the bellman equation for power utility maximization with ... · the bellman equation for power...

21

Upload: others

Post on 11-May-2020

25 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

The Bellman Equation for Power Utility Maximization

with Semimartingales

Marcel Nutz

ETH Zurich

Bachelier CongressToronto, June 24, 2010

Marcel Nutz (ETH) Bellman Equation for Power Utility 1 / 13

Page 2: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Basic Problem

Utility maximization: given utility function U(⋅), consider

max E

[∫ T

0

Ut(ct) dt + UT (XT (�, c))

]over trading and consumption strategies (�, c).

Aim of our study: describe optimal trading and consumptionfor the (random) power utility

Ut(x) := Dt1

p xp, p ∈ (−∞, 0) ∪ (0, 1),

with D > 0 càdlàg adapted and E [∫ T0

Ds ds + DT ] <∞.

Marcel Nutz (ETH) Bellman Equation for Power Utility 2 / 13

Page 3: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Outline

1 Problem Statement

2 Dynamic Programming

3 Bellman Equation

4 Uniqueness

Marcel Nutz (ETH) Bellman Equation for Power Utility 3 / 13

Page 4: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Outline

1 Problem Statement

2 Dynamic Programming

3 Bellman Equation

4 Uniqueness

Marcel Nutz (ETH) Bellman Equation for Power Utility 3 / 13

Page 5: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Utility Maximization Problem

d risky assets: semimartingale R of stock returns, R0 = 0

spot prices S =(ℰ(R1), . . . , ℰ(Rd )

)given initial capital x0 > 0,

u(x0) := sup(�,c)∈A

E

[ ∫ T

0

Ut(ct) dt + UT (cT )︸ ︷︷ ︸Ut(ct)�∘(dt), with �∘:=dt+�{T}

], Ut(x) = Dt

1

p xp

assume u(x0) <∞� ∈ L(R) trading strategy, c ≥ 0 optional consumption

Wealth: Xt(�, c) = x0 +∫ t0Xs−(�, c)�s dRs −

∫ t0cs ds

Constraints: for each (!, t), consider a set 0 ∈ Ct(!) ⊆ ℝd

Admissibility: (�, c) ∈ A if▶ X (�, c) > 0, X−(�, c) > 0▶ �t(!) ∈ Ct(!) for all (!, t)▶ cT = XT (�, c).

Marcel Nutz (ETH) Bellman Equation for Power Utility 4 / 13

Page 6: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Utility Maximization Problem

d risky assets: semimartingale R of stock returns, R0 = 0

spot prices S =(ℰ(R1), . . . , ℰ(Rd )

)given initial capital x0 > 0,

u(x0) := sup(�,c)∈A

E

[ ∫ T

0

Ut(ct) dt + UT (cT )︸ ︷︷ ︸Ut(ct)�∘(dt), with �∘:=dt+�{T}

], Ut(x) = Dt

1

p xp

assume u(x0) <∞� ∈ L(R) trading strategy, c ≥ 0 optional consumption

Wealth: Xt(�, c) = x0 +∫ t0Xs−(�, c)�s dRs −

∫ t0cs ds

Constraints: for each (!, t), consider a set 0 ∈ Ct(!) ⊆ ℝd

Admissibility: (�, c) ∈ A if▶ X (�, c) > 0, X−(�, c) > 0▶ �t(!) ∈ Ct(!) for all (!, t)▶ cT = XT (�, c).

Marcel Nutz (ETH) Bellman Equation for Power Utility 4 / 13

Page 7: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Outline

1 Problem Statement

2 Dynamic Programming

3 Bellman Equation

4 Uniqueness

Marcel Nutz (ETH) Bellman Equation for Power Utility 4 / 13

Page 8: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Dynamic Programming

For (�, c) ∈ A, let A(�, c , t) :={

(�, c) ∈ A : (c , �) = (c , �) on [0, t]}.

Value process:

Jt(�, c) := ess sup(�,c)∈A(�,c,t)

E[ ∫ T

0

Us(cs)�∘(ds)

∣∣∣ℱt]

Proposition (Martingale Optimality Principle)

Let (�, c) ∈ A satisfy E [∫ T0Us(cs)�

∘(ds)] > −∞. Then

J(�, c) is a supermartingale

J(�, c) is a martingale if and only if (�, c) is optimal.

→ Starting point for local description.

