the chameleon a.c.davis with p.brax, c van debruck, c.burrage, j. khoury, a.weltman,d.mota,...

49
The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103; PRD76(07)085010; PRD76(07)124034; 0902.2320 +unpublished

Post on 20-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

The Chameleon A.C.Davis

with P.Brax, C van deBruck,C.Burrage, J. Khoury,

A.Weltman,D.Mota, C.Shelpe,D. Seery and D.ShawPRD70(04)123518,PRL 99(07)121103;PRD76(07)085010;PRD76(07)124034;

0902.2320 +unpublished

Page 2: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Outline

• Introduction to chameleon theories• Chameleon cosmology • Photon Coupling and PVLAS • Predictions + Casimir Force• Electroweak physics --Implications for LHC • Possible detection in AGNs + polarised starlight• Conclusions

Page 3: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

The Big Puzzle

Page 4: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Equ of state

Consider scalar field

potential dominated forpotential dominated for

WMAPWMAP

Page 5: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Dark Energy?

Like during primordial inflation, scalar fields can trigger the late acceleration of the universe.

An attractive possibility: runaway behaviour.

The mass of the field now is of order of the Hubble rate. Almost massless.

Page 6: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Do Scalars Couple to Matter?

Effective field theories with gravity and scalars

deviation from Newton’s law

Page 7: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

The radion

The distance between branes in the Randall-Sundrum model:

where

Deviations from Newton’s law

Far away branes small deviations

close branes

constant coupling constant

Page 8: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Experimental consequences?

Long lived scalar fields which couple with ordinary matter lead to the presence of a new Yukawa interaction:

This new force would have gravitational effects on the motion of planets, the laboratory tests of gravity etc..

Page 9: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

The Chameleon Mechanism

When coupled to matter, scalar fields have a matter dependent effective potential:

Page 10: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Typical example:

Ratra-Peebles potential

Constant coupling to matter

Page 11: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Chameleon field: field with a matter dependent mass

A way to reconcile gravity tests and cosmology:

Nearly massless field on cosmological scales

Massive field in the atmosphere

Allow large gravitational coupling constant of order one or more

Possible non-trivial effects in the solar system (satellite experiments)

Page 12: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Gravity Tests

• Fifth force experiments

• Equivalence principle

Page 13: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

The thin-shell property

• The chameleon force produced by a massive body is due only to a thin shell near the surface

• Thin shell– deviations from Newton’s

law

• Thick shell– deviations from Newton’s law

Khoury & Weltman (2004)

Page 14: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Chameleon Cosmology

Attractor Solution follows the minimum of the effective potential

In agreement with cosmological observations (Redshift of recombination, BBN) if:

Equation of state early times late times

The chameleon is a natural DE candidate!

Brax, van de Bruck, Davis, Khoury, Weltman (2004)

Page 15: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Scalar Optics• The PVLAS experiment originally claimed to have observed a signal

for the birefrigence (ellipticity) and the dichroism (rotation) of a polarised laser beam going through a static magnetic field.

• Effect claimed to be larger than induced by higher order terms in the QED Lagrangian (one loop) or gaseous effects (Cotton-Mouton effect)

• The phenomenon can be interpreted as a result of the mixing between photons and scalars.

• More precisely: a coupling between 2 photons and a scalar can induce two effects:

Rotation: a photon can be transformed in a scalar.

Ellipticity: a photon can be transformed into a scalar and then regenerated as a photon (delay)

Page 16: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;
Page 17: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;
Page 18: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

PVLAS: Alas!

• New runs looking for experimental artifacts have contradicted the 2000-2005 experimental results.

• No rotation signal observed at 2.3 T and 5.5 T• No ellipticity signal at 2.3 T and a large positive signal at

5.5 T

• Ellipticity incompatible with a traditional scalar/axion interpretation ( scaling).

Page 19: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

PVLAS vs CAST

• Putative PVLAS experimental results could be seen as a result of the coupling:

• Limits on mass of scalar quite stringent:

• No contradiction with CAST experiments on scalar emitted from the sun

• What if ? CHAMELEON ?

Page 20: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

• Universality of coupling:

• Large gravitational coupling:

• No contradiction with gravity tests, variation of constants, cosmology, astrophysics bounds….

• No deviation from gravity in satellite experiments…. Small objects have a thin shell.

Page 21: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Chameleon Optics

• Chameleons never leave the cavity (outside mass too large, no tunnelling)

• Chameleons do not reflect simultaneously with photons.

• Chameleons propagate slower in the no-field zone within the cavity

Page 22: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Predicted Rotation

Page 23: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Predicted Ellipticity

Page 24: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

• Because the chameleon is reflected rather than escaping and their reflection is decoherent with photons we expect

• ellipticity > rotation

in chameleon theories. This is because, for a large number of passes in the chamber the ellipticity builds up but due to the decoherence the rotation doesn’t. At present we are in agreement with current experiments, but this could be tested soon!

