the challenge of integrating offshore wind power in the u ... library/research/wind power... · the...

25
Paper submitted to Renewable Energy 2016-03-10 1 The challenge of integrating offshore wind power in the U.S. electric grid. 1 Part II: Simulation of electricity market operations. 2 H. P. Simão 1 , W. B. Powell 1, C. L. Archer 2 , W. Kempton 2 3 1 Department of Operations Research and Financial Engineering, Princeton University 4 2 College of Earth, Ocean, and Environment, University of Delaware 5 Corresponding author: Cristina L. Archer, University of Delaware, Integrated Science and Engineering 6 Laboratory (ISELab) #371, 221 Academy Street, Newark, DE 19716, USA, [email protected], +1 302 831 7 6640 8 Highlights: 9 1. Smart-ISO, a simulator of the PJM planning process, is developed, tested, and evaluated. 10 2. Injecting large amounts of offshore wind power (36 GW) in the current electricity grid is feasible 11 with current planning process and current wind forecast errors simply via additional reserves; 12 3. With perfect wind forecasts, at least twice as much offshore wind power can be integrated with 13 less than half of the reserves than with the current wind forecast errors. 14 Abstract 15 The purpose of this two-part study is to analyze large penetrations of offshore wind power into the grid 16 of a large Regional Transmission Organization (RTO), using the case of the grid operated by PJM 17 Interconnection in the northeastern U.S. Part I of the study introduces the wind forecast error model 18 and Part II, this paper, describes Smart-ISO, a simulator of PJM’s planning process for generator 19 scheduling, including day-ahead and intermediate-term commitments to energy generators and real- 20 time economic dispatch. Using a carefully calibrated model of the PJM grid and realistic models of 21 offshore wind (described in Part I), it is shown that, except in summer, an unconstrained transmission 22 grid can meet the load at five build-out levels spanning 7 to 70 GW of capacity, with the addition of at 23 most 1 to 8 GW of reserves. 24 In the summer, the combination of high load and variable winds is challenging. The simulated grid can 25 handle up through build-out level 3 (36 GW of offshore wind capacity), with 8 GW of reserves and 26 without any generation shortage. For comparison, when Smart-ISO is run with perfect forecasts, all five 27 build-out levels, up to 70 GW of wind, can be integrated in all seasons with at most 3 GW of reserves. 28 This reinforces the importance of accurate wind forecasts. At build-out level 3, energy from wind would 29 satisfy between 11 and 20% of the demand for electricity and settlement prices could be reduced by up 30 to 24%, though in the summer peak they could actually increase by up to 6%. CO 2 emissions are reduced 31 by 19-40%, SO 2 emissions by 21-43%, and NOx emissions by 13-37%. 32

Upload: vohanh

Post on 23-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

PapersubmittedtoRenewableEnergy 2016-03-10

1

ThechallengeofintegratingoffshorewindpowerintheU.S.electricgrid.1

PartII:Simulationofelectricitymarketoperations.2

H.P.Simão1,W.B.Powell1,C.L.Archer2,W.Kempton23

1DepartmentofOperationsResearchandFinancialEngineering,PrincetonUniversity4

2CollegeofEarth,Ocean,andEnvironment,UniversityofDelaware5

Correspondingauthor:CristinaL.Archer,UniversityofDelaware,IntegratedScienceandEngineering6Laboratory(ISELab)#371,221AcademyStreet,Newark,DE19716,USA,[email protected],+1302831766408

Highlights:9

1. Smart-ISO,asimulatorofthePJMplanningprocess,isdeveloped,tested,andevaluated.10

2. Injectinglargeamountsofoffshorewindpower(36GW)inthecurrentelectricitygridisfeasible11withcurrentplanningprocessandcurrentwindforecasterrorssimplyviaadditionalreserves;12

3. Withperfectwindforecasts,atleasttwiceasmuchoffshorewindpowercanbeintegratedwith13lessthanhalfofthereservesthanwiththecurrentwindforecasterrors.14

Abstract15

Thepurposeofthistwo-partstudyistoanalyzelargepenetrationsofoffshorewindpowerintothegrid16ofalargeRegionalTransmissionOrganization(RTO),usingthecaseofthegridoperatedbyPJM17InterconnectioninthenortheasternU.S.PartIofthestudyintroducesthewindforecasterrormodel18andPartII,thispaper,describesSmart-ISO,asimulatorofPJM’splanningprocessforgenerator19scheduling,includingday-aheadandintermediate-termcommitmentstoenergygeneratorsandreal-20timeeconomicdispatch.UsingacarefullycalibratedmodelofthePJMgridandrealisticmodelsof21offshorewind(describedinPartI),itisshownthat,exceptinsummer,anunconstrainedtransmission22gridcanmeettheloadatfivebuild-outlevelsspanning7to70GWofcapacity,withtheadditionofat23most1to8GWofreserves.24

Inthesummer,thecombinationofhighloadandvariablewindsischallenging.Thesimulatedgridcan25handleupthroughbuild-outlevel3(36GWofoffshorewindcapacity),with8GWofreservesand26withoutanygenerationshortage.Forcomparison,whenSmart-ISOisrunwithperfectforecasts,allfive27build-outlevels,upto70GWofwind,canbeintegratedinallseasonswithatmost3GWofreserves.28Thisreinforcestheimportanceofaccuratewindforecasts.Atbuild-outlevel3,energyfromwindwould29satisfybetween11and20%ofthedemandforelectricityandsettlementpricescouldbereducedbyup30to24%,thoughinthesummerpeaktheycouldactuallyincreasebyupto6%.CO2emissionsarereduced31by19-40%,SO2emissionsby21-43%,andNOxemissionsby13-37%.32

PapersubmittedtoRenewableEnergy 2016-03-10

2

Thisstudyfindsthatintegratingupto36GWofoffshorewindisfeasibleinthePJMgridwithtoday’s33generationfleetandplanningpolicies,withtheadditionof8GWofreserves.Abovethat,PJMwould34requireadditionalinvestmentsinfast-rampinggasturbines,storageforsmoothingfast-rampingevents,35and/orotherstrategiessuchasdemandresponse.36

Keywords:unitcommitment,powerflow,economicdispatch,uncertainty,PJM.37

1 Introduction38

PJMInterconnectionisaregionaltransmissionorganization(RTO)thatcoordinatesthemovementof39wholesaleelectricityserving13statesandtheDistrictofColumbia,coveringfromthemid-Atlantic40regionouttoChicago(PJMInterconnection2014).Actingasaneutral,independentparty,PJMoperates41acompetitivewholesaleelectricitymarketandmanagesthehigh-voltageelectricitytransmissiongridto42ensurereliabilityformorethan61millionpeople.Figure1showsthegeographicalareacoveredbyPJM43andthehigh-voltagebackbone(345kVandhigher)ofitstransmissiongrid.44

45

Figure1:PJMhigh-voltagebackbone.46

PapersubmittedtoRenewableEnergy 2016-03-10

3

Attheendof2013,thetotalinstalledcapacitywithinthePJMmarketwasabout183Gigawatts(GW)47andthepeakloadduringtheyearwasover157GW(MonitoringAnalytics2014).Theyearlygeneration48inPJMbypercentageofeachfuelsourcebetween2010and2013isshowninTableI(Monitoring49Analytics2011,2012,2013,2014).50

TableI:PJMactualgenerationbyfuelsource(%)between2010and201351

FuelSource 2010 2011 2012 2013Coal 49.3 47.1 42.1 44.3Nuclear 34.6 34.5 34.6 34.8Gas 11.7 14.0 18.8 16.3Hydroelectric 2.0 1.9 1.6 1.8Wind 1.2 1.4 1.6 1.9Other 1.2 1.1 1.3 0.9

52

ThebasicfunctionsofPJMcomprisegridoperations(supply/demandbalanceandtransmission53monitoring),marketoperations(managingopenmarketsforenergy,capacityandancillaryservices)and54regionalplanning(15-yearlook-ahead)(PJMInterconnection2014).Theinterestinthispaperisto55analyzetheabilityoftheenergymarketandthetransmissiongridwithinthePJMareatointegratenon-56dispatchablegenerationinquantitiesmuchlargerthanthecurrentlevels.AsindicatedinTableI,in201357windpowercorrespondedtolessthan2%ofthetotalgeneration.TheMid-Atlanticoffshorewindpower58productionproposedandmodeledinPartIofthistwo-partpaper(Archeretal.2016)wouldbringthat59fractiontoasmuchas28%atcertaintimesoftheyear,thusraisingthequestionofhowtomanagethe60generationscheduleandthetransmissiongridcapacityundersuchascenario.61

Inordertoanswerthisquestion,thispaperintroducesSMART-ISO,asimulatorofthemarketoperations62ofPJM,includingthetransmissiongrid.DevelopedatPENSALabatPrincetonUniversity,SMART-ISOisa63detailedmodelofthePJMplanningprocessdesignedspecificallytomodelthevariabilityand64uncertaintyfromhighpenetrationsofrenewables.Itcapturesthetimingofinformationanddecisions,65steppingforwardin5-minuteincrementstocapturetheeffectoframpingconstraintsduringrapid66changesinwindenergy.67

