

    Xw

    B+-

    HD1

    WZL

    A -+

    Fig. 40: Kinematic offsets

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point A / B axisHD4 3 Motion direction rotary axis AHD5 4 Motion direction rotary axis B

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC62 Version 1.01

    2.18 KIN_TYP_23 – 5-axis kinematics with X/Y/B workpiecetable

    Kinematic structure

    The kinematic structure consists of 2 translatory NC axes in the workpiece, 1 translatory axis in the tool and1 rotary NC axis in both the workpiece and the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes Z, A X, Y, B

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    -A

    +A

    +B

    -B

    Fig. 41: Axis configuration of 5-axis machine

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 63Version 1.01

    Zw

    Xw

    HD2B +

    -

    HD1

    TL

    A -+

    Fig. 42: Kinematic offsets

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point A axisHD2 1 Distance rotation point B axis to workpiece platformHD4 3 Motion direction rotary axis AHD5 4 Motion direction rotary axis B

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC64 Version 1.01

    2.19 KIN_TYP_25 – 5-axis kinematics with plasma/laserhead

    Kinematic structure

    The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool. As a specialfeature, the effective tool length with these kinematics changes depending on the A angle.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C, A -

    -X

    +X -Y

    +Y

    +Z

    -Z

    YwZw

    Xw

    +A

    -A

    +C -C

    Fig. 43: 5-axis kinematics (plasma/laser head)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 65Version 1.01

    Y

    X

    TCP

    HD6

    A-Axis

    MK K M

    HD5

    HD2

    HD8

    HD1

    L

    C-Axis

    HD9

    HD7

    MHD8

    K

    Yprog

    Z

    Y

    Z

    XXprog

    Zprog

    Fig. 44: 5-axis plasma/laser head (zero position where HD3 = 0, AM=0, HD4=0, CM=0)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC66 Version 1.01

    L1

    L2TCP

    Fig. 45: When the head is in oblique position, the torch tip is at a constant height above the workpiece, i.e.where A!= 0 is the effective length L2 > L1.

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset from torch tip to rotation point A axis (swivel axis)HD2 1 Z axis offset rotary axis A to tool head reference pointHD3 2 Rotary angular offset A axis (default 0)HD4 3 Rotary angular offset C axis (default 0)HD5 4 Y axis offset rotation point C axisHD6 5 X axis offset rotation point C axisHD7 6 Static head offset in X (default 0)HD8 7 Static head offset in Y (default 0)HD9 8 Y axis offset torch axis to rotation point A axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 67Version 1.01

    2.20 KIN_TYP_28 – 5-axis kinematicsKinematic structure

    The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool. The physicalangle position of the head C, A is adjusted by 2 gear-linked axes.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, A ( X, Y, Z, C1, C2)

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C(C1), A(C2) -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    -A

    +A

    Fig. 46: 5-axis kinematics

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC68 Version 1.01

    Y

    X

    TCP

    HD6

    A-Axis

    MK K M

    HD5

    HD2

    HD8

    HD1

    L

    C-Axis

    HD9

    HD7

    MHD8

    K

    Yprog

    Z

    Y

    Z

    XXprog

    Zprog

    Fig. 47: Tool head (zero position where HD3 = 0, A=0, HD4=0, C=0)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 69Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset from tool holding device to rotation point A axis (swivel

    axis)HD2 1 Z axis offset rotary axis A to tool head reference pointHD3 2 Rotary angular offset A axis (default 0)HD4 3 Rotary angular offset C axis (default 0)HD5 4 Y axis offset rotation point C axisHD6 5 X axis offset rotation point C axisHD7 6 Static head offset in X (default 0)HD8 7 Static head offset in Y (default 0)HD9 8 Y axis offset milling tool axis to rotation point A axisHD10 9 n.a.HD11 10 Origin offset CA gear linkHD12 11 Gear link factor numeratorHD13 12 Gear link factor denominatorHD14 13 Sign rotary axis CHD15 14 Sign rotary axis AHD16 15 A factor numeratorHD17 16 A factor denominator

