the “virtual climatic wind tunnel” project · idiada is developing the “virtualclimatic wind...

22
The “Virtual Climatic Wind Tunnel” project STAR CCM+, London, 22 March 2010 Author: J. Arbiol, E. Aramburu

Upload: others

Post on 21-Jan-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

The “Virtual Climatic Wind Tunnel” project

STAR CCM+, London, 22 March 2010

Author: J. Arbiol, E. Aramburu

Page 2: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Content

Overview of IDIADA

UH thermal simulation

The VCWT methodology

State of the art

Benchmark

Automatic surface meshing

Automatic volume mesh

Examples

Design

Modules

Set-up

STARCCM+ & Radtherm coupling

Correlation

Input (Command / Organisation / Set-up)

Output

Code

VCWT exe

Overview of VCWT project

Page 3: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Development partner to the automotive industry

Product development projects

850 engineers in 15 countries world-wide

Automotive services

• Testing facilities

• Proving ground

• Engineering

Concept Finding &

Benchmarking

Styling & Feasibility

Package &Surfacing

Product Engineering

Design (CAD)

Product EngineeringSimul. (CAE)

DevelopmentTest

Validation Homologation Preparation

Overview of IDIADA

Page 4: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

IDIADA is developing the “Virtual Climatic Wind Tunnel” project to

calculate the under-hood temperatures.

Thanks to the VCWT, IDIADA will calculate the cooling system

temperatures and the UH parts temperatures for gradients, Vmax

and extended idle tests.

The VCWT must be fast, robust and accurate.

The VCWT project is a 2 year project (2007 & 2008) and it is

funded by IDIADA and the Catalan Government

Overview of the VCWT project

Main Characteristics

Page 5: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

A software benchmark for all of the next modules has been carried out:

Geometry clean-up

Surface meshing

Volume mesh

CFD simulation

Thermal simulation

Results analysis (HTML)

Currently, the chosen software is:

ANSA, STARCCM+ & RADTHERM

The VCWT methodology

Modules

Page 6: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Executable

vcwt26 /users/kk/work data_100.inp 1 0 data_1.txt 0 1000

Working folder

Mesh file

Scale factor

Number of prism layer

Data file(inlet velocity, fan rotation,…)

Type of simulation

Number of iterations

The VCWT methodology. VCWT script: inputs

Command

Page 7: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Surface clean-up & organisation

Data translation & surface meshing, holes’ closure & wrappings.428 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T2_SideMrf1

