the all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · the lapw...

45
The all-electron full-potential linearized augmented plane-wave method Sep 9, 2019 Gregor Michalicek Institute for Advanced Simulation, Forschungszentrum J ¨ ulich and JARA, 52425 J¨ ulich, Germany [email protected]

Upload: others

Post on 29-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The all-electron full-potentiallinearized augmented plane-wave methodSep 9, 2019 Gregor Michalicek Institute for Advanced Simulation,Forschungszentrum Julich and JARA, 52425 Julich, Germany

[email protected]

Page 2: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Outline

Theoretical backgroundThe FLAPW method and the LAPW basisSeparation of core electrons from valence electronsRepresentation of density and potential

FLAPW in practiceSetting the parametersSemicore states and ghost bandsThe linearization error

Using fleurThe input file generatorThe inp.xml file

Further readingConclusion

[email protected]

Slide 1

Page 3: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Outline

Theoretical backgroundThe FLAPW method and the LAPW basisSeparation of core electrons from valence electronsRepresentation of density and potential

FLAPW in practiceSetting the parametersSemicore states and ghost bandsThe linearization error

Using fleurThe input file generatorThe inp.xml file

Further readingConclusion

[email protected]

Slide 2

Page 4: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Motivation: FLAPW in zoo of electronicstructure methods

[T + VH(r) + Vext(r) + Vxc(r)

]ψν(r) = Eν ψν(r)

Relativity

non-relativistic

scalar-relativistic

fully relativistic

Approximation to exchange-correlation func-tional

local density approximation (LDA)

generalized gradient approximation (GGA)

LDA+U

hybrid functionals

EXX+RPA

. . .

Contributions to potential

pseudopotential

all electron

Representation of potential

spherical approximation

full potential

Representation of wave func-tions

linear combinations of atomicorbitals (LCAO)

Gaussian orbitalsnumerical orbitals

plane waves (PW)

real-space grid

non-linear methods

KKRaugmented plane waves(APW)

linearized methods

LMTOlinearized augmentedplane waves (LAPW)

[email protected]

Slide 3

Page 5: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Potential and wave functions in a crystal

r

E

[email protected]

Slide 4

Page 6: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Potential and wave functions in a crystal

r

E

[email protected]

Slide 4

Page 7: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Potential and wave functions in a crystal

r

E

[email protected]

Slide 4

Page 8: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Potential and wave functions in a crystal

r

E

Core electrons

Semicore electrons

Valence electrons

[email protected]

Slide 4

Page 9: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Potential and wave functions in a crystal

r

E

Bloch theorem:

If V (r) = V (r + R):

Ψ(r) = eikr · uk(r),

uk(r) = uk(r + R)

[email protected]

Slide 4

Page 10: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The LAPW basisAtom-centered functions in MT spheres matched in value andslope to plane waves in interstitial region (IR)

φkG(r) =

1√Ω

ei(k+G)r for r ∈ IR∑L

[aLα

kGuαl (rα,Eαl ) + bLα

kGuαl (rα,Eαl )]

YL(rα) for r ∈ MTα

uαl and uαl are solutions and energy derivatives for the sphericalpotential at energy parameters Eα

l

InterstitialRegion (IR)

Muffin-tinfor atom α

(MTα) 0 RMT

0

Interstitial Region (IR)Muffin-tin(MT)

plane waveul(r),

.ul(r)

[email protected]

Slide 5

Page 11: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The LAPW basisAtom-centered functions in MT spheres matched in value andslope to plane waves in interstitial region (IR)

φkG(r) =

1√Ω

ei(k+G)r for r ∈ IR∑L

[aLα

kGuαl (rα,Eαl ) + bLα

kGuαl (rα,Eαl )]

YL(rα) for r ∈ MTα

uαl and uαl are solutions and energy derivatives for the sphericalpotential at energy parameters Eα

lParameters:

Kmax = |k + G|max reciprocal plane wave cutofflαmax angular momentum cutoff for sphere αRα