ThehigherlevelsofwindpowerpenetrationinthePJMmarketanalyzedinthisstudyarenotlikelyto68becomerealityforatleastanothertwodecades.Thispapertriestoanswerquestionsabouthowto69managethesysteminthosefuturescenariosbyusingthecurrentstructureofthemarket,namely,the70currentpowersupplysources,transmissiongridandoperatingpolicies.Thoughitisexpectedthatthe71marketstructuremaychangesignificantlyinthattimeframe(e.g.,lesscoal-basedgeneration,more72distributedgeneration,reliefintransmissionconstraints,andimprovedforecastingperformance),73anticipatingthesechangesisbeyondthescopeofthispaper.Theresultsobtainedinthisstudyare74usefulinthattheyrevealsomeofthelimitingfactorsinthecurrentmarketandpointtothedirectionto75followinordertoovercometheselimitations.76

PapersubmittedtoRenewableEnergy 2016-03-10

4

2 TheSMART-ISOmodel77

SMART-ISOisasimulatorofthemarketoperationsofPJMthataimstostrikeabalancebetween78detailedrepresentationofthesystemandcomputationalperformance.Itcomprisesthreeoptimization79modelsembeddedwithinasimulationmodelthatcapturesthenesteddecision-makingprocess:80

1. Day-aheadunitcommitment(DA-UC)model.812. Intermediate-termunitcommitment(IT-UC)model.823. Real-timeeconomicdispatch.83

Accuratemodelingofthenestingofthesethreemodelsisacentral(andpowerful)toolusedbyRTOsto84adapttouncertainty.InSMART-ISOallthreeoptimizationmodelsincludeaDCapproximationofthe85powerflow.Inaddition,anACpowerflowmodelisrunafterboththeintermediate-termUCandthe86real-timeeconomicdispatchmodelsinordertoverifytheelectricalstabilityofthegrid.87

Thesimulatortakesasinputs:88

1. ThelistofgeneratorsavailableforschedulinginthePJMarea(includingallrelevantoperational89andeconomicparameters).90

2. Thetransmissiongrid(busesandlines),includingrelevanttransmissionparameters.913. Historical(and/orsimulated)timeseriesofloads(bothactiveandreactive)atthebuslevelover92

thesimulationhorizon.934. Rollingtimeseriesforecastsofnon-dispatchablegeneration(e.g.wind)overthesamehorizon.945. Historical(and/orsimulated)timeseriesofnon-dispatchablegeneration.95

Theforecastedtimeseriesareusedintheschedulingmodels(day-aheadandintermediate-termUC’s),96whereasthehistoricalorsimulatedtimeseriesareusedintheeconomicdispatchmodel.97

Thelistofgeneratorsavailableinthesimulatorincluded830units,whichcomprised97.8%ofthe98installedcapacityin2010.Thesegeneratorswerepartitionedintofourcategories:(1)must-run,which99includeallnuclear-fueledgeneratorsandthose(predominantlycoal-fueled)withnotificationpluswarm-100uptimesabove32hours;(2)slow,whichincludeallgeneratorswithnotificationpluswarm-uptimes101between2and32hours;(3)fast,whichincludethosewithnotificationpluswarm-uptimesbelow2102hours;and(4)other,whichincludehydro,pumpedstorage,andwind.Thegeneratorsinthecategories103must-runandotherareassumedtobealwayson.Thereforeonlytheslowandfastgeneratorsare104scheduledintheunitcommitmentmodels.105

PJM’stransmissiongridcomprisedover9,000busesand11,500branchesin2010.Thoughfeasible,106runningtheunitcommitmentandeconomicdispatchmodelswithafull-sizeintegratedgridhas107significantcomputationalcosts.Tostrikeabalancebetweengridrepresentationandcomputational108complexity,multipleaggregateversionsofthegridwerecreated,includingonlythebusesatorabovea109givenvoltage.SMART-ISOcanrunthedifferentmodelsatdifferentlevelsofaggregation,butitis110recommendedrunningtheunitcommitmentmodelsathigheraggregationlevel(s)thantheeconomic111dispatchmodel.TableIIdisplaysthelevelsofgridaggregationavailableinSMART-ISO,withtheir112respectivedimensionsintermsofthetotalnumberofbusesandbranches.Intherunsperformedinthis113

PapersubmittedtoRenewableEnergy 2016-03-10

5

study,the315-kVgridwasusedforunitcommitment(bothday-aheadandintermediate-term),andthe114220-kVgridforeconomicdispatch.115

TableII:GridaggregationlevelsavailableinSMART-ISO.Column“0”includesallbusesandall116branches.117

MinimumVoltage(kV) 0 69 72 118 220 315 500#ofBuses 9,154 5,881 4,829 3,950 1,360 354 131#ofBranches 11,840 7,750 6,260 5,210 1,715 454 159

SpecialcarewastakenwithinSMART-ISOtocloselymatchPJM’sleadtimesbetweenwhenadecisionis118made(e.g.whenaunitcommitmentmodelruns)andwhenitisimplemented.Notsurprisingly,lead119timeshighlighttheimportanceofthequalityoftheforecasts,especiallyfortheintermediate-termunit120commitmentmodelwhereevenhour-aheadprojectionscanbequitepoor.Asthisarticlewillshow,121short-termforecastingerrorsprovedtobethemajorfactorlimitingtheabsorptionofhighpenetrations122ofoffshorewind.123

TypicallySMART-ISOrunsforasimulationhorizonof8days,wherethefirstdayisdiscardedtoavoidany124initializationbias.Eachofthethreeoptimizationmodelsisrunsequentiallyovertheentiresimulation125horizon,withtheirdifferentplanninghorizonsandtimescalesnestedandsynchronized.Thesimulation126isrepeatedforasmanysamplepathsoftherandomrealizationsasdesired.Inthenextsubsections127somedetailsofeachoneoftheoptimizationmodelsandthepowerflowmodelsarebrieflydescribed,128aswellasthemainpolicytodealwithuncertaintyinunitcommitment.129

2.1 Day-aheadunitcommitmentmodel130

Theday-aheadUCmodelinSMART-ISOrunsonceevery24hours,atnoon,similarlytohowitactually131runsinPJM.Itsplanninghorizonspans40hoursinhourlytimesteps,startingfromnoononagivenday132until4amontheseconddayfollowing.Historicalloadsandlong-term(day-ahead)forecastsofnon-133dispatchablegenerationareusedinthismodel.Theplanninghorizonisfunctionallysub-dividedinto134fourblocksoftime,asdepictedinFigure2.135

136

Figure2:Planninghorizonofday-aheadUCmodel.137

BlocksAandBcorrespondtotheinitialperiodoftimewhennogeneratorsareturnedonoroffbecause138thosedecisionswouldhavebeenmadeinpreviousunitcommitments,eithertheday-aheadorthe139intermediate-term.DuringthoseblocksoftimetheUCmodelactsjustasaneconomicdispatchmodel;140thatis,itvariestheamountofenergyproducedbyeach(turned-on)dispatchablegenerator,inorderto141

PapersubmittedtoRenewableEnergy 2016-03-10

6

followtheforecastedloadandadjustforthenon-dispatchablegeneration(alsoforecasted).However,in142blockBgeneratorsmaybenotifiedthattheywillhavetogoonoroffstartingfromthebeginningof143blockC.InblocksCandDanysloworfastgeneratorcanbescheduledorunscheduled,butonlythe144notificationandon/offdecisionsinvolvingslowgeneratorsduringperiodsBandCwillbemadeeffective145(thatis,lockedin),whereasdecisionsinvolvingfastgeneratorsarefinalizedintheintermediate-term146model,describednext.BlockDisaddedtothetimehorizontominimizeend-of-horizoneffectsonthe147decisionsmadeattheendofblockC.148

2.2 Intermediate-termunitcommitmentmodel149

Theintermediate-termUCmodelinSMART-ISOrunstwiceeveryhour,at15minutesafterandbefore150thehour.Therearenoon/offdecisionsmadeforslowgeneratorsinthismodel(theywereallmadein151theappropriateday-aheadmodel);onlyfastgeneratorswillbeturnedonoroff.Short-termforecastsof152non-dispatchablegeneration(usuallydonethroughpersistence)areusedinthismodel.Itsplanning153horizoncomprises2hoursand15minutes,intimestepsof15minutes,andisillustratedinFigure3.154

155

Figure3:Planninghorizonoftheintermediate-termUCmodel.156

DuringblockAnogeneratorscanbeturnedonoroff;theyonlyfollowtheloadandadjusttonon-157dispatchablegeneration(givenbyshort-termforecasts).Fastgeneratorscanbescheduledor158unscheduledinblocksCandD,thoughonlythedecisionsmadeinblockCwillbelockedin.Our159implementationoftheintermediate-termschedulingprocessrepresentsanapproximationofPJM’sown160process(calledIT-SCED),whichinvolvesrunningtheprocessin15-minutecycles,withupdatesevery5161minutesincasethedatachange.Thereisavariablelead-time(30to40minutes)betweenwhenPJM162runsIT-SCEDandthetimeoffirstpotentialdispatchofagenerator(blockA).Aftercarefulreviewwith163PJM,itwasdecidedthattheapproximationusedinSMART-ISOreasonablymatchedtheirleadtimes,164strikingabalancebetweenmodelaccuracyandcomputationalcomplexity.Thecalibrationresults165reportedinalatersectionfurtherconfirmedthisassessment.166