429 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_InletMrf1

433 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_OutletMrf1

500 BND_FAN1_Mrf1Body_RAD-0_WALL_T3_Fan1

430 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T2_SideMrf2

431 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_InletMrf2

432 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_OutletMrf2

501 BND_FAN2_Mrf2Body_RAD-0_WALL_T3_Fan2

416 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_InletCondensador

417 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_OutletCondensador

418 BND_HXCON1_HxConBody_RAD-0_WALL_T5_LateralesCondensador

421 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_InletIntercoolerIzq

420 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_OutletIntercoolerIzq

419 BND_HXINT1_HxInterIzqBody_RAD-0_WALL_T5_LateralesIntercoolerIzq

424 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_InletIntercoolerDer

423 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_OutletIntercoolerDer

422 BND_HXINT2_HxInterDerBody_RAD-0_WALL_T5_LateralesIntercoolerDer

427 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_InletRadiador

426 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_OutletRadiador

425 BND_HXRAD1_HxRadBody_RAD-0_WALL_T5_LateralesRadiador

111 BND_UH_Body_RAD-0_WALL_T10_BodyP5

108 BND_UH_Body_RAD-0_WALL_T16_BodyP2

110 BND_UH_Body_RAD-0_WALL_T20_BodyP4

109 BND_UH_Body_RAD-0_WALL_T25_BodyP3

42 BND_UH_Body_RAD-0_WALL_T30_BodyP1

428 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T2_SideMrf1

429 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_InletMrf1

433 BND_FAN1_Mrf1Body_RAD-0_INTERFACE_T4_OutletMrf1

500 BND_FAN1_Mrf1Body_RAD-0_WALL_T3_Fan1

430 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T2_SideMrf2

431 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_InletMrf2

432 BND_FAN2_Mrf2Body_RAD-0_INTERFACE_T4_OutletMrf2

501 BND_FAN2_Mrf2Body_RAD-0_WALL_T3_Fan2

416 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_InletCondensador

417 BND_HXCON1_HxConBody_RAD-0_INTERFACE_T4_OutletCondensador

418 BND_HXCON1_HxConBody_RAD-0_WALL_T5_LateralesCondensador

421 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_InletIntercoolerIzq

420 BND_HXINT1_HxInterIzqBody_RAD-0_INTERFACE_T4_OutletIntercoolerIzq

419 BND_HXINT1_HxInterIzqBody_RAD-0_WALL_T5_LateralesIntercoolerIzq

424 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_InletIntercoolerDer

423 BND_HXINT2_HxInterDerBody_RAD-0_INTERFACE_T4_OutletIntercoolerDer

422 BND_HXINT2_HxInterDerBody_RAD-0_WALL_T5_LateralesIntercoolerDer

427 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_InletRadiador

426 BND_HXRAD1_HxRadBody_RAD-0_INTERFACE_T4_OutletRadiador

425 BND_HXRAD1_HxRadBody_RAD-0_WALL_T5_LateralesRadiador

111 BND_UH_Body_RAD-0_WALL_T10_BodyP5

108 BND_UH_Body_RAD-0_WALL_T16_BodyP2

110 BND_UH_Body_RAD-0_WALL_T20_BodyP4

109 BND_UH_Body_RAD-0_WALL_T25_BodyP3

42 BND_UH_Body_RAD-0_WALL_T30_BodyP1

Model organisation

The VCWT methodology. VCWT script: input

Page 8: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Type of simulation

Number of Set-ups

Specific Bocos:

• Inlet,

• Outlet,

• floor,

• wheels,

• fans,

• porosities,

• heat exchange,

• etc..

MODEL: :BENCHMARK THERMAL CALCULATION:

TYPE: :2:

SETUPS: :1:

------------------------------------------------------------------------------------------

VRS_INT: :-1200,-1200,-320:2000,1200,1500:

SIZE_VR_INT: :22:

VRS_EXT: :-2500,-1400,-320:4000,1400,2200:

SIZE_VR_EXT: :100:

------------------------------------------------------------------------------------------

VINUH: :31.1:

TINUH: :300:

KINUH: :0.001:

EINUH: :0.001:

AFBODY: :2:

TOUTUH: :300:

KOUTUH: :0.001:

EOUTUH: :0.001:

VIMUH: :-3:

TIMUH: :300:

KIMUH: :0.001:

EIMUH: :0.001:

VSF: :31.1,0,0:

VSN: :31.1,0,0:

------------------------------------------------------------------------------------------

OR_D: : 9.8,-801,26.4:

WR_D: :-100:

------------------------------------------------------------------------------------------

OW_FAN1: :-478.8,-184.75,251:

V3_FAN1: :10.75,-0.0047,-0.45:

WF_FAN1: :400:

------------------------------------------------------------------------------------------

V1_HXRAD1: :17.970,0,-0.942:

V2_HXRAD1: : 0,1,0:

R1_HXRAD1: :150:

R2_HXRAD1: :600:

V1W_HXRAD1: :0,0,1:

V2W_HXRAD1: :1,0,0:

VIN_INHXRAD1: :1.16:

TIN_INHXRAD1: :355:

TOUT_OUTHXRAD1: :300:

QT_HXRAD1: :21800:

TITULO_HXRAD1: :MassFlowRateAire Q:

PTS_HXRAD1: :4:

P1_HXRAD1: :1.207 59840:

P2_HXRAD1: :1.810 77430:

P3_HXRAD1: :2.414 90880:

P4_HXRAD1: :3.017 101660:

MFH_HXRAD1: :2:

TIH_HXRAD1: :363:

CPH_HXRAD1: :4180:

TIC_HXRAD1: :293:

CPC_HXRAD1: :1024:

DC_HXRAD1: :1.1:

------------------------------------------------------------------------------------------

Set-up (BOCO file)

The VCWT methodology. VCWT script: input

Page 9: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

SETUP_2

SETUP_n

Hardcopies

HTML

.

.

.

