the analysis of metal-containing engineered nanoparticles

29
Spiros A. Pergantis Environmental Chemical Processes Laboratory, Dept. of Chemistry, University of Crete Voutes Campus, Heraklion, 70013, Greece The analysis of Metal-containing Engineered Nanoparticles using SINGLE PARTICLE ICP-MS 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1โ€ฆ 1โ€ฆ 110 0 40 80 120 160 200 90 110 130 150 170 190

Upload: others

Post on 28-Oct-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The analysis of Metal-containing Engineered Nanoparticles

Spiros A. Pergantis

Environmental Chemical Processes Laboratory,

Dept. of Chemistry, University of Crete

Voutes Campus, Heraklion, 70013, Greece

The analysis of Metal-containing Engineered Nanoparticles

using SINGLE PARTICLE ICP-MS

510

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95 1โ€ฆ

1โ€ฆ

110

0

40

80

120

160

200

90 110 130 150 170 190

Page 2: The analysis of Metal-containing Engineered Nanoparticles
Page 3: The analysis of Metal-containing Engineered Nanoparticles
Page 4: The analysis of Metal-containing Engineered Nanoparticles

Presentation Outline

โ€ข Brief intro to sp ICP-MS

โ€ข Application of sp ICP-MS for Ag NP detection in a marine mesocosm experiment

โ€ข Limitations of sp ICP-MS

โ€ข NP Sizing using HDC, FFF, and ion mobility with sp ICP-MS

โ€ข NP characterization using modified sp ICP-MS approaches

โ€ข Development and application of single cell ICP-MS analysis

Page 5: The analysis of Metal-containing Engineered Nanoparticles
Page 6: The analysis of Metal-containing Engineered Nanoparticles
Page 7: The analysis of Metal-containing Engineered Nanoparticles

Inductively Coupled Plasma โ€“ Mass Spectrometry (ICP-MS)

โ€ข Analysis of sample with a heavy or complex matrix (i.e. seawater, biological samples)

โ€ข Routine analysis for screening purposes (high throughput with minimum sample preparation)

โ€ข Not labor intensive

โ€ข Sensitive with LOD adequate for realistic environmental concentrations

Page 8: The analysis of Metal-containing Engineered Nanoparticles

Inductively Coupled Plasma โ€“ Mass Spectrometry (ICP-MS)

Liquid sample

Page 9: The analysis of Metal-containing Engineered Nanoparticles

Single Particle (SP) - ICP-MS

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Au+

Page 10: The analysis of Metal-containing Engineered Nanoparticles
Page 11: The analysis of Metal-containing Engineered Nanoparticles

Single Particle ICP-MS of a Au NP suspension

0

50

100

150

200

250

300

350

400

0 5000 10000 15000 20000 25000 30000

Sign

al p

er d

wel

l tim

e (5

mse

c)

Time / msec

Degueldre, C.; Favarger, P. Y.; Wold, S. Anal. Chim. Acta 2006, 555, 263-268.

Page 12: The analysis of Metal-containing Engineered Nanoparticles

0

5

10

15

20

25

30

35

40

45

50

21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

NU

MB

ER O

F N

P C

OU

NTE

D

PARTICLE SIZE / NM

Particle Size Distribution

๐‘‘๐‘–,๐ด๐‘”๐‘๐‘ƒ =3 6๐‘š๐‘–,๐ด๐‘”๐‘๐‘ƒ

๐œ‹ ๐œŒ

Page 13: The analysis of Metal-containing Engineered Nanoparticles

Anastasia Tsiola 1,2, Paraskevi Pitta 2, Margarita Kagiorgi 2, Ioanna Kalantzi 2,

Kyriaki Mylona 2,3, Stella Psarra 2, Ioulia Santi 1,2, Claudio Toncelli 2,3,

Spiros A. Pergantis 3, Manolis Tsapakis 2

1 University of Crete, Department of Biology2 Hellenic Centre for Marine Research, Institute of Oceanography

3 University of Crete, Department of Chemistry

Effects of silver nanoparticle exposure at the ng L-1 level

on marine microbial plankton dynamics

Page 14: The analysis of Metal-containing Engineered Nanoparticles

Background

engineered NPs are used in a wide range of applications

AgNPs release in coastal zone is expected to increase in the near future

consequences on aquatic biota have been already determined

apoptosis

ROS production

decreased viability and growth rates

decreased chlorophyll content

alterations in community composition

alterations in protein expression patterns

Silver nanoparticles of 60 nm diameter (TEM; Nanoxact,

No MRL1009)