MT radius for muffin-tin sphere αEα

l energy parameter for uαl , uαlNote: LAPW basis depends on atom positions and featuresdiscontinuities at MT boundaries

[email protected]

Slide 5

Page 12: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Orthogonality of LAPW basis functions tocore electron states (1)

ul(r), ucl (r) given by radial Schrodinger equation:[−1

2∂2

∂r2 +l(l + 1)

2r2 + V sphreff (r)

]rul(r) = El rul(r) (1)

Multiply (1) for ul(r) by rucl (r) and vice versa, subtract the two

resulting equations from each other, and integrate:

RMT∫0

−12

rucl (r)

∂2

∂r2 rul(r)+12

rul(r)∂2

∂r2 rucl (r)dr = (El−Ec

l )

RMT∫0

ul(r)r2ucl (r)dr

Assumption: ucl (r)

∣∣RMT

= 0, ∂∂r uc

l (r)∣∣RMT

= 0

We obtain: 0 =⟨uc

l

∣∣ul⟩

RMTand analogously 0 =

⟨uc

l

∣∣ul⟩

RMT

[email protected]

Slide 6

Page 13: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Orthogonality of LAPW basis functions tocore electron states (2)

Orthogonality allows to determine core and valence electronenergies and wave functions separately from each otherCore electrons

Representation for each atom separately on radial meshFully relativistic treatment

Valence electronsRepresentation by LAPW basisScalar-relativistic description in MT spheresOptional inclusion of spin-orbit coupling

But: assumption ucl (r)

∣∣RMT

= 0, ∂∂r uc

l (r)∣∣RMT

= 0 onlyapproximately fulfilled

Semicore states can lead to ghost bands

[email protected]

Slide 7

Page 14: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The linearization within the LAPW basis

Description in MT spheres is not systematically improved byincreasing the reciprocal cutoff parameter Kmax

Linearization of solutions ul at arbitrary energy ε

uαl (rα, ε) = uαl (rα,Eαl ) + (ε− Eα

l )uαl (rα,Eαl ) +O

[(ε− Eα

l )2]Due to the restriction to the function space spanned by uαl (rα,Eα

l )and uαl (rα,Eα

l ) we obtain a linearization error.This description is sufficient to obtain accurate results for manymaterials.

[email protected]

Slide 8

Page 15: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Extending the LAPW basis with localorbitalsAdditional basis functions localized in MT spheres

φloL (r) =

[alo

L uαl (rα,Eαl ) + blo

L uαl (rα,Eαl ) + c lo

L uαl (rα,E lol )]

YL(rα)

Mainly used to describesemicore statesDetermination of alo

L , bloL , and

c loL by enforcing zero value

and slope at the MT boundary,as well as a normalizationcondition on the local orbital

0 RMT

0

Interstitial Region (IR)

Muffin-tin (MT)

zeroul(r,E

l),

.ul(r,E

l), ul(r,E

l

lo)

[email protected]

Slide 9

Page 16: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Extending the LAPW basis with localorbitalsAdditional basis functions localized in MT spheres

φloL (r) =

[alo

L uαl (rα,Eαl ) + blo

L uαl (rα,Eαl ) + c lo

L uαl (rα,E lol )]

YL(rα)

Semicore states (SCLO)Choose E lo

l to be energy ofsemicore state

Unoccupied orbitals (HELO)Choose E lo

l above Fermienergy

Higher derivative LOs (HDLO)Choose uα

l (rα,Eαl ) instead

of uαl (rα,E lo

l )0 R

MT

0

Interstitial Region (IR)

Muffin-tin (MT)

zeroul(r,E

l),

.ul(r,E

l), ul(r,E

l

lo)

[email protected]

Slide 9

Page 17: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The LAPW basis for films

φk‖G(r) =

1√Ω

ei(k‖+G)r for r ∈ IR∑L

[aLα

k‖Guαl (rα,E

αl ) + bLα

k‖Guαl (rα,E

αl )