    The gear link between C and A is absolute and is executed as shown in the following equations:

    CM = CW

    AM = AW*ka + NP0 + kca*CW

    where

    : C -> A gear link factor

    : A resolution factor

    NP0 = HD11 : Origin offset gear link

    The head rotary axes must be adjusted either as linear axes or as rotary axes with a sufficiently largemodulo range. The SLS monitor in the channel acts on the drive positions depending on the limits in set inthe MDS.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC70 Version 1.01

    2.21 KIN_TYP_30 – 4-axis kinematicsKinematic structure

    The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool.

    Axis configuration in the NC channelAxis identifier X, Y, Z, A

    Axis index 0, 1, 2, 3Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +A

    -A

    Fig. 48: 4-axis kinematics (boring and milling unit)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 71Version 1.01

    HD6

    HD2

    A

    -

    +

    HD7

    HD8

    HD1

    A

    TL HD3

    +-

    Zw

    Xw

    Zw

    Yw

    Fig. 49: Offsets of 4-axis kinematics

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point A axisHD2 1 X axis offset tool holding device to rotation point A axisHD3 2 Y axis offset tool holding device to rotation point A axisHD4 3 Rotation direction sign A axis: 1 (default), -1HD5 4 Rotary offset A axisHD6 5 X offset rotation point A axis to reference point tool slideHD7 6 Y offset rotation point A axis to reference point tool slideHD8 7 Z offset rotation point A axis to reference point tool slide

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC72 Version 1.01

    2.22 KIN_TYP_33 – 5-axis kinematics with oblique tool headKinematic structure

    The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool. As a specialfeature this kinematic structure requires no compensation motions of translatory axes due to the mechanicalconstruction when the rotary axes rotate.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z, C, A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A- A

    Fig. 50: 5-axis oblique tool head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 73Version 1.01

    C

    a=HD3

    A

    Z

    X

    Fig. 51: Oblique tool head axis in zero position, HD7=0

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC74 Version 1.01

    A

    a=HD3

    C

    Z

    X

    Fig. 52: Oblique tool head with 180 degree head offset in zero position, HD7=1

    Offset data of kinematic structure

    HD offset param[i] DescriptionHD3 2 Head angleHD4 3 Static X offsetHD5 4 Static Y offsetHD6 5 Static Z offsetHD7 6 Orientation C axis head; required if head has a 180° offset in zero

    position

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 75Version 1.01

    2.23 KIN_TYP_34 – 4-axis kinematics with X/C workpiecetable

    Kinematic structure

    The kinematic structure consists of 2 translatory NC axes in the tool, 1 translatory and 1 rotary NC axis in theworkpiece.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C

    Axis index 0, 1, 2, 3Kinematic structure

    Tool axes Workpiece axesNC axes Y, Z X, C

    +X

    -X-Y

    +Y

    +Z

    -Z

    YwZw

    Xw+C -C

    Fig. 53: 4-axis C axis kinematics

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC76 Version 1.01

    C+

    HD2

    HD3

    Yw

    Xw

    YM

    XM

    Zw

    ZM

    Fig. 54: Origin offsets in rotary C axis workpiece holder

    Offset data of kinematics

    HD offset param[i] DescriptionHD2 1 MCS offset XHD3 2 MCS offset Y

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 77Version 1.01

    2.24 KIN_TYP_36 – SCARA kinematicsKinematic structure

    The robot kinematics consist of 3 rotary and 1 translatory NC axes in the tool. Tool length compensationtakes place in the Z axis. All rotary axes are C axes.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C (C1, C2, Z, C3)

    Axis index 0, 1, 2, 3Kinematic structure

    Tool axes Workpiece axesNC axes X,Y, Z, C -

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC78 Version 1.01

    YwZw

    Xw

    +Z

    -Z

    +C3

    +C1

    +C2

    Fig. 55: SCARA kinematics

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 79Version 1.01

    YW

    XWZW

    HD3HD2

    C1 C2 C3

    Fig. 56: SCARA kinematics in zero position (C1=0, C2=0, C3=0)