Marcel Nutz (ETH) Bellman Equation for Power Utility 5 / 13

Page 9: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Dynamic Programming

For (�, c) ∈ A, let A(�, c , t) :={

(�, c) ∈ A : (c , �) = (c , �) on [0, t]}.

Value process:

Jt(�, c) := ess sup(�,c)∈A(�,c,t)

E[ ∫ T

0

Us(cs)�∘(ds)

∣∣∣ℱt]

Proposition (Martingale Optimality Principle)

Let (�, c) ∈ A satisfy E [∫ T0Us(cs)�

∘(ds)] > −∞. Then

J(�, c) is a supermartingale

J(�, c) is a martingale if and only if (�, c) is optimal.

→ Starting point for local description.

Marcel Nutz (ETH) Bellman Equation for Power Utility 5 / 13

Page 10: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Proposition (Opportunity Process)

∙ There exists a unique càdlàg process L such that for any (�, c) ∈ A,

Lt1

p

(Xt(�, c)

)p= ess sup

(�,c)∈A(�,c,t)E[ ∫ T

t

Us(cs)�∘(ds)

∣∣∣ℱt].∙ L is special: L = L0 + AL + ML.

Interpretation: 1

pLt is the maximal amount of conditional expected utilitythat can be accumulated on [t,T ] from 1$.

In particular: LT = pUT (1) = DT .

Marcel Nutz (ETH) Bellman Equation for Power Utility 6 / 13

Page 11: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Outline

1 Problem Statement

2 Dynamic Programming

3 Bellman Equation

4 Uniqueness

Marcel Nutz (ETH) Bellman Equation for Power Utility 6 / 13

Page 12: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Local Data I

Di�erential semimartingale characteristics wrt. a �xed increasingprocess A:

characteristics (bR , cR ,FR) of R wrt. cut-o� h(x).

characteristics (bL, cL,F L) of L wrt. identity.

(bR,L, cR,L,FR,L) joint characteristics wrt. (h(x), x ′),(x , x ′) ∈ ℝd × ℝ.

Express consumption as fraction of wealth:

Propensity to consume � := cX (�,c) .

Wealth is a stochastic exponential: X (�, �) = x0ℰ(� ∙ R − � ∙ t).

Marcel Nutz (ETH) Bellman Equation for Power Utility 7 / 13

Page 13: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Local Data II

Budget constraint: Based on ℰ(Y ) ≥ 0 ⇔ ΔY ≥ −1:

X (�, �) ≥ 0 ⇔ � ∈ C 0 :={y ∈ ℝd : FR

[x ∈ ℝd : y⊤x < −1

]= 0},

Additional constraints: A set-valued process C in ℝd , 0 ∈ C ,

(C1) C is predictable,i.e., {C ∩ F ∕= ∅} is predictable for all F ⊆ ℝd closed.

(C2) C is closed and convex.

Marcel Nutz (ETH) Bellman Equation for Power Utility 8 / 13

Page 14: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Local Data II

Budget constraint: Based on ℰ(Y ) ≥ 0 ⇔ ΔY ≥ −1:

X (�, �) ≥ 0 ⇔ � ∈ C 0 :={y ∈ ℝd : FR

[x ∈ ℝd : y⊤x < −1

]= 0},

Additional constraints: A set-valued process C in ℝd , 0 ∈ C ,

(C1) C is predictable,i.e., {C ∩ F ∕= ∅} is predictable for all F ⊆ ℝd closed.

(C2) C is closed and convex.

Marcel Nutz (ETH) Bellman Equation for Power Utility 8 / 13

Page 15: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Bellman Equation

Assume: u(x0) <∞, ∃ optimal strategy, constraints satisfy (C1)-(C2).

Theorem

∙ Drift rate bL satis�es −p−1bL = maxk∈[0,∞)

f (k) dtdA + max

y∈C∩C 0g(y).

∙ Optimal propensity to consume: � = (D/L)1/(1−p).

∙ Optimal trading strategy: � ∈ argmaxC∩C 0 g.

f (k):=U(k)−kL−,

g(y):=L−y⊤(bR+

cRL

L−+

(p−1)2

cRy)

+∫ℝd×ℝx

′y⊤h(x)FR,L(d(x ,x ′))

+∫ℝd×ℝ(L−+x ′){p−1(1+y⊤x)p−p−1−y⊤h(x)}FR,L(d(x ,x ′)).

Marcel Nutz (ETH) Bellman Equation for Power Utility 9 / 13

Page 16: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Bellman BSDE

Orthogonal decomposition of ML wrt. R :

L = L0 + AL + 'L ∙ Rc + W L ∗ (�R − �R) + NL.