]YL(rα) for r ∈ MTα[

avack‖Guvac

k‖G‖(z,Evac) + bvac

k‖Guvack‖G‖

(z,Evac)]

× 1√A

ei(k‖+G‖)r‖ for r ∈ VRvac

Interstitial Region (IR)

Muffin-tin (MT)

Vacuum Region 2 (VR2)

Vacuum Region 1 (VR1)

DD

A = surface area

uvack‖G‖

,uvack‖G‖

: solutions,energy derivatives tovacuum potential atenergy parametersEvac

G⊥ = 2πn/D

[email protected]

Slide 10

Page 18: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The LAPW basis for films

φk‖G(r) =

1√Ω

ei(k‖+G)r for r ∈ IR∑L

[aLα

k‖Guαl (rα,E

αl ) + bLα

k‖Guαl (rα,E

αl )

]YL(rα) for r ∈ MTα[

avack‖Guvac

k‖G‖(z,Evac) + bvac

k‖Guvack‖G‖

(z,Evac)]

× 1√A

ei(k‖+G‖)r‖ for r ∈ VRvac

Interstitial Region (IR)

Muffin-tin (MT)

Vacuum Region 2 (VR2)

Vacuum Region 1 (VR1)

DD

A = surface area

Parameters:D - vacuum boundaryD - determination ofG⊥Evac - vacuum energyparameters

[email protected]

Slide 10

Page 19: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Representation of density and potential

Plane-wave part

ρPW(r) =Gmax∑

GρG · eiGr

Actually represented by stars

Linear combinations ofplane waves according tosymmetry

MT sphere α

ρα(r) =Lα

max∑LραL (rα)YL(rα)

Actually represented bylattice harmonics

Linear combinations ofspherical harmonicsaccording to symmetry

Parameters:Gmax reciprocal plane-wave cutoff for density, potentialGmaxXC reduced cutoff for exchange correlation potential

[email protected]

Slide 11

Page 20: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Outline

Theoretical backgroundThe FLAPW method and the LAPW basisSeparation of core electrons from valence electronsRepresentation of density and potential

FLAPW in practiceSetting the parametersSemicore states and ghost bandsThe linearization error

Using fleurThe input file generatorThe inp.xml file

Further readingConclusion

[email protected]

Slide 12

Page 21: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Choice of Kmax, lαmax, and lαnonsphr

Rayleigh expansion of planes waves at MT boundary:

eiKr = 4πeiKτα∑

L

i lY ∗L (K)jl(Krα)YL(rα)

∣∣∣∣∣rα=Rα

MT

Rule of thumb:

lαmax ≈ Kmax · RαMT

≈ 8− 12

Determinationof Kmax basedon Rα,min

MT

lαnonsphr ≈min(8, lαmax − 2) 0 2 4 6 8 10 12

Kr

-0.2

0

0.2

0.4

0.6

0.8

1

j l(K

r)

j0(Kr)

j1(Kr)

j2(Kr)

j3(Kr)

j4(Kr)

0 2 4 6 8 10 12

Kr

-0.2

0

0.2

0.4

0.6

0.8

1

j l(K

r)

j5(Kr)

j6(Kr)

j7(Kr)

j8(Kr)

[email protected]

Slide 13

Page 22: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Choice of Gmax and GmaxXC

Gmax is cutoff for different functionsPlane wave part of charge density ρPW(r)Plane wave part of potential V PW

eff (r)Step function Θ(r) indicating the interstitial region

V PWeff (r) and Θ(r) have infinitely many plane-wave coefficients.