    SCARA works as a left-handed or right-handed robot depending on the angular position of robot joint 2 (C2).The machine axis position before selecting the transformation therefore decides whether SCARA ispositioned as a left-handed or right-handed robot. A change can be made from left-handed to right-handedrobot when the kinematic transformation is inactive.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC80 Version 1.01

    Right-handed, left-handed

    HD5

    HD4

    HD2

    HD3

    +C3

    +C2

    +C1HD6

    YW

    XWZW

    Fig. 57: Right-handed C2 >=0 or < 180 degrees

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 81Version 1.01

    HD5

    HD4

    HD2

    HD3

    +C3+C2

    +C1HD6

    YW

    XWZW

    Fig. 58: Left-handed C2 180 degrees

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Tool length offset in z directionHD2 1 Length offset from joint 1 to joint 2HD3 2 Length offset joint 2 to rotary axis C3HD4 3 x offset origin C1 axisHD5 4 y offset origin C1 axisHD6 5 Rotary offset C1 axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC82 Version 1.01

    2.25 KIN_TYP_52 – 5-axis kinematics with A/B workpiecetable

    Kinematic structure

    The kinematic structure consists of 3 translatory axes and 2 rotary axis in the workpiece.

    Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y Z, A, B

    +Z

    -Z

    ZwYw

    Xw

    -A

    +A

    +B -B

    +X

    -X

    +Y

    -Y

    Fig. 59: Kinematics of 5-axis milling machine

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 83Version 1.01

    HD0

    Y

    Z

    Fig. 60: Definition of offset parameters

    HD1

    HD2

    Y

    X

    Fig. 61: Definition of offset parameters in front view

    The figure above shows the kinematics for the machine axis positions Z = 0, Y = 0 and A = 0.

    Offset data of kinematics

    HD offset param[i] DescriptionHD0 0 Offset rotary axis A to tool holding device.HD1 1 Y offset toolHD2 2 Y offset of workpiece coordinate system origin to rotary axis A axisHD3 3 Sign for direction of rotation A axisHD4 4 Sign for direction of rotation B axis

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC84 Version 1.01

    2.26 KIN_TYP_57 – 5-axis kinematics with B/C workpiecetable

    Kinematic structure

    The kinematic structure consists of 3 translatory axes in the tool and 2 rotary axes in the workpiece.

    Axis configuration in the NC channelAxis identifier X, Y, Z, B, C

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z B, C

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    -B

    +B

    +C -C

    Fig. 62: Kinematics of 5-axis machine with BC workpiece table

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 85Version 1.01

    HD3

    SRP

    HD1

    HD6

    HD9

    B

    MZP

    C

    HD8

    Z

    Y

    Fig. 63: Offsets in Y/Z view

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC86 Version 1.01

    MZP

    SRP

    HD2

    HD7

    HD4

    C

    B

    Z

    X

    Fig. 64: Offsets in X/Z view

    The machine origin can be shifted by the parameters HD7 to HD9. Differing zero positions of the rotary axesB and C can be set by the parameters HD10, HD11 so that the internal kinematic model matches the realmachine kinematics. In the same way, differing rotation directions of the B and C axes can be set by theparameters HD12, HD13. In general, the signs of command and actual parameters must also be modifiedaccordingly in the axis parameters.

    The origin of the WCS on the turning table can be defined by the parameters HD14 to HD16.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 87Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z tool offset holding device to reference point tool slide SBPHD2 1 X axis offset holding device to reference point tool slide SBPHD3 2 Y axis offset holding device to reference point tool slide SBPHD4 3 X axis offset rotary axis B to rotary axis C, origin WCSHD5 4 Y axis offset rotary axis B to rotary axis C, origin WCSHD6 5 Z axis offset rotary axis B to rotary axis C, origin WCSHD7 6 X offset machine origin MNP to rotary axis BHD8 7 Y offset machine origin MNP to rotary axis CHD9 8 Z offset machine origin MNP to rotary axis BHD10 9 Rotary offset B axisHD11 10 Rotary offset C axisHD12 11 Rotation direction flag B axisHD13 12 Rotation direction flag C axisHD14 13 X offset origin WCSHD15 14 Y offset origin WCSHD16 15 Z offset origin WCS

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC88 Version 1.01

    2.27 KIN_TYP_58 – Five-axis kinematics with A/C workpiecetable

    Kinematic structure

    The kinematic structure consists of 3 translatory axes in the tool and 2 rotary axes in the workpiece.