WORKING

FOLDER

SETUP_1

POST

Hardcopies

HTMLPOST

Hardcopies

HTMLPOST

PARAM_1

PARAM_2

PARAM_n

The VCWT methodology. VCWT script: output

VCWT_run.shLog file

simulation

simulation

simulation

VCWT

Outputs

Page 10: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

#Script for CFD models with VCWT

echo “VCWT calculations"

#Mesh session with the geometric param: PARAM_100

echo “Doing the mesh: PARAM_100"

vcwt_MESH_PARAM_100.java

.

.

#Mesh calculation session: PARAM_100 with setup: 1

.

.

echo “Doing mesh: PARAM_100 with setup: 1"

starccm+ -np 4 -batch vcwt_MESH_PARAM_100_SETUP_1.java data_100_SETUP_1_iniOK_rough_3mm_03.sim

.

.

echo "Post-processing the mesh: PARAM_100 with setup: 1"

starccm+ -batch vcwt_MESH_PARAM_100_SETUP_1_POST.java data_100_SETUP_1_iniCOLD_FINAL.sim

echo

echo

echo “Calculation is done “

VCWT_run.sh

Code

The VCWT methodology. VCWT script: output

Page 11: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

WRAP

REMESHVOLUM

ANSA

The VCWT methodology. Modules

Automatic surface meshing

Automatic

element size

assignation

Automatic

clean-up loop

Page 12: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

The VCWT methodology. Modules

ROBUSTNESS

95% Probability

of running a simulation

Automatic volume mesh

Page 13: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

ExchangersThe needed regions for each type of simulation are:

Cold flow means that there is not energy. In this model only the fluid equations (momentum, mass and turbulence) will be

calculated. Applications: exterior aerodynamics, air conditioned systems, defrost.

With the Hot flow dual it is possible to run different types of coupled simulations in a single model (with energy). Applications:

underhood.

Dual modelUH region

Hx region

INHx region

OUTHx region

External flow simulation Internal flow simulation

Hx regionHx are linked to both simulations.

The released heat in the circuit’s

water will be the same that the

released in the air of the UH region.

The VCWT methodology. Modules

INHXRAD1

OUTHXRAD1

HXRAD1

Page 14: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

-------------------------------------

V1_HXRAD1: :1,0,0:

V2_HXRAD1: :0,1,0:

R1_HXRAD1: :123.9:

R2_HXRAD1: :519.4:

VIN_INHXRAD1: :1.46:

TIN_INHXRAD1: :293:

TOUT_OUTHXRAD1: :368:

V1W_HXRAD1: :0,0,1:

V2W_HXRAD1: :1,0,0:

QT_HXRAD1: :40833:

TITULO_HXRAD1: :MassFlowRateAire Q

PTS_HXRAD1: :9:

P1_HXRAD1: :0.39 26571.1:

P2_HXRAD1: :0.65 40833.1:

P3_HXRAD1: :1.04 57733.1:

P4_HXRAD1: :1.3 66204.1:

P5_HXRAD1: :1.82 78958.1:

P6_HXRAD1: :2.21 87271.1:

P7_HXRAD1: :2.6 94263.1:

P8_HXRAD1: :2.99 100241.1:

P9_HXRAD1: :3.38 105514.1:

MFH_HXRAD1: :2.12:

TIH_HXRAD1: :368:

CPH_HXRAD1: :3271:

TIC_HXRAD1: :293:

CPC_HXRAD1: :1024:

DC_HXRAD1: :1.2:

-------------------------------------

-------------------------------------

OR_D: :6.54,-841.0,90.95:

WR_D: :78.1:

OR_T: :2714.0,-841.0,90.95:

WR_T: :78.1:

-------------------------------------

OW_FAN1: :-633.,139.,278:

V3_FAN1: :103,-3.9,0:

WF_FAN1: :1300:

-------------------------------------

V1_HXRAD1: :1,0,0:

V2_HXRAD1: :0,1,0:

R1_HXRAD1: :123.9:

R2_HXRAD1: :519.4:

-------------------------------------

V1_HXINT1: :1,0,0:

V2_HXINT1: :0,1,0:

R1_HXINT1: :-0.185:

R2_HXINT1: :735.27:

V1W_HXINT1: :0,0,1:

V2W_HXINT1: :1,0,0:

VIN_INHXINT1: :15.4:

TIN_INHXINT1: :417:

QT_HXINT1: :7600:

TITULO_HXINT1: :MassFlowRateAire Q

PTS_HXINT1: :4:

P1_HXINT1: :1. 3000:

P2_HXINT1: :1.284 5000:

P3_HXINT1: :1.71 8000:

P4_HXINT1: :1.8 10000:

MFH_HXINT1: :0.104:

TIH_HXINT1: :423:

CPH_HXINT1: :1012:

TIC_HXINT1: :293:

CPC_HXINT1: :1012:

DC_HXINT1: :1.20:

-------------------------------------

The VCWT methodology. Set-up

Model set-up from set-up file definition

Page 15: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

STA

RC

CM

+ to

Ra

dth

erm

Starccm+

Radtherm

Near Wall fluid Temperature

Images by Courtesy of PSA

Wall temperature

Ra

dth

erm

to

STA

RC

CM

+

H coefficient

daten2tcd prof2xy

Simulation

Simulation

Starccm+

Radtherm

The VCWT methodology. Starccm+ & Radtherm coupling

CFD – Thermal loop

Page 16: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Target: Simulation turn around time < 3 weeks

CFD SIMULATION:

1. Surface clean-up (ANSA): 2 day

2. Surface organization (ANSA): 2 day

3. CFD set-up (BOCO file): 1 day

4. Volume mesh (STARCCM+): 10 hours (computer time)

5. Troubleshooting: 1 day

6. CFD Simulation: 16 Hours

Total: 1,5 weeks

Process automation

Page 17: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Radtherm SIMULATION:

1. Surface remesh (ANSA): 1 day

2. Radtherm set-up: 1 day

3. Radtherm Simulation: 8 Hours

Total: 0,5 weeks

Coupled simulation (5 iterations):

STARCCM+ & Radtherm: 2 days

Post-process

STARCCM+ & Radtherm: 1 week

Total turn-around time 3 weeks.

Process automation

Page 18: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Testing:

• Climatic Wind tunnel tests

• Proving ground tests

The VCWT methodology. Correlation

Page 19: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Underhood thermal management; correlation

T meas. T Sim.

26,2º C 23,5 º C

T Meas. T Sim.

67,7 º C 64,7 º C

T Meas. T Sim.

82,1 º C 84,6 º C

Wall temperature

Wall temperature

Air temperature

Images by Courtesy of PSA

The VCWT methodology. Correlation

Page 20: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Temperature was measured in 26 different locations during test

Temperatures of underhood test

The VCWT methodology. Correlation

1.7 1.6

-7.9

2.1

-19.4

5.2 5 5

-4.4

5.3

-0.9

4.5 8.60.8

-11.4

0.8

-1

0.3

-2

-0.1 0.9

-5.8-1 -1.3

3.7

-3.1

47

-ba

tery

48

-ba

tery

_2

49

-ba

tery

_fr

51

-alte

rna

do

r

52

-alte

rna

tor

53

-alte

rna

ror

58

-mo

un

t

59

-be

lt_

left

60

-fire

wa

ll

61

-ste

erin

g

62

-bra

ke

_p

ipe

63

-bra

ke

66

-oxig

en

68

-fu

el_

tan

k

71

-hs_

ma

nifo

ld

72

-hs_

ma

nifo

ld

73

-mu

ffle

r_h

ea

t_sh

ield

75

-Un

de

rho

od

am

bie

nt fr

on

t rig

ht

76

-Un

de

rho

od

am

bie

nt fr

on

t le

ft

77

-Un

de

rho

od

am

bie

nt b

ack r

igh

t

78

-Un

de

rho

od

am

bie

nt b

ack le

ft

83

-mo

tor

84

-hs-c

ata

lyst

86

-sh

rou

d

82

-EC

U

31

-39

Ra

d b

ack

-200

-150

-100

-50

0

50

TEST SIMULATION INCREMENT

Te

mp

era

ture

Te

mp

era

ture

Page 21: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Conclusions:

The VCWT: fully automated process for CFD thermal under-hood

simulations

Automated coupled process of STARCCM+ & Radtherm

Robustness

Correlated process (wind tunnel and proving ground)

The VCWT methodology

Page 22: The “Virtual Climatic Wind Tunnel” project · IDIADA is developing the “VirtualClimatic Wind Tunnel”project to calculate the under-hood temperatures. Thanks to the VCWT, IDIADA

Thank you very much for your kind attention