the battel for exactness matthias reggentin - hu-berlin.de · m. reggentin (hu-berlin) atomic...

39
Atomic Clocks and Frequency Standards The Battel for Exactness Matthias Reggentin Humboldt-Universit¨ at zu Berlin, Institut f¨ ur Physik July 07, 2010

Upload: others

Post on 06-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Atomic Clocks and Frequency StandardsThe Battel for Exactness

Matthias Reggentin

Humboldt-Universitat zu Berlin,Institut fur Physik

July 07, 2010

Page 2: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

1 Time and Frequency Measurement through the years

2 Atomic Clock Concept

3 Microwave Frequency Standards

4 Outlook

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 2 / 39

Page 3: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Importance of (correct) Time Measurement

http://ageofsail.wordpress.com/

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 3 / 39

Page 4: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Importance of Time Measurement - Today

http://wikipedia.org/

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 4 / 39

Page 5: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Clocks & Frequency Standards

• fundamental importance time measurement• challenge - man made clocks

Rela

tive

unce

rtain

ty

10-1810-1610-1410-1210-1010-810-610-410-210-2

Year1.650 1.700 1.750 1.800 1.850 1.900 1.950 2.000 2.050

Cs beam

Cs fountain

state of the art opt. standards

Figure: development clocks, partially after [1]

[1] F. Riehle, Frequency Standards, Wiley, 1st ed. 2004M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 5 / 39

Page 6: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Requirements Frequency Standard

• clock: basis frequency standard with frequency ν0 measure amount ofoscillation cycles, time T

T = n · 1

ν0

• precise/stable, accurate frequency(short-, longterm stability)

• reproducibility

• frequencies in absolute unit incomparison to other standards→ intrinsic - primary standards→ calibration - back tracking

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 6 / 39

Page 7: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Clocks & Frequency Standards

• atomic clocks transition inmicroscopic quantum systems

• new SI definition of time unit in1967: caesium primary standard

ω12

2>

1>

Definition

”The second is the duration of 9 192 631 770 periods of the radiationcorresponding to the transition between the two hyperfine levels of theground state of the caesium 133 atom.” [2]

[2] Comptes Rendus de la 13e CGPM (1967/68), 1969, 103

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39

Page 8: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Atomic Clock Concept

• 2 separated oscillators

• one isolated reference, other read-out link

Reference osc.

Read-out osc.

Frequency synth

Clockwork

• reference oscillator quantum system

• read-out oscillator quartz crystal (piezoelectric)

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 8 / 39

Page 9: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Atomic Clock Concept

quantum system, two level system states |1〉, |2〉1 preparation one of the states

2 interaction with electromagnetic field

3 measure probability for transition

4 lock read-out oscillator on frequency of probability maximum

ω12

2>

1>

Prob

abilit

y

0

0,2

0,4

0,6

0,8

1

x·δω - ω12

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 9 / 39

Page 10: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks

http://www.nist.gov/M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 10 / 39

Page 11: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks

• especial frequency standard• basic setup NIST (from [5] D. Sullivan, J. Res. Natl. Inst. Stand.

Technol.106, 2001)

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 11 / 39

Page 12: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks

• 133Cs:

nuclear spin I = 7/2total spin J = 1/2⇒ hyperfine structure, states F = I ± J = 3, 4

• transition |F = 4,mF = 0〉 → |F = 3,mF = 0〉: ∆ν = 919263770 Hz(@ zero magnetic field)

• Zeeman split

F = 4

F = 3

mF = 0

mF = 0

mF = 4

mF = 3

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 12 / 39

Page 13: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks

Zeeman split in external magnetic field

inhomogeneous field:

~F = −µeff∇~B[6] Daniel A. Steck, ”Cesium D Line Data,” (revision 2.1.2, 12 August 2009)

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 13 / 39

Page 14: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 14 / 39

Page 15: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Challenges - Broadening Processes

Aim

Interest in high Q =ω0

∆ω

Broadening processes:

• natural lifetime τl : ∆ωl ∝1

τl⇒ negligible i.e. 133Cs stable

• Doppler broadeningfrom energy, momentum conservation

+ absorption, − emission, relativistic calculation

⇒ ~ω = ~ω12 + ~~v1,2 · ~k ±(~ω)2

2m0c2− ~ω12

v21,2

2c2+ ...

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 15 / 39

Page 16: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Challenges - Broadening Processes

~ω = ~ω12 + ~~v1,2 · ~k ±(~ω)2

2m0c2− ~ω12

v21,2

2c2+ ...