2.3 Real-timeeconomicdispatchmodel167

Thereal-timeeconomicdispatchmodelinSMART-ISOrunsevery5minutes,overaplanninghorizonof16815minutes,withtimestepsof5minutes,asillustratedinFigure4.PJMalsorunstheeconomicdispatch169every5minutes,butoveraplanninghorizonof5minutes(onlyonetimestep).170

PapersubmittedtoRenewableEnergy 2016-03-10

7

171

Figure4:Planninghorizonofthereal-timeeconomicdispatchmodel.172

Nogeneratorsareturnedonoroffinthismodel.Instead,generatorsareonlymodulatedtofollowthe173actual(orsimulated)loadandadjusttonon-dispatchablegeneration(alsoactualorsimulated).The174generationamountssimulatedinblockCarekept,whereastheonessimulatedinblockDarediscarded,175asblockDwasaddedtotheplanninghorizonofthismodelagaintomitigateend-of-horizonbiasesin176thecalculationsinblockC.177

2.4 Powerflowmodels178

ToincorporatetransmissiongridconstraintsintoSMART-ISO,unitcommitmentandeconomicdispatch179modelsthatincludepowerflowmodelingwereimplemented.TheDCapproximationwasusedtosolve180thepowerflowembeddedinthelinearoptimizationproblems.Thisisawidelyusedapproximationfor181thepowerflowintransmissiongrids,sinceitdoesnotrequireiterations(astheACpowerflowdoes)182andtheoptimizationproblemremainslinearandconsequentlylesscomplex(Stottetal.2009,Hedman183etal.2011,Overbyeetal.2004).TheDCapproximationpowerflowmodelconsidersonlyactivepower184andassumesthatthenominalvoltagesremainconstant.185

However,toverifythevoltagestabilityofthegrid,andpossiblycorrectforit,anACpowerflowmodel186thatrunsonceaftereveryintermediate-termUCandonceaftereveryeconomicdispatchmodelinthe187simulationwasalsoimplemented.IftheACpowerflowsolutionafteranintermediate-termUCmodel188showssignificantvoltagedeviationsfromthenominalvalues(where“significant”isdefinedintermsof189observedhistoricalpatterns),asinglefeedbackloopwillmakeartificialadjustmentstolocalbusloads,190andtheintermediate-termUCmodelwillbesolvedagain,aimingtochangetheallocationofpower191generationsoastolessenthevoltagedeviations.192

TheDCapproximationcanbetoorigid,indicatingthatpowerrequirements(whileholdingvoltages193constant)mightnotbemet,whiletheACmodelcanflexvoltagestomeetloads,frequentlyby194increasingcurrents.Highercurrentscanbetoleratedforshortperiodsoftime.Thegreaterflexibilityof195theACpowerflowprovedtobeimportantinthestudiesofnon-dispatchablesourcesthatrequired196adaptationtoshortbutsuddendropsinwind.197

Forthesamereason,theACpowerflowmodelissolvedagainaftereacheconomicdispatchmodelrun,198inordertoassesstheoverallstabilityandfeasibilityoftheoperationofthegrid.Loadgreaterthan199generationwithinPJMisreferredtoas“generationshortfall.”AnRTOwillhandlethisproblemwith200demandmanagement,orbycallinginterruptiblecustomerstoclosedown,orwithtransfersfrom201neighboringRTOs.Ifthereisathreattothestabilityofthelargersystem,theymightshedloadby202unannouncedcutoffs,anemergencyprocedure.WithoutstatinghowPJMwouldrespond,thispaper203

PapersubmittedtoRenewableEnergy 2016-03-10

8

simplycallssuchcases“generationshortfall.”IftheACpowerflowsolutiondoesnotconvergeor204significantvoltagedeviationsaredetected,theoperationofthegridisflaggedas“ACunstable”during205that5-minutetimeperiod.If,however,thereisgenerationshortfallinthesolutionoftheDC-based206economicdispatch(usuallyaninfeasiblesituation),buttheACpowerflowsolutionconvergesandis207voltage-stable,thentheDCgenerationshortfallisdismissed(thatis,theinfeasibilityisignored).Upto20810consecutiveminutesofdismissedDCgenerationshortfallwillbeallowed.Ifthesituationpersistsfor20915minutesorlonger,thenthedismissalisrevertedandthegenerationshortfallisflagged,regardlessof210theACpowerflowstability.211

2.5 Reserves212

RTOssuchasPJMuseavarietyofstrategiestomanagetheuncertaintiesthatariseinanyenergy213system,includingthehedgingofdecisionswiththesequenceofday-ahead,intermediate-term,andreal-214timeplanning,combinedwiththeuseofreservesthatmakeitpossibleforPJMtorespondtochanging215forecastsandreal-timeconditionsthatdeviatefromforecast.Theinterestintestingmuchhigher216penetrationsofwindrequiredthatthesestrategiesbeexploited,buttheexperimentsfocusedprimarily217onincreasingtheavailabilityofsynchronizedreservesthatcouldberamped(upordown)within10218minutes.219

ThebasemodelrepresentedPJM’sdefaultpolicyofprovidingenoughspinningreservetocover220unexpectedpowerimbalanceequivalenttoitslargestgenerator,thatis,1300MW.Additionalreserve221wasthenintroducedintheformoffastgeneratorsthatcouldrampupordown.Up-rampingwasused222tocoverunexpecteddropsinwind,whiledown-rampingwasusedtotakeadvantageofsuddensurges223inwind.Theserampingreserveswereexpressedandtunedassingleparameters,foreachseason,224reflectingthedifferencesinboththeaverageandmaximumloads,butalsothetypesofweather225encounteredineachseason.226

Notsurprisingly,reservesrepresentapowerfulstrategyforhandlinguncertainty,widelyusedbyRTOs.A227significantfindingofthisresearchwasthatthissimpleindustrypracticecouldbeextendedtohandle228dramaticallyhigherpenetrationsofwindthannowexist,asshownbelow.229

Thechallengeofplanningmarketoperationsunderuncertaintyhasattractedconsiderableattention230fromthealgorithmiccommunity,withspecialattentionbeinggiventoasolutionofthe“stochasticunit231commitmentproblem”(Takritietal.1996,Ryanetal.2013).Thisisaparticularalgorithmicstrategy232developedbythestochasticprogrammingcommunity(BirgeandLouveaux2011),whichreplacesa233deterministicforecast(usedbyallRTOs)withasetofscenariosthatapproximatewhatmighthappen.In234thispaper,itisdemonstratedthatthestandardreservepoliciesusedbyRTOsareveryeffectiveat235handlingtheuncertaintyevenfromveryhighlevelsofrenewables.236

3 CalibrationofSMART-ISO237

ThefirsttaskwastocalibrateSMART-ISOagainstabasecasewithnooffshorewindpower.Theyearof2382010waschosenasthebaseyearbecauseitwasthelatestyearforwhichacompletedatasetofthe239PJMnetworkandactualoperationswasavailableatthestartofthisproject.Fourweeksduringtheyear240

PapersubmittedtoRenewableEnergy 2016-03-10

9

werechosenforsimulation,oneineachseason.AprilandOctoberwerechosenasrepresentativeofthe241shoulder(lowestdemand)monthsinspringandfall,respectively.Januarywaschosenasrepresentative242ofthewinterdemand,andJulywaspickedasrepresentativeofthepeaksummerdemand.243

Tofocusonuncertaintyinwindforecasts,othersourcesofuncertaintywereeliminatedfromthe244simulationby(1)usingactual(historical)timeseriesofdemand(loads)ratherthanlong-termorshort-245termforecasts,(2)ignoringonshorewindandsolarproduction,(3)ignoringpotentialgeneratorand246transmissionfailures,and(4)ignoringvariationsduetoneighboringRTOs.Therefore,theonly247uncertaintypresentinthisstudycomesfromtheforecastedoffshorewindpower.Similarly,thesame248levelofsynchronizedreserveusedbyPJM,whichwas1300MW(thesizeoftheirlargestgenerator),was249modeled.Whilethisreservewouldcoverthelossofanyonegenerator,itisusedtorespondto250uncertaintyinwindforecastsaswell.Itwasalsofoundthatmodestreserveswereneededtodealwith251whatmightbecalled“modelnoise”–variationsinthesolutionarisingfrommodeltruncationandfrom252solvinglargeintegerprograms.InthissectionresultsonthecalibrationofSMART-ISOarepresented,253whereasinthenexttheresultsfromtheintegrationstudyarediscussed.254