Interstitial potential contribution to Hamilton matrix:⟨φkG

∣∣∣Θ(r)V PWeff (r)

∣∣∣φkG′

⟩Rule

Gmax ≥ GmaxXC ≥ 2 · Kmax

typically Gmax ≈ 3 · Kmax, GmaxXC ≈ 2.5 · Kmax

[email protected]

Slide 14

Page 23: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Choice of the energy parameters

energy center of massof the l-projected DOS

minimizes quadraticerror weighted bycharge in eacheigenstate

atomic solutionsyields more friendlyconvergencebehavior

fcc Ce

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05E

5d - E

F (Htr)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Eto

tal -

Em

in

tota

l (m

Htr

)

LAPWLAPW+HDLO

-0.2 -0.1 00

0.001

0.002

0.003

energycenter of mass

atomic energyparameter

[email protected]

Slide 15

Page 24: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Choice of MT radii

Due to different bonding lengths in different materials the RMT arematerial dependent.If calculations have to be compared identical MT radii should bechosen.

Large MT radii Small MT radii

Faster calculationsLarger linearization errorFewer SCLOs neededSome quantities onlyevaluated in MT

Slower calculationsMore stable calculationsSmaller linearization errorMore SCLOs neededMore space available forstructural relaxations

[email protected]

Slide 16

Page 25: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Semicore states and ghost bands

-10

-5

0

5

10

15

20

H N P NΓ Γ

E -

EF (

eV

)

bcc Vanadium

RMT = 2.25 a0, lostElectrons = 0.086

[email protected]

Slide 17

Page 26: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Semicore states and ghost bands

-10

-5

0

5

10

15

20

H N P NΓ Γ

E -

EF (

eV

)

bcc Vanadium

RMT = 2.20 a0, lostElectrons = 0.100

[email protected]

Slide 17

Page 27: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Semicore states and ghost bands

-10

-5

0

5

10

15

20

H N P NΓ Γ

E -

EF (

eV

)

bcc Vanadium

RMT = 2.17 a0, lostElectrons = 0.109

[email protected]

Slide 17

Page 28: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Semicore states and ghost bands

-10

-5

0

5

10

15

20

H N P NΓ Γ

E -

EF (

eV

)

bcc Vanadium

RMT = 2.16 a0, lostElectrons = 0.112

[email protected]

Slide 17

Page 29: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Semicore states and ghost bands

************** juDFT -Error *****************

Error message:differ 2: problems with solving dirac equation

Error occurred in subroutine:differ

Error from PE:0/1

*****************************************

Last kown location:

Last timer:Updating energy parameters

Timerstack:

Timer:eigen

Timer:gen. of hamil. and diag. (total)

Timer:Iteration

Timer:Total Run

*****************************************

RMT = 2.15 a0, lostElectrons = 0.123This error message can also have other causes.Other error messages are also possible.

[email protected]

Slide 17

Page 30: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Semicore states and ghost bands - with SCLO

-10

-5

0

5

10

15

20

H N P NΓ Γ

E -

EF (

eV

)

bcc Vanadium

RMT = 2.16 a0, lostElectrons = 0.012, SCLO for 3p state

[email protected]

Slide 18

Page 31: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Linearization error depending on energymismatch

fcc Cerium

-5 -2.5 0 2.5 5 7.5 10 12.5 15E-E

5d (Htr)

0

0.2

0.4

0.6

0.8

1

∆l=

2(E

)

-0.2 -0.1 0 0.1 0.20

1×10-3

2×10-3

3×10-3

4×10-3

5×10-3

LAPWLAPW+HDLOx1LAPW+HELOx1LAPW+HELOx2

bcc Vanadium

-5 -2.5 0 2.5 5 7.5 10 12.5 15E-E

4p (Htr)

0

0.2

0.4

0.6

0.8

1

∆l=

1(E

)

LAPWLAPW+HDLOx1LAPW+HELOx1LAPW+HELOx2

∆l =√‖ ul(r , ε)− ul(r , ε) ‖2

[email protected]

Slide 19

Page 32: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The linearization error and MT radiifcc Ce

2.4 2.5 2.6 2.7 2.8 2.9 3R

MT (a

0)