Page 15: The analysis of Metal-containing Engineered Nanoparticles

Background

unrealistic and simplified conditions

high concentrations of AgNPs

single-species cultures or pre-treated estuarine & freshwater

communities

short-term experiments

Page 16: The analysis of Metal-containing Engineered Nanoparticles

Aim โ€“ AQUA-NANO project

potential effects of AgNPs in a natural planktonic communityno pre-filtration step, total marine plankton incubated

environmental relevant concentrations of AgNPs100-1000 ng Ag L-1

long-term effectsover a month

interaction effects on the genus or species level, when possible

considering the ambient physico-chemical parameters

Page 17: The analysis of Metal-containing Engineered Nanoparticles

Methodology

Analytical challenges โ€“ FI sp ICP MS

very dilute samples

very complex matrix

large number of samples

Whole-community approach challenges โ€“ mesocosms

microbial planktonic members present

constant interplay with highly-variable ambient conditions (pH,

temperature, organic matter, O2 and others)

Page 18: The analysis of Metal-containing Engineered Nanoparticles

single particle Inductively Coupled Plasma Mass Spectrometry

Ar gas

3-5 mmdilution zone

HPLC pump

Injector (20 ฮผL loop)

di water

10-50 ฮผL min-1

0.8 mL min-1

Fused silica capillary

Toncelli et al., 2016

Methodology

Analytical challenges

Page 19: The analysis of Metal-containing Engineered Nanoparticles

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

Cou

nts

pe

r 1

0 m

s f

or

m/z

10

7

Time (s)

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

Cou

nts

pe

r 1

0 m

s f

or

m/z

10

7

Time (s)

a b

c d

0

5

10

15

20

25

30

35

5 15 25 35 45 55 65 75 85 95 105

Fre

qu

en

cy

Size (nm)

0

5

10

15

20

25

30

35

5 15 25 35 45 55 65 75 85 95 105

Fre

qu

en

cy

Size (nm)

Methodology

Analytical challenges

AgBPEI 60 nm NPs at a concentration of 200 ng Ag L-1. Histogram is the sum of 3 injections.

dH2O seawater

Page 20: The analysis of Metal-containing Engineered Nanoparticles

๐‘š๐ด๐‘”๐‘๐‘ƒ๐‘ ๐‘ก๐‘‘ = ๐‘˜. เดค๐‘ž๐ด๐‘”๐‘๐‘ƒ

๐‘˜ =๐‘š๐ด๐‘”๐‘๐‘ƒ

๐‘ ๐‘ก๐‘‘

เดค๐‘ž๐ด๐‘”๐‘๐‘ƒ

๐‘š๐‘–,๐ด๐‘”๐‘๐‘ƒ = ๐‘˜. ๐‘ž๐‘–,๐ด๐‘”๐‘๐‘ƒ

0

40

80

120

160

200

0 100 200 300 400

Co

un

ts p

er 1

0 m

s fo

r m

/z 1

07

Time (s)

Seawater sample

*

******

**

*

** *

๐‘šn,๐ด๐‘”๐‘๐‘ƒ = ๐‘˜. ๐‘žn,๐ด๐‘”๐‘๐‘ƒ

...

...

...