SMART-ISOwasvalidatedbycomparingtwosetsofstatisticsfromthemodeltohistory:thehourly255generationtypemixandthehourlylocationalmarginalprice(LMP)averagedovertheentiregrid.These256statisticswerecreatedforeachofthefourseasonalweeks.Figure5displaystheplotsofthehistorical257hourlygenerationtypemixforeachoneofthefourweeks(leftcolumn),placedside-by-sidewiththe258correspondingsimulatedmixes(rightcolumn).Thegenerationtypesweregroupedinfourmajor259categories:nuclear,steam,combined-cycle/gas-turbines,andhydroelectric/pumped-storage.260

a) b)

c) d)

e) f)

0"

20"

40"

60"

80"

100"

13)Jan" 14)Jan" 15)Jan" 16)Jan" 17)Jan" 18)Jan" 19)Jan"

GW"

Time"(hours)"

Historical"PJM"Hourly"GeneraDon")"January"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

20"

40"

60"

80"

100"

13)Jan" 14)Jan" 15)Jan" 16)Jan" 17)Jan" 18)Jan" 19)Jan"

GW"

Time"(hours)"

Simulated"PJM"Hourly"GeneraEon")"January"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

20"

40"

60"

80"

19)Apr" 20)Apr" 21)Apr" 22)Apr" 23)Apr" 24)Apr" 25)Apr"

GW"

Time"(hours)"

Historical"PJM"Hourly"GeneraEon")"April"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

20"

40"

60"

80"

19)Apr" 20)Apr" 21)Apr" 22)Apr" 23)Apr" 24)Apr" 25)Apr"

GW"

Time"(hours)"

Simulated"PJM"Hourly"GeneraFon")"April"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

30"

60"

90"

120"

22(Jul" 23(Jul" 24(Jul" 25(Jul" 26(Jul" 27(Jul" 28(Jul"

GW"

Time"(hours)"

Historical"PJM"Hourly"GeneraDon"("July"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

30"

60"

90"

120"

22(Jul" 23(Jul" 24(Jul" 25(Jul" 26(Jul" 27(Jul" 28(Jul"

GW"

Time"(hours)"

Simulated"PJM"Hourly"GeneraEon"("July"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

PapersubmittedtoRenewableEnergy 2016-03-10

10

g) h)Figure5ComparisonofhistoricalversussimulatedPJMhourlygenerationmixesin2010.Thescaleof261thevaluesshownintheverticalaxis(generatedpower)variesfrommonthtomonth.262

Itshouldbenotedthatwhiledetailedactualgenerationandloaddataatthebuslevelwereavailable,it263wasnotpossibletomapallbusestoactualgenerators.Asaresult,theaccountingofthetotalhistorical264generationisbelowthetotalloadbyabout10%(thisexplainsthehigherlevelofgenerationdisplayedin265thesimulationplots).However,itisstillpossibletocomparethepatternsofthehourlygenerationmix266withineachmonth;theyshowagoodmatchbetweenhistoricalandsimulatedresults.Itisnoteworthy267alsothattheproportionofsimulatedgenerationfromcombined-cycleandgasturbinesinthelow-268demandmonths(AprilandOctober)islowerthantheactualhistoricalvalues,possiblyduetothefact269thatSMART-ISOdoesnottakeintoconsiderationlong-termcontractsthatmayexistbetweensomefast270generationsuppliersandPJM,butschedulesallfastgenerationonanhourlybasisandasneeded(note271thisissueisnotpresentinthehigher-demandmonthsofJanuaryandJuly).Whilethisintroducesa272modesterror,itisimportanttoavoidcapturinglong-termcontracts,becauseitcannotbeassumedthat273thesamecontractswillbeinplaceashighpenetrationsofwindenergyaremodeled.274

Moresignificant,however,aretheresultsshowninFigure6,wherethelocationalmarginalprices(LMPs275–in$/MWhr)producedbythesimulatorarecomparedwiththoseobservedintheactualoperationof276PJM.PleasenotethattheLMPsproducedbySMART-ISOincludetheenergyandthetransmissiongrid277congestioncosts,butnotthecostsduetotransmissionlinelossesortooccasionalcontingencies(a278failureofageneratororofatransmissionline,oroff-gridoutages).Thiswouldexplainwhyhistorical279pricesmightbespikierthansimulatedones.Ingeneral,however,thereisaremarkableagreementin280thepatternsbetweenthenetwork-averagedLMPsproducedbythesimulationandthoseobservedin281historyforthefourtimeperiodsinquestion(Figure6).282

a) b)

0"

20"

40"

60"

80"

14(Oct" 15(Oct" 16(Oct" 17(Oct" 18(Oct" 19(Oct" 20(Oct"

GW"

Time"(hours)"

Historical"PJM"Hourly"GeneraDon"("October"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

20"

40"

60"

80"

14(Oct" 15(Oct" 16(Oct" 17(Oct" 18(Oct" 19(Oct" 20(Oct"

GW"

Time"(hours)"

Simulated"PJM"Hourly"GeneraFon"("October"2010"

Hydro+Pumped"Combined+Gas"Steam"Nuclear"

0"

50"

100"

150"

200"

13'Jan" 14'Jan" 15'Jan" 16'Jan" 17'Jan" 18'Jan" 19'Jan"

$/MWhr"

Time"(hours)"

PJM"Average"Real'Eme"LMPs"'"January"2010"Simulated"Historical"

0"

50"

100"

150"

200"

19'Apr" 20'Apr" 21'Apr" 22'Apr" 23'Apr" 24'Apr" 25'Apr"

$/MWhr"

Time(hours)"

PJM"Average"Real'Bme"LMPs"'"April"2010"Simulated"Historical"

PapersubmittedtoRenewableEnergy 2016-03-10

11

c) d)Figure6ComparisonofhistoricalversussimulatedPJMaveragereal-timeLMPs.283

Onthebasisoftheseresults,SMART-ISOwasdeemedtocloselymatchthebehaviorofPJM,since284accuratemodelingofLMPsrequiresthatallthecomponentsofthesystemcapturereal-worldbehavior.285Itisfurthernotedthattheseresultswereachievedwithoutusinganytunableparameters.286

4 Mid-AtlanticOffshoreWindIntegration(MAOWIT)Study287

Thispaperaddressesfourquestionsconcerningtheintegrationoflargeamountsofnon-dispatchable288energy(inthiscase,offshorewind)intoagenerationandtransmissionmarket:289

1. Willtheexistinggenerationcapacitybeabletohandlethediscrepancybetweentheforecasts290usedinthecommitmentphaseandtheactualenergyobservedinreal-time?291

2. Willtheplanningprocessbeabletohandlethemuchhigherlevelofvariabilityanduncertainty292(evenifthereisenoughgenerationcapacity)?293

3. Whatreservelevelswillberequiredtohandletheuncertaintyintroducedwithhigh294penetrationsofwind?295

4. Willthetransmissiongridbeabletohandletheadditionalload?296

Inthisstudy,offshorewindpower,infiveincreasinglevelsofbuild-out,isassumedtobeinjectedinto297theeasternsideofthePJMgridthroughsixpointsofinterconnectiononthecoast,stretchingfrom298CentralNewJerseytoVirginia.Therefore,itisalmostcertainthatthetransmissiongridalongtheMid-299Atlanticcoastwillhitcapacitywhensignificantamountsofenergyfromoffshorewindareinjected.300

Toseparatetheissueofgridcapacityfromtheplanningandsupplyofenergywithafleetofgenerators,301thestudywasdividedintotwoparts:1)analysiswithahypotheticalgrid,referredtoasthe302unconstrainedgrid,thathasthesamephysicallinesasthecurrentPJMsystem,butthermalcapacities303andthuselectricpowercarryingcapacities,highenoughtohandleanypenetrationlevel(thisisnotthe304sameasignoringthegrid,whichthispaperdidnotdo);and2)analysiswithagridconstrainedby305currentthermalcapacities.Theresultsofthesetwopartsarereportedintheremainderofthissection.306Pleasenotethat,thoughimportant,thispaperdidnotaddressthequestionofhowmuchextragrid307capacitywouldbeneededtosupporttheinjectionoflargeamountsofoffshorewind,which,therefore,308remainedoutsideofitsscope.309

4.1 Unconstrainedgrid,noramp-upor-downreservesadded310

TheSMART-ISOsimulationswereperformedoverone-weekhorizonsineachofthefourseasonal311months,firstwithoutanyoffshorewind(the“current”situation,alsocalledbuild-outlevel0)andthen312

0"

50"

100"

150"

200"

22&Jul" 23&Jul" 24&Jul" 25&Jul" 26&Jul" 27&Jul" 28&Jul"

$/MWhr"

Time"(hours)"

PJM"Average"Real&Cme"LMPs"&"July"2010"Simulated"Historical"

0"

50"

100"

150"

200"

14'Oct" 15'Oct" 16'Oct" 17'Oct" 18'Oct" 19'Oct" 20'Oct"

$/MWhr"

Time"(hours)"

PJM"Average"Real'Fme"LMPs"'"October"2010"Simulated"Historical"

