the atmosphere: lecture 3 · cpdt gdz convection ii: compressible ideal gas, no condensation...

16
The Atmosphere: Part 3: Unsaturated convection Composition / Structure Radiative transfer Vertical and latitudinal heat transport Atmospheric circulation Climate modeling Suggested further reading: Hartmann, Global Physical Climatology (Academic Press, 1994)

Upload: others

Post on 19-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

The Atmosphere:Part 3: Unsaturated convection

• Composition / Structure• Radiative transfer

• Vertical and latitudinal heat transport• Atmospheric circulation• Climate modeling

Suggested further reading:

Hartmann, Global Physical Climatology (Academic Press, 1994)

Page 2: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Full calculation of radiative equilibrium

stratosphere about right

tropospheric lapse rate too large

tropopausetoo cold

surface much too warm

Page 3: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Atmospheric energy balance

Page 4: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Hydrostatic balance

Mass of cylinder M A z

Forces acting:(i) gravitational force Fg −gM −g A z,(ii) pressure force acting at the top face, FT −p A, and(iii) pressure force acting at the bottom face, FB p pA

Fg FT FB 0 → p A −g A z, i.e.,

∂p∂z −g

Page 5: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Pressure and density profiles in a compressible atmosphere

∂p∂z −g

p

RT

∂p∂z − g

RT p

p p0 exp − zHp p0 exp − z

H ; H RTg

hydrostatic balance

perfect gas law

Isothermal atmosphere

p p0 exp −0z dz ′

Hz ′

gas constant for dry air R = 287 J kg-1K-1

More generally, H=H(z) and

Page 6: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Pressure and density profiles in a compressible atmosphere

∂p∂z −g

p

RT

∂p∂z − g

RT p

p p0 exp − zHp p0 exp − z

H ; H RTg

(T=237K)

hydrostatic balance

perfect gas law

Isothermal atmosphere

More generally, H=H(z) and

p p0 exp −0z dz ′

Hz ′

Page 7: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

ConvectionI: Incompressible fluid, no condensation

Ts sT

T and ρ are conserved under adiabatic displacement

∂∂z 0 ≡ ∂T

∂z 0

∂∂z 0 ≡ ∂T

∂z 0

stable

unstable

Page 8: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Thermodynamics of dry air

p, T pRT

s sp, T

s cp ln

Cp = 1005 J kg-1K-1

p0 = 1000 hPaκ = R/cp = 2/7 (diatomic ideal gas)

T p 0p

potential temperature

specific entropy

dq cv dT p d 1

cp dT − 1 dp

cp dT − RT dpp

ds dqT cp

dTT − R dp

p cpd

(+ constant)

ds 0 → d 0Adiabatic processes :

θ is conserved under adiabatic displacement

(N. B. θ=T at p =p0= 1000 hPa)

Page 9: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

0 d p0p

cpdT − RT

p dp

p0p

cpdT − 1

dpp0p

cpdT g dz

ConvectionII: Compressible ideal gas, no condensation

hydrostatic balance dp −g dz

adiabatic displacement

∂T∂z

−Γ

Γ gcp

9.76 10−3 Km−1

— adiabatic lapse rate

Following displaced parcel

T p 0p

unstable

stable

∂T∂z environment

− Γ

∂T∂z environment

− Γ

dTdz env

−Γ

ddz 0

dTdz parcel

−Γ

∂∂z 0

Page 10: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

0 d p0p

cpdT − RT

p dp

p0p

cpdT − 1

dpp0p

cpdT g dz

ConvectionII: Compressible ideal gas, no condensation

hydrostatic balance dp −g dz

adiabatic displacement

∂T∂z

−Γ

Γ gcp

9.76 10−3 Km−1

— adiabatic lapse rate

Following displaced parcel

T p 0p

unstable

stable

∂T∂z environment

− Γ

∂T∂z environment

− Γ

∂∂z 0

dTdz parcel

−Γ

dTdz env

−Γ

ddz 0

Page 11: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Stability of Radiative Equilibrium Profile

-10 K/km

radiativeequilibrium solution

• Radiative equilibrium is unstable in thetroposphere

Page 12: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Effects of convection

Model aircraft observations in an unsaturated convective region (Renno & Williams)

Page 13: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Effects of convection

radiative-convective equilibrium

TRO

PO

SP

HE

RE

STR

ATO

SP

HE

RE

Page 14: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Radiative-Convective Equilibrium

-10 K/km

radiativeequilibrium solution

• Radiative equilibrium is unstable in thetroposphere

Re-calculate equilibrium subject to the constraint that tropospheric stability is rendered neutral by convection.

Page 15: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Radiative-convective equilibrium(unsaturated)

Better, but:

• surface still too warm

• tropopause still too cold

Page 16: The Atmosphere: Lecture 3 · cpdT gdz Convection II: Compressible ideal gas, no condensation hydrostatic balance dp −g dz adiabatic displacement ∂T ∂z −Γ Γ g cp 9.76 10−3

Moist convection

Above a thin boundary layer, most atmospheric convection involves phase change of water: condensation releases latent heat