Std AgNP 60 nm

เดค๐‘ž๐ด๐‘”๐‘๐‘ƒ

Page 21: The analysis of Metal-containing Engineered Nanoparticles

๐‘‘๐‘–,๐ด๐‘”๐‘๐‘ƒ =3 6๐‘š๐‘–,๐ด๐‘”๐‘๐‘ƒ

๐œ‹ ๐œŒ

าง๐‘‘๐ด๐‘”๐‘๐‘ƒ

๐œ€๐‘› =๐‘›๐‘‘๐‘’๐‘ก๐‘›๐‘–๐‘›๐‘—

NP number concentration determination

Page 22: The analysis of Metal-containing Engineered Nanoparticles

Part of the โ€œAqua-Nanoโ€ project ( http://aqua-nano.hcmr.gr/ )

poly(vinylpyrrolidone), PVP (Branched poly(ethylenimine)), BPEI

AgPVP AgBPEI

40 nm

60 nm

Control

200 ppt Ag for each Ag NP type

15 tanks in total

Page 23: The analysis of Metal-containing Engineered Nanoparticles

25

30

35

40

45

50

55

0 1000 2000 3000

Exposure time (min)

AgBPEI 60 nm AgBPEI 40 nm

AgPVP 60 nm AgPVP 40 nm

าง๐‘‘๐ด๐‘”๐‘๐‘ƒ

(nm

) 9 analytical runs

Page 24: The analysis of Metal-containing Engineered Nanoparticles

160

510

1660

2990

0

1E-12

2E-12

3E-12

2530354045505560657075808590

Exp

osu

re T

ime

(min

)

Ag

mas

s in

AgN

Ps

(g)

Size (nm)

AgPVP 60 nm

160

510

1660

29900

2E-12

4E-12

6E-12

2530354045505560

exp

osu

re t

ime

(min

)

Ag

in A

gNP

s (g

)

Size (nm)

AgPVP 40 nm

160

510

1660

29900

1E-12

2E-12

3E-12

4E-12

2530354045505560

Exp

osu

re T

ime

(min

)

Ag

in A

gNP

s (g

)

Size (nm)

AgBPEI 40 nm

160

510

1660

2990

0

1E-12

2E-12

3E-12

2530354045505560657075808590

Exp

osu

re T

ime

(min

)

Ag

mas

s in

AgN

Ps

(g)

Size (nm)

AgBPEI 60 nm a

c d

b

Page 25: The analysis of Metal-containing Engineered Nanoparticles

Methodology

Whole-community approach challenges

Mesocosm experiment โ€œCretacosmos- HCMRโ€

3-m3 incubations, 3 replicates

33 days

biotic and abiotic factors studied

Page 26: The analysis of Metal-containing Engineered Nanoparticles

Mesocosm experiment

Microcosm experiments (Toncelli et al., 2017 and Tsiola et al., 2017)

coastal seawater from the Cretan Sea, April-May 2015

branched poly(ethyleneimine) AgNPs, 60 nm

100 ng Ag L-1 spiking concentration per day for 10 days (step-wise)

final maximum concentration: 1000 ng Ag L-1

3x BPEI of 60 nm diameter

3x controls (C)

Page 27: The analysis of Metal-containing Engineered Nanoparticles

13

57

911

26

13

57

911

26

35

40

45

50

55

60

Ave

rage

AgN

P s

ize

(nm

)

0

200

400

600

800

1000

0 5 10 15 20 25 30 35

Ag

Co

nce

ntr

atio

n (

ng/

L)

Days of Incubation

b

c

- 0.24

- 0.35

- 0.50

- 0.68

- 0.91

- 1.19 Ag m

ass equ

ivalence (fg)

a

d

Ag diameter size (nm)

Ag

con

cen

trat

ion

(n

g/L

)A

gNP

nu

mb

er c

on

cen

trat

ion

(# p

er m

L)

Days of incubation

Page 28: The analysis of Metal-containing Engineered Nanoparticles

Temporal changes in Plankton abundances

Cyanobacterial growth

was inhibited

Page 29: The analysis of Metal-containing Engineered Nanoparticles

โ€ข The amount of a lysogeny-related gene increased and viral auxiliary metabolic

genes that are involved in cyanobacterial photosynthesis decreased, revealing a

damaged photosynthetic potential after AgNP exposure.

โ€ข Microbial plankton was significantly affected due to both increased dissolved silver

ions and decreased AgNP size.

โ€ข The presence of AgNPs alters the functioning of the marine food web by hampering

important viral and bacterial processes.

General Conclusions

Environ. Sci.: Nano, 2018,5, 1965-1980