PapersubmittedtoRenewableEnergy 2016-03-10

12

witheachoneofthefivebuild-outlevelsofoffshorewind.Foreachlevelofbuild-outandeachmonth,313threedifferentweekswerepicked,eachexhibitingdifferentmeteorologicalconditions.Forexample,314differentweeksmightexhibitvariousstormsystemsthatintroduceavarietyoframpingevents315producedbytheWRFmeteorologicalsimulator.Themodelofforecasterrorswasthenusedtogenerate316sevensamplepathsofoffshorewindforeachweek,thustotaling21samplepathsforeachmonth,or84317samplepathsoverall(Archeretal.2016).Theresultspresentedhenceforthwerecompiledfrom318simulationsusingthesesamplepaths.319

TableIIIshowstheresultsofaddingincreasinglyhigherlevelsofoffshorewindintotheunconstrained320PJMgrid.Thepercentageofoffshorewindparticipationinthetotalgenerationatbuild-outlevel1321rangedfrom2.2%inthepeakloadmonthofJulyto4.3%inthewintermonthofJanuary,whereasat322build-outlevel5(thehighest)itrangedfrom16.7%to30%.Thepercentageofwindused,withrespect323towhatwasactuallyavailable,wasashighas94.8%,onaverageovertheseason,atbuild-outlevel1in324January,andaslowas56.4%atbuild-outlevel5inOctober.325

ThemostnoteworthyresultsinTableIII,though,aretheestimatesofthelikelihoodofgeneration326shortfallatsometimeduringonesimulatedweek,duetounexpecteddifferencesbetweenthe327forecastedandactualwindpowergeneration.Atbuild-outlevel1,inJanuaryandJuly,forinstance,328whentheloadsarehigher,theprobabilitiesthatthesystemmayoperatewithoutanygeneration329shortfallduringoneweekaremuchsmallerthanintheshouldermonthsofAprilandOctober.From330build-outlevel2andup,inanyseason,itispracticallycertainthatthePJMsystemascurrentlyoperated331(includingcurrentreserves)willfacegenerationshortfallatleastonceaweek.332

TherearedifferentwaysinwhichthePJMmarketoperationcanbemodifiedtotrytocopewiththe333uncertaintyinthewindpowerforecasts.Oneofthemwastested(theonethatisactuallyalreadyused334bytheRTOstodealwithuncertaintiesinthepowergeneration):theadditionoframp-upandramp-335downreservesfromdispatchable(fast)generation.Thelevelsoftheseadditionalreserveshadtobe336estimatedforeachbuild-outlevelandseasonoftheyear.Inadditiontotheseruns,experimentswere337alsoperformedassumingtheidealizedsituationofhavingaccesstoperfectforecasts,thatis,day-ahead338andintermediate-termwindforecaststhatareequaltotheactualobservedvalues.Theseexperiments339providedasenseofthevalueofbetterforecasting.Thelatterexperimentsarereferredtoastheperfect340forecastcases,whereastherunswiththeoriginalforecastsarereferredtoastheimperfectforecast341cases.342

TableIII:Performancemetricsofthesimulated,unconstrainedPJMgrid,withimperfectforecastsand343noadditionalreserves,afteraddingincreasinglyhigherlevelsofoffshorewindpower.344

Build-outLevel

InstalledCapacity(GW)

Month-Year

GenerationfromOffshore

Wind(%)

UsedWind(%)

LikelihoodThereWillBeGenerationShortfallatSomeTimeDuringOne

Week(%)

AveragePeakGenerationShortfall(GW),WhenThereIs

AnyShortfall

1 7.3

Jan-10 4.3 94.8 38.1 0.6Apr-10 4.0 78.3 9.5 0.3Jul-10 2.2 92.1 81.0 2.3Oct-10 4.0 78.2 9.5 0.6

2 25.3 Jan-10 14.5 93.4 100.0 3.1

PapersubmittedtoRenewableEnergy 2016-03-10

13

Apr-10 15.1 87.7 100.0 3.8Jul-10 7.1 86.9 100.0 6.4Oct-10 15.8 90.0 100.0 2.3

3 35.8

Jan-10 20.8 93.4 100.0 5.2Apr-10 20.4 83.9 100.0 4.3Jul-10 10.3 85.6 100.0 7.7Oct-10 20.8 83.9 100.0 3.2

4 48.9

Jan-10 25.6 84.2 100.0 5.4Apr-10 24.2 74.0 100.0 4.4Jul-10 14.1 80.5 100.0 9.8Oct-10 24.1 72.1 100.0 3.9

5 69.7

Jan-10 30.0 68.7 100.0 7.4Apr-10 29.9 62.9 100.0 5.4Jul-10 16.7 68.1 100.0 12.5Oct-10 27.5 56.4 100.0 3.1

345

4.2 Unconstrainedgrid,withramp-upand-downreservesadded346

Figure7showsthelevelsof10-minuteramp-upanddownreserves(synchronized)thatwereaddedto347thesysteminordertoguaranteethatitwouldoperatewithoutgenerationshortfall.Theselevelswere348estimated(or“tuned”)throughaseriesofsimulationrunswheretheamountofrequiredreserveswas349varieduntiltheapproximateminimumamount,foreachmonthandeachbuild-outlevel,wasfound350suchthatnogenerationshortfallwasobservedinanyofthe21simulationsamplepaths.Thesereserves351areinadditiontotheusualPJMsynchronizedreserve(orspinningreserve),whichiscurrentlysetat1.3352GW(thesizeofthelargestgeneratoroperatinginthesystem).EachplotinFigure7depictsthe353additionalreservelevel(inGW)requiredinthatmonth,foreachoneofthefiveoffshorewindbuild-out354levels,indicatedbytheirrespectiveinstalledcapacities(inGW).Notethatbuild-outlevel“0”355correspondstothecasewithnooffshorewindpower,andthusthezerolevelofadditionalreserves356required.357

a) b)

0"

4"

8"

12"

16"

0" 10" 20" 30" 40" 50" 60" 70"

GW"

Build2out"level"(GW)"

Ramping"Reserves"2"Comparing"Forecasts"January"2010"

Imperfect"Perfect"

0"

4"

8"

12"

16"

0" 10" 20" 30" 40" 50" 60" 70"

GW"

Build2out"level"(GW)"

Ramping"Reserves"2"Comparing"Forecasts"April"2010"

Imperfect"Perfect"

PapersubmittedtoRenewableEnergy 2016-03-10

14

c) d)Figure7Rampingreservesneededforarangeofbuild-outs,comparingthecasesofimperfectand358perfectwindforecasts.FortheJulycase(c),therightaxisisthereferenceforgenerationshortfall359probability.360

TableIVshowsallperformancemetricsofthesimulated,unconstrainedgrid,withadditionalramp-up361anddownreserves,fortheimperfectforecastcase.Withtheexceptionofthepeaksummerloadperiod,362itispossibletomitigatetheuncertaintyintheimperfectwindforecasts,forallbuild-outlevels,withthe363additionofsynchronizedreservesprovidedbyfastgenerators.Asexpected,thehigherthebuild-out364level,thelargertherequiredreserves.ForJuly,theyamountedtoover15GW(>20%ofwindgeneration365capacity).366

Forthesummerpeakmonth,itwasnotpossibletofindaleveloframp-upanddownreservesthatcould367completelyeliminategenerationshortfallforbuild-outlevels4and5,giventheavailablefleetofgas368turbines.Theconjectureisthatthecombinationofaloadincreaseinthemid-daypeakhourswithan369unexpected,steepwindpowerdecreaseatthesametimecreatesasituationwheretheexistingfast370generatorsmightsimplynothaveenoughcapacityorbefastenoughtoavoidgenerationshortfall.This371isillustratedinFigure8,wherethesimulatedwindpowerunexpectedlydropsbyabout25GWwithin40372minutes(bottomplot),atatimewhentheloadisstillincreasing(between1and2pm).Thiscreatesa373generationshortfallforabout35minutes,withapeakpowershortageofabout2.5GW(topplot),after374theadditionalreservesof13GWhavealreadybeenexhausted.375

TableIV:Performancemetricsofthesimulated,unconstrainedPJMgridwithimperfectforecastsafter376addingincreasinglyhigherlevelsofoffshorewindpowerandspecificramp-upandramp-down377reserves.378

Build-outLevel

InstalledCapacity(GW)

Month-Year

RampingReserves(GW)

GenerationfromOffshore

Wind(%)

UsedWind(%)

LikelihoodThereWillBeGenerationShortfallatSomeTimeDuringOne

Week(%)

AveragePeakGenerationShortfall(GW),WhenThereIs

AnyShortfall

1 7.3

Jan-10 1.2 4.3 95.0 0.0 0Apr-10 0.5 3.9 77.2 0.0 0Jul-10 2 2.3 92.5 0.0 0Oct-10 0.5 4.0 77.2 0.0 0

2 25.3Jan-10 4 14.0 90.1 0.0 0Apr-10 5 13.5 78.6 0.0 0Jul-10 5 7.4 86.0 0.0 0

0"

4"