0.944

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0.964

equ

ilib

riu

m l

atti

ce c

on

stan

t a

/ a

exp

LAPWLAPW+HDLOx1LAPW+HELOx1LAPW+HELOx2

2.4 2.5 2.6 2.7 2.8 2.9 3

0.9436

0.9438

0.944

0.9442

0.9444

lattice constant changes by1.6% when MT radius isreduced

rock-salt KCl

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8R

MT (a

0)

0.966

0.967

0.968

0.969

0.97

0.971

equ

ilib

riu

m l

atti

ce c

on

stan

t a

/ a

exp

LAPWLAPW+HDLOx1LAPW+HELOx1LAPW+HELOx2

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.80.966

0.9662

0.9664

0.9666

0.9668

0.967

lattice constant changes by0.4% when MT radii arereduced

[email protected]

Slide 20

Page 33: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The linearization error and unoccupiedstates

K Γ L-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

E-E

F (

eV

)

LAPWLAPW+HDLOx1

KS band gap for rock-salt KClis reduced by 4% by addingone set of HDLOs

K Γ L-2

0

2

4

6

8

10

12

14

16

E-E

F (

eV

)

LAPWLAPW+HDLOx1

KS band gap for fcc Ar isreduced by 19% by addingone set of HDLOs

[email protected]

Slide 21

Page 34: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Outline

Theoretical backgroundThe FLAPW method and the LAPW basisSeparation of core electrons from valence electronsRepresentation of density and potential

FLAPW in practiceSetting the parametersSemicore states and ghost bandsThe linearization error

Using fleurThe input file generatorThe inp.xml file

Further readingConclusion

[email protected]

Slide 22

Page 35: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The input file generator

Fleur uses complex inputInput file with default parameters is generated by input filegenerator inpgenSimple structural input needed for inpgen

Example input for inpgen

NaCl bulk

&lattice latsys=’fcc ’ a0 =10.62026 /

2

11 0.0 0.0 0.0

17 0.5 0.5 0.5

Usage: inpgen < myInputFile.txt

[email protected]

Slide 23

Page 36: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Input file generator - command line options

-h write out list of command line optionsOptional Input to be generated

-explicit add some optional input direcly to inp.xml file.– List of k points– Symmetry operations (otherwise if needed in sym.out file)– Noncollinear magnetism input

-noco generate noncollinear magnetism input in inp.xml-genEnpara generate enpara file for more energy parameteroptions...

[email protected]

Slide 24

Page 37: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Fleur input: the inp.xml file

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

<fleurInput fleurInputVersion="0.30">

<comment > Fleur is cool </comment >

<calculationSetup > ... </calculationSetup >

<cell > ... </cell>

<xcFunctional > ... </xcFunctional >

<atomSpecies > ... </atomSpecies >

<atomGroups > ... </atomGroups >

<output > ... </output >

</fleurInput >

Usage: fleur-h command line option to display all fleur modes

[email protected]

Slide 25

Page 38: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The inp.xml file - calculationSetup

<calculationSetup >

<cutoffs Kmax="3.6" Gmax="10.7" GmaxXC="8.9"

numbands="0"/>

<scfLoop itmax="15" minDistance=".0"

imix="Anderson" alpha=".05"/>

<coreElectrons ctail="T" frcor="F" kcrel="0"/>

<magnetism jspins="1" l_noco="F"/>

<bzIntegration valenceElectrons="16.0" mode="hist"

fermiSmearingEnergy=".001">

<kPointCount count="15" gamma="F"/>

</bzIntegration >

</calculationSetup >

+ Optional input, e.g., nocoParams, geometryOptimization

[email protected]

Slide 26

Page 39: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The inp.xml file - cell, xcFunctional

<cell >

<symmetryFile filename="sym.out"/>

<bulkLattice scale="1.000" latnam="any">

<bravaisMatrix >

<row -1> 0.00000 5.31013 5.31013 </row -1>

<row -2> 5.31013 0.00000 5.31013 </row -2>

<row -3> 5.31013 5.31013 0.00000 </row -3>

</bravaisMatrix >

</bulkLattice >

</cell>

<xcFunctional name="pbe"

relativisticCorrections="F"/>

[email protected]