2nd term first-order Doppler effect ⇒ Gaussian broadening

FWHM = ω12

√2ln2

kBT

mc2

3nd term recoil effect4nd term second-order Dopplereffect

Abso

rptio

n

0

0,5

1

ω - ω0

0

⇒ avoided by low temperature regime

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 16 / 39

Page 17: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Challenges - Broadening Processes

• Collision broadening: ∆ωcol ∝1

τcol∝ p ⇒ pressure reduction

• Intersection Time broadening

important contribution to the linewidth broadening

∆ωit ∝1

τit

solution enhancement τit

Electrical field

Atomic beam

v = s · τ

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 17 / 39

Page 18: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Challenges - Broadening Processes

• How slow an atomic beam can be made?

• Homogeneity of the electromagnetic field?

⇒ concept Ramsey spectroscopy (Nobel prize 1989)

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 18 / 39

Page 19: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Rabi Flopping

• atomic beam one interaction• two level system

⇒ solution: oscillating occupation probability

Figure: from [1] F. Riehle, FrequencyStandards

• excited state |2〉:

p2(t) =ΩR

Ω′Rsin2 Ω′Rt

2

Ω′2R = Ω2R + ∆ω2

ΩR : Rabi frequency

• amplitude decrease with∆ω

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 19 / 39

Page 20: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy

• idea two separated interactions time τ and between no field inbetween for time T

⇒ probability for transition interference pattern

• near resonance |1〉 → |2〉

p(τ + T + τ) ' 1

2sin2 ΩRτ (1 + cos 2π(ν − ν12)T )

⇒ FWHM =1

2T

maximum for ΩRτ = π2 → π/2 pulses

[3] M. Ramsey, Phys. Rev. 78 (6), 1950[1] F. Riehle, Frequency Standards

Atomic beam

v = s · τ

Interaction

I II

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 20 / 39

Page 21: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy

• enhancement signal linewidth

• amplitude, period nearly unaffected

[1] F. Riehle, Frequency Standards

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 21 / 39

Page 22: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy - pseudo spin picture

density matrix ρ11 ρ22 probability state |1〉 |2〉:

ρ =

(ρ11 ρ12

ρ21 ρ22

)Optical Bloch equations (with ρ12 ≡ e−iδtρ12,ρ21 ≡ e+iδtρ21):

uvw

=

ρ21 + ρ12

i(ρ21 − ρ12)ρ22 − ρ11

d

dt

uvw

=

ΩR

×u

vw

*) i.e. P. Meystre and M. Sargent, Elementsof Quantum Optics

u

w

v

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 22 / 39

Page 23: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy - pseudo spin picture

density matrix ρ11 ρ22 probability state |1〉 |2〉:

ρ =

(ρ11 ρ12

ρ21 ρ22

)Optical Bloch equations (with ρ12 ≡ e−iδtρ12,ρ21 ≡ e+iδtρ21):

uvw

=

ρ21 + ρ12

i(ρ21 − ρ12)ρ22 − ρ11

d

dt

uvw

=

ΩR

×u

vw

*) i.e. P. Meystre and M. Sargent, Elementsof Quantum Optics

u

w

v

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 23 / 39

Page 24: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy - pseudo spin picture

density matrix ρ11 ρ22 probability state |1〉 |2〉:

ρ =

(ρ11 ρ12

ρ21 ρ22

)Optical Bloch equations (with ρ12 ≡ e−iδtρ12,ρ21 ≡ e+iδtρ21):

uvw

=

ρ21 + ρ12

i(ρ21 − ρ12)ρ22 − ρ11

d

dt

uvw

=

ΩR

×u

vw

*) i.e. P. Meystre and M. Sargent, Elementsof Quantum Optics

u

w

v

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 24 / 39

Page 25: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy - pseudo spin picture

density matrix ρ11 ρ22 probability state |1〉 |2〉:

ρ =

(ρ11 ρ12

ρ21 ρ22

)Optical Bloch equations (with ρ12 ≡ e−iδtρ12,ρ21 ≡ e+iδtρ21):

uvw

=

ρ21 + ρ12

i(ρ21 − ρ12)ρ22 − ρ11

d

dt

uvw

=

ΩR

×u

vw

*) i.e. P. Meystre and M. Sargent, Elementsof Quantum Optics

u

w

v

δ·T

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 25 / 39

Page 26: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy - pseudo spin picture

from [1] F. Riehle, Frequency Standards

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 26 / 39

Page 27: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Ramsey Spectroscopy - pseudo spin picture

interference pattern

Prob

abili

ty f

or |2

>

0

0,2

0,4

0,6

0,8

1

δ = (ν - ν0) [2πT]-15 -10 -5 0 5 10 15

Figure: from [5] D. Sullivan, J. Res. Natl.Inst. Stand. Technol.106, 2001

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 27 / 39

Page 28: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks

http://www.ptb.de/

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 28 / 39

Page 29: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks, optical pumping

• enhance signal to noise ratio

• optical pumping for state selection

• detection optical transition

• a) pumping, b) detection flourescence photons

from [1] F. Riehle, Frequency Standards

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 29 / 39

Page 30: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks, optical pumping

• basic layout

from [1] F. Riehle, Frequency Standards

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 30 / 39

Page 31: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - Beam clocks, performance

• challenge cavity:

length (∆ν = 1/2T )

versus

additional phase shift due to manufacturing limitsrelative uncertainty:

• NIST: NIST-7: 4.4× 10−15

• PTB: CS1: 8× 10−15

[5] D. Sullivan, et al, J. Res. Natl. Inst. Stand. Technol.106, 2001

[7] A. Bauch, 42 (2005),Metrologia 42, 2001

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 31 / 39

Page 32: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - fountain clocks

One step further!

• laser cooled atomic clocks

• two approaches:

→ enhance T→ reduce phase shiftfrom cavity

• fountain design

http://www.nist.gov/M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 32 / 39

Page 33: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - fountain clocks

• two interactions π/2-pulses(Ramsey)

• one cavity

⇒ reduced phase shift

• laser cooled atoms 2 µK ,enhanced T

[8] R. Wynands et al, Metrologia 42, 2005

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 33 / 39

Page 34: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - fountain clocks

process

[8] R. Wynands et al, Metrologia 42, 2005

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 34 / 39

Page 35: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - fountain clocks

• cold atoms - Magneto Optical Trapor Optical Molasse

• lifting atoms with cδν/ν12 for

laser upwards: ν = ν12 + δν

laser downwards: ν = ν12 − δν• state selection:

from cooling in |F = 4,mF 〉

π-pulse |F = 4,mF = 0〉 →|F = 3,mF = 0〉

”laser-pushing” other states|F = 4,mF 〉 → |F ′ = 5,mF 〉

[8] R. Wynands et al, Metrologia 42, 2005

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 35 / 39

Page 36: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - fountain clocks, performance

• today’s measurement standardPTB: CSF2 2009

• relative uncertainties:

PTB CSF2: 0.8× 10−15

NIST NIST-F1: 1× 10−15

(0.5× 10−15)

http://www.nist.gov/

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 36 / 39

Page 37: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

133Cs Clocks - fountain clocks, performance

remaining problems:

• cold collision shift⇒ density reduction→ increased statistical noise⇒ other atomic species 87Rb

• increasing flight time→ not possible on earth⇒ experiments in micro

gravity

http://www.esa.int/

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 37 / 39

Page 38: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Outlook

http://www.dlr.de/

• 2001 PHARO project

• 2010 ISS module ACESuncertainty ∼ 10−16 regime

• next generation on earth optical frequency standards for atomic clocks

• uncertainty < 10−17 regime

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 38 / 39

Page 39: The Battel for Exactness Matthias Reggentin - hu-berlin.de · M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 7 / 39. Atomic Clock Concept 2 separated

Bibliography

[1] F. Riehle, Frequency Standards, Wiley, 1st ed. 2004

[2] Comptes Rendus de la 13e CGPM (1967/68), 1969, 103

[3] M. Ramsey, A Molecular Beam Method with Separated OscillatingFields, Phys. Rev. 78 (6), 1950

[4] P. Meystre and M. Sargent, Elements of Quantum Optics,Springer, 4th ed. 2007

[5] D. Sullivan, et al, Primary Atomic Frequency Standards at NIST,J. Res. Natl. Inst. Stand. Technol.106, 2001

[6] Daniel A. Steck, ”Cesium D Line Data,” available online athttp://steck.us/alkalidata (revision 2.1.2, 12 August 2009)

[7] A. Bauch, The PTB primary clocks CS1 and CS2 Metrologia 42,2005, J. Res. Natl. Inst. Stand. Technol.106, 2001

[8] R. Wynands et al, Atomic fountain clocks ,Metrologia 42, 2005

M. Reggentin (HU-Berlin) Atomic Clocks and Frequency Standards July 07, 2010 39 / 39