'L ∈ L2loc

(Rc ), WL ∈ Gloc

(�R ), NL local martingale such that ⟨(NL)c ,Rc⟩ = 0 and MP

�R(ΔNL∣P) = 0.

Corollary

L satis�es the BSDE

L = L0−pU∗(L−) ∙ t − p maxC∩C 0

g ∙ A + 'L ∙ Rc + W L ∗ (�R − �R) + NL

with terminal condition LT = DT , where

g(y):=L−y⊤(bR+cR

( 'LL−

+(p−1)

2y))

+∫ℝd (ΔAL+W L(x)−W L)y⊤h(x)FR(dx)

+∫ℝd (L−+ΔAL+W L(x)−W L){p−1(1+y⊤x)p−p−1−y⊤h(x)}FR(dx).

Marcel Nutz (ETH) Bellman Equation for Power Utility 10 / 13

Page 17: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Outline

1 Problem Statement

2 Dynamic Programming

3 Bellman Equation

4 Uniqueness

Marcel Nutz (ETH) Bellman Equation for Power Utility 10 / 13

Page 18: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Minimality

Theorem (Conditions of main theorem)

L is the minimal solution of the Bellman equation.

For any special semimartingale ℓ, ∃ ! orthogonal decomposition

ℓ = ℓ0 + Aℓ + 'ℓ ∙ Rc + W ℓ ∗ (�R − �R) + Nℓ.

De�nition

A solution of the Bellman BSDE is a càdlàg special semimartingale ℓ,

ℓ, ℓ− > 0,

∃ C ∩ C 0,∗-valued � ∈ L(R) such that g ℓ(�) = supC∩C 0 g ℓ <∞,

ℓ (and 'ℓ,W ℓ,Nℓ, . . .) satisfy the BSDE.

With � := (D/ℓ)1/(1−p), call (�, �) the strategy associated with ℓ.

∙ If R = M +∫d⟨M⟩� with M cont. local martingale, then � exists.

Marcel Nutz (ETH) Bellman Equation for Power Utility 11 / 13

Page 19: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Minimality

Theorem (Conditions of main theorem)

L is the minimal solution of the Bellman equation.

For any special semimartingale ℓ, ∃ ! orthogonal decomposition

ℓ = ℓ0 + Aℓ + 'ℓ ∙ Rc + W ℓ ∗ (�R − �R) + Nℓ.

De�nition

A solution of the Bellman BSDE is a càdlàg special semimartingale ℓ,

ℓ, ℓ− > 0,

∃ C ∩ C 0,∗-valued � ∈ L(R) such that g ℓ(�) = supC∩C 0 g ℓ <∞,

ℓ (and 'ℓ,W ℓ,Nℓ, . . .) satisfy the BSDE.

With � := (D/ℓ)1/(1−p), call (�, �) the strategy associated with ℓ.

∙ If R = M +∫d⟨M⟩� with M cont. local martingale, then � exists.

Marcel Nutz (ETH) Bellman Equation for Power Utility 11 / 13

Page 20: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Veri�cation

Theorem

Let ℓ be a solution of the Bellman equation with associated strategy (�, �).Assume that C is convex and let

Γ = ℓX p +

∫�sℓs X

ps ds, X := X (�, �).

Then

Γ is a local martingale,

Γ martingale ⇐⇒ u(x0) <∞ and (�, �) is optimal and ℓ = L.

Marcel Nutz (ETH) Bellman Equation for Power Utility 12 / 13

Page 21: The Bellman Equation for Power Utility Maximization with ... · The Bellman Equation for Power Utility Maximization with Semimartingales Marcel Nutz ETH Zurich Bachelier Congress

Contents from (N. 2009, available on ArXiv):

[a] The Opportunity Process for Optimal Consumption and Investmentwith Power Utility

[b] The Bellman Equation for Power Utility Maximization withSemimartingales

Selected related literature:

Existence: Kramkov&Schachermayer (AAP99),Karatzas&�itkovi¢ (AoP03)

log-utility: Goll&Kallsen (AAP03), Karatzas&Kardaras (FS07),Kardaras (MF09)

Mean-variance: �erný&Kallsen (AoP07)

Power utility: Mania&Tevzadze (GeorgMJ03), Hu et al. (AAP05),Muhle-Karbe (Diss09)

Thanks for your attention!

Marcel Nutz (ETH) Bellman Equation for Power Utility 13 / 13