8"

12"

16"

0" 10" 20" 30" 40" 50" 60" 70"

GW"

Build2out"level"(GW)"

Ramping"Reserves"2"Comparing"Forecasts"October"2010"

Imperfect"Perfect"

PapersubmittedtoRenewableEnergy 2016-03-10

15

Oct-10 3 15.1 85.6 0.0 0

3 35.8

Jan-10 5 20.0 90.3 0.0 0Apr-10 6 16.1 67.3 0.0 0Jul-10 8 10.8 86.2 0.0 0Oct-10 3.5 18.4 73.9 0.0 0

4 48.9

Jan-10 5.5 24.6 81.4 0.0 0Apr-10 4 21.0 62.5 0.0 0Jul-10 13 14.7 82.1 23.8 1.6Oct-10 3.5 20.5 61.2 0.0 0

5 69.7

Jan-10 8 27.8 63.8 0.0 0Apr-10 5.5 23.4 49.0 0.0 0Jul-10 15 17.4 69.6 19.1 1.0Oct-10 5 21.2 43.3 0.0 0

379

Figure7cshowsontheright-handverticalaxistheincreasingprobabilitythattherewillbeageneration380shortfallinoneweekofoperationinthepeaksummermonth.Thesameplotalsoshowstheaverage381peakgenerationshortfall,whenthereisanyshortfall.Forbuild-outlevel3inJulyweobservedno382generationshortfall.Thereforeonecansaythatthemaximumbuild-outlevelofoffshorewindthatthe383currentPJMmarketcantake–withoutanygenerationshortfall–andwithadditionalsynchronized384rampingreservesofupto8GW,is3,whichcorrespondstoaninstalledcapacityof35.8GW.385

Ontheotherhand,iftheunitcommitmentplanninghadaccesstoperfectwindforecasts,itwouldbe386possibletohandleallbuild-outlevelsofwind,includinginthesummer,withjustnominalamountsof387additionalsynchronizedreserves,asshownintheplotsofFigure7.Intherealworldtherewillobviously388neverexistperfectwindforecasts.However,theseresultssuggestthatafuturecombinationofforecast389improvementswithadditionalsynchronizedreserves(andcorrespondinginvestmentsinthegrid)could390potentiallyallowthePJMsystemtooperatewithoutgenerationshortfall,forlevelsofinstalledoffshore391capacityofuptoabout70GW(whichwouldprovideforabout30%ofthedemandforelectricityinthe392winter,forexample).Theseresultshighlighttheimportanceofconsideringuncertaintywhenmanaging393energyfromwind.394

PapersubmittedtoRenewableEnergy 2016-03-10

16

395

Figure8:Totalsimulatedpower,actualload,andwindduringa35-minutegenerationshortfallevent396causedbyanunexpected,sharpdecreaseinactualwindthatwasnotpredictedbyeithertheday-397aheadforecast(DA-Predicted)ortheshort-termforecast(IT-Predicted).398

Figure9showsplotswiththegenerationmixontheleft-handverticalaxisandusedwindasa399percentageofavailablewindontheright-handverticalaxis.Inthegenerationmix,thepercentagesof400energyproducedbysteamgenerators,combined-cycle/gas-turbinesandoffshorewindfarmsonlyare401displayed,sincethesearetheformsofgenerationthataremostlyaffectedbytheintroductionof402offshorewind.Theplotsontheleftcolumndepicttheresultsforthecaseofimperfectforecasts,403whereastheonesontherightcolumndepicttheonesforperfectforecasts.404

Themaindifferencebetweentheimperfectandperfectforecastcasesistheusageofcombined-405cycle/gas-turbines.Intheimperfectcase,thisusageprogressivelyincreaseswiththewindbuild-out406level,asfast(gas)generatorsareemployedmoreastheadditionalreserveneededtoguaranteethe407generationshortfall-freeoperationofthesystem.Inthecaseofperfectforecasts,though,theusageof408combined-cycle/gasgenerationremainsessentiallyflatwiththewindbuild-out,sinceslow(steam)409generationcanbeusedtobalancethe(perfectlyforecasted)variabilityofwind.410

Itisalsonotedthatwindutilizationtendstodecreaseathigherpenetrationlevels.Aswindincreases,a411largernumberofdispatchablegeneratorsrunningattheirminimumoperationallevelsisneeded,in412ordertoguaranteethatthesystemwillbefreeofgenerationshortfallswhenthewindpowervaries.As413aresult,lessoftheavailablewindendsupbeingused.Also,forthesamelevelofwindandforthe414shouldermonths(thatis,thetimesoftheyearwhenthedifferencebetweenlowestandhighest415demandwithinadayissmaller),perfectwindforecaststendtoproducehigherwindusagethan416imperfectforecasts.417

0"

20"

40"

60"

80"

100"

7:00" 8:00" 9:00" 10:00" 11:00" 12:00" 13:00" 14:00" 15:00"

GW"

Time"

Total"Power,"Wind,"and"Load"during"Load"Shedding"Event"BuildEout"4"E"25"Jul"2010"

Actual"Total"Load"Simulated"Total"Power"Available"Wind"ITEPredicted"Wind"DAEPredicted"Wind"

PapersubmittedtoRenewableEnergy 2016-03-10

17

a) b)

c) d)

e) f)

g) h)Figure9Generationmixandpercentageofwindusedforthecasesofimperfect(leftcolumn)and418perfect(rightcolumn)windforecasts.TherightaxisisthereferenceforUsedWind.419

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gene

ra:o

n"mix"as"%

"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Imperfect"Forecasts""January"2010"

Steam"Offshore"Wind"Combined"+"Gas"Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gen

era:

on"m

ix"as"%"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Perfect"Forecasts""January"2010"

Steam"

Offshore"Wind"

Combined"+"Gas"

Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gen

era:

on"m

ix"as"%"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Imperfect"Forecasts""April"2010"

Steam"

Offshore"Wind"

Combined"+"Gas"

Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gen

era:

on"m

ix"as"%"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Perfect"Forecasts""April"2010"

Steam"

Offshore"Wind"

Combined"+"Gas"

Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gene

ra:o

n"mix"as"%

"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Imperfect"Forecasts""July"2010"

Steam"Offshore"Wind"Combined"+"Gas"Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gen

era:

on"m

ix"as"%"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Perfect"Forecasts""July"2010"

Steam"

Offshore"Wind"

Combined"+"Gas"

Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gene

ra:o

n"mix"as"%

"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Imperfect"Forecasts""October"2010"

Steam"Offshore"Wind"Combined"+"Gas"Used"Wind"

0"

25"

50"

75"

100"

0"

15"

30"

45"

60"

0" 10" 20" 30" 40" 50" 60" 70"

Used"wind"as"%"of"available"wind"

Gene

ra:o

n"mix"as"%

"of"total"dem

and"

Build@out"level"(GW)"

Genera:on"Mix"@"Perfect"Forecasts""October"2010"

Steam"Offshore"Wind"Combined"+"Gas"Used"Wind"

PapersubmittedtoRenewableEnergy 2016-03-10

18

4.3 Impactonsettlementpricesandemissions420

Atleasttwoadditionalquestionsarisefromthetrendsobservedinthegenerationmixasthelevelsof421windpowerinthesystemincrease:(1)whatistheoverallimpactonthenetworkaveragesettlement422price(basedonLMPs),and(2)whatistheimpactontheemissionofairpollutants?423

Figure10showsthatthesettlementpricepaidtogeneratorsbyPJM(averagedoverallgenerators)424decreasesasthelevelofoffshorewindpowerinthesystemincreases.Notealsothatthepricesfor425build-outlevels4and5inthesummerseason(July)havebeenaffectedbythepenaltiesimposedforthe426observedgenerationshortfall.Bothintheunitcommitmentandintheeconomicdispatchmodels,large427penaltiesareusedtocurbdemandshortage,ratherthanhardconstraints.Consequently,whenthe428solutionofthoseoptimizationproblemsdoesinvolvegenerationshortfall,themarginalvalueof429additionalavailablegeneration–theLMPs–areartificiallyinflatedbytheactivepenalties.430

ItisimportanttorecognizethatthereductionintheLMPisnotnecessarilyproportionaltototal431consumerorwholesaleelectricitysavings—forexample,itdoesnotincludecapitalcostofeither432existinggenerationornewwindgeneration,whichwouldbereflectedinthecapacitymarket.To433understandconsumersavings,itisnecessarytounderstandtherelativeeffectsofthecostsavings434showninFigure10againstthecostofenergyfromnewwindgenerationandtransmission.To435understandthecostsorsavingstosociety,itisnecessarytounderstandthefactorsaswellasthesocial436costsandsavingsofexternalitiessuchashealthdamagesduetopollutionreductions,likethose437itemizedbelow.Thesetotaleconomiccalculationsarebeyondthescopeofthepresentstudy.438

439

Figure10Networkaveragesettlementpriceforthecasesofimperfectwindforecastsandadded440ramp-upand-downreservesbymonth.441