Slide 27

Page 40: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The inp.xml file - atomSpecies

<atomSpecies >

<species name="Na -1" element="Na" atomicNumber="11"

coreStates="1" magMom=".00" flipSpin="T">

<mtSphere radius="2.80" gridPoints="925"

logIncrement=".0120"/>

<atomicCutoffs lmax="10" lnonsphr="8"/>

<energyParameters s="3" p="3" d="3" f="4"/>

<lo type="SCLO" l="0" n="2" eDeriv="0"/>

<lo type="SCLO" l="1" n="2" eDeriv="0"/>

</species >

<species name="Cl -2" element="Cl" atomicNumber="17"

coreStates="4" magMom=".00" flipSpin="T">

...

</species >

</atomSpecies >

[email protected]

Slide 28

Page 41: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The inp.xml file - atomGroups

<atomGroups >

<atomGroup species="Na -1">

<relPos > .000000 .000000 .000000 </relPos >

<force calculate="T" relaxXYZ="TTT"/>

</atomGroup >

<atomGroup species="Cl -2">

<relPos > 1.0/2.0 1.0/2.0 1.0/2.0 </relPos >

<force calculate="T" relaxXYZ="TTT"/>

</atomGroup >

</atomGroups >

+ Optional input, e.g., nocoParams

[email protected]

Slide 29

Page 42: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

The inp.xml file - output

<output dos="F" band="F" vacdos="F" slice="F">

<densityOfStates ndir="0" minEnergy=" -.50"

maxEnergy=".50" sigma=".015"/>

</output >

+ Optional input, e.g., vacuumDOS, plotting, chargeDensitySlicingFull documentation of inp.xml file on www.flapw.de

[email protected]

Slide 30

Page 43: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Overview on files

with HDF5 without HDF5

inp.xml(sym.out)enpara (optional)cdn.hdfmixing history.*input for special calculationsout, inf, out.xml

inp.xml(sym.out)enpara (optional)cdn1, cdn??, cdncmixing history.*stars, wkf2input for special calculationsout, inf, out.xml

[email protected]

Slide 31

Page 44: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Further reading

The FLAPW methodOverview book - Singh et al., Planewaves, Pseudopotentials,

and the LAPW Method, SpringerInitial publication - Andersen, PRB 12, 3060 (1975)FLAPW for films - Krakauer et al., PRB 19, 1706 (1979)Potential calculation - Weinert, J.Math.Phys. 22, 2433 (1981)Predecessor (APW) - Slater, Phys.Rev. 51, 846 (1937)

Local orbitalsSCLOs - Singh, PRB 43, 6388 (1991)HELOs - Betzinger et al., PRB 83, 045105 (2011)HDLOs - Friedrich et al., PRB 74, 045104 (2006)Linearization error - Michalicek et al., CPC 184, 2670 (2013)

[email protected]

Slide 32

Page 45: The all-electron full-potential linearized augmented plane-wave … · 2020. 12. 4. · The LAPW basis Atom-centered functions in MT spheresmatched in value and slope toplane waves

Conclusions

LAPW basis + local orbitalsGuidelines for setting parameters

Kmax, lαmax, lαnonsphrRα

MT, Eαl

Gmax, GmaxXC

Semicore states and ghost bandsThe linearization errorFleur input filesNot discussed

General numerical DFT parameters,e.g., k point set, Fermi smearing, ...

0 RMT

0

Interstitial Region (IR)Muffin-tin(MT)

plane waveul(r),

.ul(r)

lαmax ≈ Kmax · RαMT

-10

-5

0

5

10

15

20

H N P NΓ Γ

E -

EF (

eV

)

bcc Vanadium

[email protected]

Slide 33