    Axis configuration in the NC channelAxis identifier X, Y, Z, A, C

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z A, C

    -X

    +X

    -Y

    +Y

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A

    -A

    Fig. 65: Kinematics of 5-axis machine with AC workpiece table

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 89Version 1.01

    HD3

    SRP

    HD1

    HD6

    HD9

    B

    MZP

    C

    HD8

    Z

    X

    Fig. 66: Offsets in X/Z view

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC90 Version 1.01

    MZP

    SRP

    HD2

    HD7

    HD4

    C

    A

    Z

    Y

    Fig. 67: Offsets in Y/Z view

    Typically the machine origin is located in the rotary axis A. As required, it can be shifted using parametersHD7 to HD9. Differing zero positions of the rotary axes A and C can be set by the parameters HD10 andHD11 so that the internal kinematic model matches the real machine kinematics. In the same way differingrotation directions of the A and C axes can be set by the parameters HD12, HD13. In general, the signs ofcommand and actual parameters must also be modified accordingly in the axis parameters.

    The origin of the WCS on the turning table can be shifted by the parameters HD14 to HD16.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 91Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z tool offset holding device to reference point tool slide SBPHD2 1 X axis offset holding device to reference point tool slide SBPHD3 2 Y axis offset holding device to reference point tool slide SBPHD4 3 X axis offset rotary axis A to rotary axis C, origin WCSHD5 4 Y axis offset from rotary axis A to rotary axis C, origin WCSHD6 5 Z axis offset from rotary axis A to rotary axis C, origin WCSHD7 6 X offset from machine origin MNP to rotary axis AHD8 7 Y offset from machine origin MNP to rotary axis AHD9 8 Z offset from machine origin MNP to rotary axis AHD10 9 Rotary offset A axisHD11 10 Rotary offset C axisHD12 11 Rotation direction flag A axisHD13 12 Rotation direction flag C axisHD14 13 X offset origin WCSHD15 14 Y offset origin WCSHD16 15 Z offset origin WCS

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC92 Version 1.01

    2.28 Cardanic kinematics

    2.28.1 KIN_TYP_59 – Cardanic kinematics with C/A headThe kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool. The A axis is rotated aboutthe Y axis by an angle!= 90 degrees; typically the angle is between 30 and 60 degrees.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z,C,A -

    -Y

    +Y

    -X

    +X

    +Z

    -Z

    YwZw

    Xw

    +C -C

    +A-A

    Fig. 68: Cardanic kinematic with CA head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 93Version 1.01

    Y

    X

    HD8 HD2

    C

    b=HD7

    A

    HD4

    L

    HD1

    HD6

    HD10

    HD12

    HD9HD5HD3

    HD13

    ARP

    C

    TCP

    CP

    HD11

    HD15

    V1

    V2

    V3

    HD14

    M

    Z

    X

    Fig. 69: Offsets of cardanic CA 5-axis head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC94 Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offset to tool holding deviceHD3 2 Y offset to tool holding deviceHD4 3 X offset compensation point (SP) to A axisHD5 4 Y offset compensation point (SP) to A axisHD6 5 Z offset compensation point (SP) to A axisHD7 6 Angle between A axis and Z axisHD8 7 X offset A axis to C axisHD9 8 Y offset A axis to C axisHD10 9 Z offset A axis to C axisHD11 10 X offset C axis to machine point MHD12 11 Y offset C axis to machine point MHD13 12 Z offset C axis to machine point MHD14 13 Rotary internal offset C axis (*)HD15 14 Rotary internal offset A axis (*)HD16 15 Rotary offset C axis (*)HD17 16 Rotary offset A axis (*)

    HD21 20 Control flag:  0: Transformation of rotary axes C and A, default.1: The rotary axes C and A are machine angles.