Figure11showsthereductioninemissionsofcarbondioxide(CO2),sulfurdioxide(SO2)andnitrogen442oxides(NOx),threeofthemainairpollutantsreleasedintheburningoffossilfuelsforthegenerationof443electricity.Asexpected,thehigherthelevelsofwindpowerinthesystem,thegreaterthereductionin444

0"

25"

50"

75"

0" 10" 20" 30" 40" 50" 60" 70"

$/MWhr"

Build5out"level"(GW)"

Network"Average"SeDlement"Price"(LMP)"

July"January"April"October"

PapersubmittedtoRenewableEnergy 2016-03-10

19

theemissionofthesethreepollutants.Furthermore,perfectforecastsyieldhigherreductionsin445emissionsthanimperfectforecasts.446

a) b) c)

d) e) f)

g) h) i)

j) k) l)Figure11Emissionreductionsofairpollutants(CO2,SO2,andNOx)forthecasesofimperfectand447perfectwindforecasts.448

TableVsummarizestheestimatesinthereductionofsettlementpricesandemissionsresultingfromthe449introductionoftheseveralbuild-outlevelsofoffshorewindpower,obtainedwithimperfectwind450forecasts.451

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

CO2"Emission"Reduc<ons""Comparing"Forecasts"/"January""2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

SO2"Emission"Reduc<ons"Comparing"Forecasts"/"January""2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

NOx"Emission"Reduc=ons""Comparing"Forecasts"/"January"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

CO2"Emission"Reduc<ons""Comparing"Forecasts"/"April"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

SO2"Emission"Reduc<ons"Comparing"Forecasts"/"April"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

NOx"Emission"Reduc=ons""Comparing"Forecasts"/"April"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

CO2"Emission"Reduc<ons""Comparing"Forecasts"/"July""2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

SO2"Emission"Reduc<ons"Comparing"Forecasts"/"July""2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

NOx"Emission"Reduc=ons""Comparing"Forecasts"/"July"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

CO2"Emission"Reduc<ons""Comparing"Forecasts"/"October"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

SO2"Emission"Reduc<ons"Comparing"Forecasts"/"October"2010"

Perfect"Imperfect"

0"

20"

40"

60"

1" 2" 3" 4" 5"

%"

Build/out"level"

NOx"Emission"Reduc=ons""Comparing"Forecasts"/"October"2010"

Perfect"Imperfect"

PapersubmittedtoRenewableEnergy 2016-03-10

20

TableV:Summaryofreductionsinsettlementpricesandemissionsforthecaseofimperfectwind452forecasts453

Build-outLevel

InstalledCapacity(GW)

Month-Year

GenerationfromOffshore

Wind(%)

NetworkAverageSettlementPriceReduction(%)

CO2EmissionReduction(%)

SO2EmissionReduction(%)

NOxEmissionReduction(%)

1 7.3

Jan-10 4 9 7 9 5Apr-10 4 2 8 7 7Jul-10 2 5 4 5 5Oct-10 4 1 8 11 8

2 25.3

Jan-10 14 13 26 29 21Apr-10 14 12 31 28 25Jul-10 8 10 13 15 12Oct-10 15 10 33 35 31

3 35.8

Jan-10 20 20 36 37 28Apr-10 16 24 38 37 30Jul-10 11 -6 19 21 13Oct-10 18 24 40 43 37

4 48.9

Jan-10 25 28 45 46 36Apr-10 21 26 46 48 42Jul-10 15 -20 26 26 15Oct-10 21 31 45 49 42

5 69.7

Jan-10 28 41 52 54 40Apr-10 23 39 52 53 46Jul-10 18 -3 30 31 19Oct-10 21 41 48 49 42

454

ItisnoteworthythattheaveragesettlementpricesforthemonthofJuly,forbuild-outlevels3and455aboveactuallyincreased,ratherthandecrease.Thisisprobablydue,atleastpartially,tothesignificantly456higherlevelsofusageofthemoreexpensivefastgenerationasreserves.Theadditionofgeneration457shortfallpenaltiesinbuild-outlevels4and5mayalsohavecontributedtofurtherinflatethesettlement458prices.459

Windbuild-outlevel3,correspondingtoaninstalledoffshorecapacityof35.8GW,isthehighest460capacityatwhichitisestimatedthecurrentPJMmarketcanoperatewithoutanygenerationshortfall,461withadditionalrampingreservesandanunconstrainedtransmissiongrid.Forthislevel,dependingon462theseasonoftheyear,thefollowingestimateswereobtained:463

• Energyfromwindwouldsatisfybetween11and20%ofthedemandforelectricity;464• Settlementpricescouldbereducedbyupto24%(thoughinthepeaksummerseasontheymay465

actuallyincreasebyupto6%);466• CO2emissionsarereducedbetween19and40%;467• SO2emissionsarereducedbetween21and43%;468• NOxemissionsarereducedbetween13and37%.469

4.4 Constrainedgrid,noramp-upor-downreservesadded470

TherewasalsointerestinevaluatingthecapacityofthePJMsystemtointegratethevariousbuild-out471levelsofoffshorewindpowerwiththetransmissiongridconstrainedbyitscurrentthermalcapacities.472

PapersubmittedtoRenewableEnergy 2016-03-10

21

Twoparticularscenariosofconnectionbetweentheoffshorewindfarmsandthesixonshorepointsof473interconnection(POI)weretested:474

• HVDCscenario-Theexistenceofahigh-voltageDC(HVDC)backbonelineunderthesea,along475thecontinentalshelfoftheMid-Atlanticcoast,wasenvisioned.Thefarmswouldbeconnected476tothisline,whichinturnwouldbeconnectedtothesixPOIs.Becausenewmulti-terminalHVDC477technologiesarefullyswitchable,thisscenarioimpliesthateachandeverywindfarmwouldbe478connectedtoeachandeveryPOI,andenergywouldthusbeinjectedinthePOIwhereneeded.479

• ACradialscenario-EachfarmwasenvisionedbeingconnectedbyanACradiallinetoonePOI480only,thenearestonegeographically.481

TheHVDCbackboneline,theACradiallinesandthePOIsthemselveswereassumedtohavethermal482capacitiessufficientlylargethattheydidnotconstraintransmission.483

TableVIshowsstatisticsfortherunswiththeconstrainedgridandtheHVDCbackboneconnection.484TheycanbedirectlycomparedtothosedisplayedinTableIIIfortheunconstrainedcase.Forbuild-out485level1,theamountsofwindpowerusedintheconstrainedgridcase,asapercentageofthetotal486amountavailableineachseason,arecomparabletothoseintheunconstrainedcase;andsoarethe487percentagesofdemandthataresatisfiedbyelectricitygeneratedfromoffshorewind.Thismeansthat488theinjectionoftheserelativelymodestamountsofoffshorewindpower(between2.4and4.0%oftotal489demand,dependingontheseason)donotexceedthetransmissiongridcapacities.Thegeneration490shortfallobservedatthislevelcanbeeasilytakencareofbytheadditionofsomesynchronizedramp-up491anddownreserves;theaveragepeakgenerationshortfall,whenthereisanyshortfall,depictedinTable492VI,offersgoodinitialestimatesofwhatthesereservesshouldbe.493

Movingtobuild-outlevels2andbeyond,offshorewindpowerbecomesseverelycurtailedbythe494currentgridcapacityconstraints,asindicatedbythepercentageofusedwind,whichdropstobetween49537.8and60.7%,asopposedtothe86.9to93.4%rangeobservedintheunconstrainedcase.Thisissue496canonlyberesolvedbyanupgradeintheonshoretransmissionlines,particularlyinthecoastalareas.497Therefore,installingoffshorewindcapacityof25.3GW(level2)ormore,withoutupgradingthePJM498transmissiongrid,wouldnotallowintegrationorefficientuseoftheselargeoffshorewindbuild-out499levels.500

Notealsothat,particularlyforbuild-outlevels2and3,thelikelihoodthattherewillbegeneration501shortfallissmallerthanwhatwasobservedfortheunconstrainedgridcase(TableIII).Thisisduetothe502factthatlessoffshorewindpowerisbeingusedintheconstrainedcase,asaresultofthewindpower503curtailmentinducedbythegridcapacityconstraints.504

Finally,Figure12showsplotswiththepercentageofusedwindobtainedusingtheHVDCbackboneand505theACradialconnectionstolinktheoffshorewindfarmswiththeonshorePJMgrid.ACradial506connectionswillcausesignificantlymorespillingofoffshorewindpower(about20%moreforbuild-out507level1)thananHVDCbackboneconnection.508

509

PapersubmittedtoRenewableEnergy 2016-03-10

22

TableVI:SameasinTableIIIbutfortheconstrainedPJMgridwithanHVDCbackboneconnection.510

Build-outLevel

InstalledCapacity(GW)

Month-Year

GenerationfromOffshore

Wind(%)

UsedWind(%)

LikelihoodThereWillBeGenerationShortfallatSomeTimeDuringOne

Week(%)

AveragePeakGenerationShortfall(GW),WhenThereIs

AnyShortfall

1 7.3

Jan-10 4.1 91.3 47.6 0.7Apr-10 4.0 79.1 9.5 0.4Jul-10 2.4 97.1 52.4 2.2Oct-10 4.2 81.2 0.0 0