    In general the reference point referred to as ARP wanders to reference point SP, i.e. the vector V3 is 0 andthe point SP is located in the tool axis which has the same rotary axis as the C axis. In this case only theparameters L, HD1, HD7 and HD10 are required. The kinematics can transform an A spatial angle ofmaximum 2*HD7.

    (*) The rotary offsets HD14 and HD15 only act on the internal kinematic model, i.e. these offsets are nottransferred to the rotary axes. By contrast, the offsets HD16 and HD17 act like a zero offset when kinematictransformation is active. They also lead to a re-positioning of the cardanic head with rotary offset when anangular position is programmed.

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 95Version 1.01

    Y

    X

    C

    C

    b=HD7

    A

    HD10

    HD1

    LZ

    X TCPFig. 70: Cardanic head with ideal head geometry (intersection of C-A axis is located in tool axis)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC96 Version 1.01

    Y

    X

    C

    C

    b=HD7

    A

    HD10

    HD1

    LZ

    X TCP

    HD2

    Fig. 71: Cardanic head with offset C axis (C axis not located in tool axis)

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 97Version 1.01

    2.28.1.1 Saw blade with TCP function

    When parameter HD20 is activated, kinematic transformation can be used to calculate TCP offsetsdependent on the target angle A of the cardanic head. This is required to program the correct cutting depthof the saw blade when A != 0. The TCP is then located at the lowest point of the saw blade.

    Set the target angle A in parameter HD19.

    After target angle A != 0 is approached, the TCP is located at the bottom of the point at minimum distance tothe workpiece surface as shown in the figure (when A is in zero position, the TCP is located on the right ofthe saw blade in X direction)

    HD offset param[i] DescriptionHD19 18 Target angle A of head for saw machiningHD20 19 Control flag:   

    0: Default, cardanic transformation for milling2: Cardanic transformation with TCP on saw blade

    When the kinematic is activated, the required tool offsets are calculateddepending on the saw blade radius and target angle A. In the targetangle position A != 0, the TCP is located at the lowest point on the sawblade (generally at minimum distance to the workpiece).

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC98 Version 1.01

    Y

    X

    C

    b=HD7

    A

    HD10

    HD1

    C2

    C

    Z

    X TCP

    HD2Fig. 72: Cardanic head with saw tool and TCP at saw tooth

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 99Version 1.01

    Fig. 73: Angle representations – saw tool and TCP

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC100 Version 1.01

    2.28.2 KIN_TYP_60 – Cardanic kinematics with C/B headThe kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool. The B axis is arrangedabout the X axis rotated by an angle!= 90 degrees; the angle is typically between 30 and 60 degrees.

    Axis configuration in the NC channelAxis identifier X, Y, Z, C, B

    Axis index 0, 1, 2, 3, 4Kinematic structure

    Tool axes Workpiece axesNC axes X, Y, Z,C,B -

    -X

    +Z

    -Z

    YwZw

    Xw

    +X

    +Y

    -Y

    +C -C

    +B-B

    Fig. 74: Cardanic kinematic with CB head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC 101Version 1.01

    X

    Y

    a=HD7

    B

    HD15

    SP

    C

    BRP

    HD14

    HD11

    HD8HD4HD2

    HD3

    HD9 HD12

    M

    M

    CV1

    HD13

    HD6

    HD1

    L

    HD10

    HD5

    V3

    V2

    Z

    Y

    TCP

    Fig. 75: Offsets of cardanic CB 5-axis head

  • Kinematic transformations

    Kinematic TransformationTF5240 | TC3 CNC102 Version 1.01

    Offset data of kinematics

    HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offset to tool holding deviceHD3 2 Y offset to tool holdin