2 25.3

Jan-10 6.8 43.7 47.6 1.0Apr-10 7.4 43.2 28.6 1.3Jul-10 5.0 60.7 100.0 3.3Oct-10 6.7 37.8 33.3 0.6

3 35.8

Jan-10 7.2 32.5 57.1 0.8Apr-10 8.0 32.6 38.1 1.0Jul-10 5.7 46.9 100.0 3.9Oct-10 7.2 28.7 52.4 0.9

511

a) b)

c) d)

Figure12PercentagesofusedwindwithHVDC-backboneversusAC-radialoffshoreconnections.512

0"

20"

40"

60"

80"

100"

0" 10" 20" 30" 40"

Used"wind"as"%"of"available"wind"

Build9out"level"(GW)"

Percent"of"Used"Wind"9"Comparing"Offshore"ConnecIons"9"January"2010"

HVDC"Backbone"

AC"Radial"

0"

20"

40"

60"

80"

100"

0" 10" 20" 30" 40"

Used"wind"as"%"of"available"wind"

Build9out"level"(GW)"

Percent"of"Used"Wind"9"Comparing"Offshore"ConnecIons"9"April"2010"

HVDC"Backbone"

AC"Radial"

0"

20"

40"

60"

80"

100"

0" 10" 20" 30" 40"

Used"wind"as"%"of"available"wind"

Build9out"level"(GW)"

Percent"of"Used"Wind"9"Comparing"Offshore"ConnecIons"9"July"2010"

HVDC"Backbone"

AC"Radial"

0"

20"

40"

60"

80"

100"

0" 10" 20" 30" 40"

Used"wind"as"%"of"available"wind"

Build9out"level"(GW)"

Percent"of"Used"Wind"9"Comparing"Offshore"ConnecIons"9"October"2010"

HVDC"Backbone"

AC"Radial"

PapersubmittedtoRenewableEnergy 2016-03-10

23

5 Conclusions513

ThispapershowedthatincreasingamountsofoffshorewindgenerationfromtheMid-Atlanticsection514oftheU.S.canbeintegratedintothePJMmarket,uptoacertainlevel,providedthatadditional515synchronizedreservesbesecuredandthatthetransmissionlinesbeupgraded(orashereinpresented,516thatthegridbeunconstrained).Furthermore,itisalsoshownthatimprovementsinthequalityofthe517windpowerforecastsusedforbothday-aheadandintermediate-termunitcommitmentplanninghave518thepotentialtoenabletheintegrationoflargeramountsofoffshorewindpower,withlessamountsof519requiredadditionalreserves.520

Constrainedbythecurrentcapacitiesoftheonshoretransmissiongrid,inthePJMmarket,itwasfound521that:522

1. Uptoabout7.3GWofinstalledoffshorewindcapacity(build-outlevel1)couldbeintegrated,523withrequiredadditionalsynchronizedramp-upanddownreservesbetween1and2GWinthe524peaksummerperiod.525

2. Windpowercurtailmentwouldrangefrom3to21%,onaverageoveraseason,dependingon526theseasonoftheyear.527

3. UsingACradialconnectionstolinktheoffshorefarmstotheonshoregrid,insteadofanHVDC528backboneconnection,wouldcauseanadditionalwindpowercurtailmentontheorderof20%.529

Assumingthattheonshoretransmissiongridwereappropriatelyupgradedbyincreasingthecapacities530ofsomelines,inthePJMmarketitwasfoundthat:531

1. Uptoabout35.8GWofinstalledoffshorewindcapacity(build-outlevel3)couldbeintegrated,532withrequiredadditionalreservesofabout8GWinthepeaksummerperiod(between3and6533GWintheotherperiods).Thesereservesrangefrom10toover20percentoftheinstalledwind534generationcapacityatbuild-outlevel3.535

2. Inthisscenario,offshorewindpowerwouldsatisfyabout11%oftheloadsinthesummerand536anaverageof18%intheotherseasonsoftheyear.537

3. Windcurtailmentwouldrangefrom10to33%,onaverageoveraperiod,dependingonthe538periodoftheyear.539

Intheidealizedcaseofhavingaccesstoperfectwindpowerforecasts(thatis,forecastsexactlyequalto540theobservedwindpower),thesystemwouldbeabletohandleupto69.7GWofinstalledoffshorewind541capacity(satisfying16%ofdemandinthesummer,andanaverageof30%intheotherseasons).It542shouldbealsonotedthatwindcurtailmentmightbereducedinthefuturethroughtheadditionofsolar543powerintothegenerationmixintheappropriateamount(Andresenetat.2014).544

Finally,evenwiththeadditionofsignificantamountsofsynchronizedramp-upanddownreserves,it545wasshownthatintegratingincreasingamountsofoffshorewindpowerwill,inmostcases,progressively546lowerthenetwork-averagedsettlementpriceofoperatingthePJMmarket,aswellasconsistently547decreasetheemissionsofthethreemostimportantairpollutantsassociatedwiththeburningoffossil548

PapersubmittedtoRenewableEnergy 2016-03-10

24

fuels.Morespecifically,intheaforementionedcaseofintegratingoffshorewindpoweratbuild-out549level3,withadditionalreservesofupto8GWandanunconstrainedonshoretransmissiongrid:550

• Settlementpricescouldbereducedbyupto24%;551• CO2emissions,between19and40%;552• SO2emissions,between21and43%;and553• NOxemissions,between13and37%.554

TheauthorsbelievethatSMART-ISOrepresents,asofthiswriting,anaccuratereproductionofPJM’s555dispatchplanningprocess,withcarefulattentiongiventothemodelingofthevariabilityanduncertainty556ofwind.Ofcourse,anymodel,orsetofsimulations,requiresassumptionsandapproximations.The557mostsignificantassumption,intheauthors’view,isthefocusonusingexistingplanningandforecasting558processes,aswellasbothexistinggenerationtechnologyandthecurrentfleetofgenerators.Thework559describedinthispaperoffersagoodplatformtoundertakestudiesthatcapturetheeffectsofchanges560tothisplanningprocessandofimprovedforecasting,inadditiontoinvestmentsinexistingandnew561technologies.562

6 Bibliography563

Andresen,G.B.,R.A.Rodriguez,S.Becker,andM.Greiner,2014:Thepotentialforarbitrageofwindand564solarsurpluspowerinDenmark.Energy,76,pp.49-58.565

Archer,C.,H.Simão,W.Kempton,W.Powell,andM.Dvorak,2016:Thechallengeofintegrating566offshorewindpowerintheU.S.electricgrid.PartI:Windforecasterror.SubmittedtoRenewable567Energy.568

Birge,J.R.,andF.Louveaux,2011:IntroductiontoStochasticProgramming(2nded.).Springer,New569York,485pp.570

Hedman,K.W.,R.P.O'Neill,E.B.Fischer,andS.S.Oren,2011:Smartflexiblejust-in-timetransmission571andflowgatebidding.IEEETransactionsonPowerSystems,26(1),pp.93-102.572

MonitoringAnalytics,2011:2010StateoftheMarketReportforPJM.Availableat:573http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2010.shtml,retrievedJuly9,5742014.575

MonitoringAnalytics,2012:2011StateoftheMarketReportforPJM.Availableat:576http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2011.shtml,retrievedJuly9,5772014578

MonitorAnalytics,2013:2012StateoftheMarketReportforPJM.Availableat579http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2012.shtml,retrievedJuly9,5802014.581

PapersubmittedtoRenewableEnergy 2016-03-10

25

MonitorAnalytics,2014:2013StateoftheMarketReportforPJM.Availableat582http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2013.shtml,retrievedJuly7,5832014.584

Overbye,T.J.,X.Cheng,&Y.Sun,2004:AcomparisonoftheACandDCpowerflowmodelsforLMP585calculations.Proceedingsofthe37thHawaiiInternationalConferenceonSystemsSciences.BigIsland,HI,586USA,IEEEComputerSocietyPress.587

PJMInterconnection,2014:PJM101-TheBasics.Availableat588http://pjm.com/Globals/Training/Courses/ol-pjm-101.aspx,retrievedJuly8,2014.589

PJMInterconnection,2014:WhoWeAre.Availableathttp://www.pjm.com/about-pjm/who-we-590are.aspx,RetrievedJuly7,2014.591

Ryan,S.,R.J.-B.Wets,D.L.Woodruff,C.Silva-Monroy,andJ.Watson,2013:Towardscalable,parallel592progressivehedgingforstochasticunitcommitment.PowerandEnergySocietyGeneralMeeting(PES),5931-5.594

Stott,B.,J.Jardim,andO.Alsac,2009:DCpowerflowrevisited.IEEETransactionsonPowerSystems,59524(3),1290-1300.596

Takriti,S.,J.Birge,andE.Long,1996:Astochasticmodelfortheunitcommitmentmodel.IEEE597TransactionsonPowerSystems,11(3),1497-1508.598

599