Page 25: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

• Can fit the new data with various values of n and M:

• We know that these parameters lead to a full compatibility with gravity tests, cosmology, CAST….

• GammeV could see an `afterglow’

Page 26: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Casimir Force ExperimentsCasimir Force Experiments

• Measure force between– Two parallel plates

• Difficult to keep plates parallel•

– A plate and a sphere• Harder to calculate analytically.

• No physical shield is used.– Electrostatic forces calibrated for by

controlling electric potential between plates.

R. S. Decca et al., PRD 75 (2007)

S. K. Lamoreaux, PRL 78 (1997)

Page 27: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Chameleons & CasimirChameleons & Casimir

• We consider two potentials:–

• We find that currently:

Page 28: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

What the future holdsWhat the future holds

Page 29: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

New experimentsNew experiments

• Two new experiments currently under construction have real prospect of detecting chameleons.

• Los Alamos experiment–Sphere and plate–Could detect chameleon force if

without a detailed knowledge of the thermal force.

S. K. Lamoreaux

Page 30: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Chameleons??Chameleons??

• Next generation of Casimir force measurement experiments have the precision to detect almost all chameleon dark energy models with

• Generally a good model for the thermal Casimir force is required although some models can be detected without it.

Page 31: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Coupling to Electro-Weak Sector

Chameleon can also couple to standard model particles. Would we see corrections in precision tests? Remember, chameleon mass small in expt vacuum pipe.

o Dark energy scalar like Higgs scalar: highly sensitive to high energy physics (UV completion)

o As Higgs mass taken to infinity, should recover divergences of SM without Higgs: quadratic divergences of self-energy. Higgs mass acts as a loose cut-off so in principle (Veltman param):

o Unfortunately it turns out that

o In principle same type of dependence for any scalar field:

o Large corrections O(1)??

Page 32: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Vacuum Polarisation

Daisies Bridges

Oblique Corrections

Page 33: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Effective Action and Couplings

The coupling involves two unknown coupling functions (gauge invariance):

At one loop the relevant vertices are:

Page 34: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Self-Energy Corrections I

The corrected propagator becomes:

Measurements at low energy and the Z and W poles imply ten independent quantities. Three have to be fixed experimentally. One is not detectable hence six electroweak parameters: STUVWX

Page 35: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Self-Energy Corrections II

The self energy can be easily calculated:

The self energy parameters all involve quadratic divergences

For instance:

The quadratic divergences cancel in the precision tests:

Page 36: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Dark Energy Screening

Vacuum Polarisation sensitive to the UV region of phase space where the difference between the W and Z masses is negligible

Gauge invariance implies the existence of only two coupling functions with no difference between the W and Z bosons in the massless limit (compared to the UV region)

No difference between the different particle vacuum polarisations, hence no effects on the precision tests.

Page 37: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Experimental Constraints

mass

Inverse Coupling

Stronger bound from optics! M greater than 1 million GeV!

Page 38: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Rainbows, Daisies and Bridges

Higher order corrections all suppressed

Page 39: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

ALPs and Dark Energy

Consider scalars and pseudoscalars coupling to photons through the terms

Such particles have been proposed as Dark Energy candidates: Coupled Quintessence (Amendola 1999)

Chameleon Dark Energy (Khoury, Weltman 2004, Brax, Davis, van de Bruck 2007 )

Axionic Dark Energy (Carroll 1998, Kim, Nilles 2003)

...

Page 40: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

We consider fields withPseudoscalars: limits from observations

of neutrino burst from SN 1987A (Ellis, Olive 1987)

Scalars: limits from fifth force experimentsChameleons: limits from the structure of

starlight polarisation

ALPs and Dark Energy

Page 41: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Mixing when photons propagate through background magnetic fields Probability of mixing

Mixing with only one photon polarisation state Also induces polarisation

Strong Mixing limit:

Photon-ALP Mixing

(Raffelt, Stodolsky 1987)

Page 42: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Astrophysical Photon-ALP Mixing

Magnetic fields known to exist in galaxies/galaxy clusters

These magnetic fields made up of a large number of magnetic domains field in each domain of equal strength but

randomly orientedALP mixing changes astrophysical

observations Non-conservation of photon number alters

luminosity Creation of polarisation

Page 43: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Galaxy cluster: Magnetic field strength Magnetic coherence length Electron density Plasma frequency Typical no. domains traversed

Strong mixing if

Requires

Strong Mixing in Galaxy Clusters

Page 44: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Effects of Strong Mixing on Luminosity

After passing through many domains power is, on average, split equally between ALP and two polarisations of the photon

Average luminosity suppression = 2/3Difficult to use this to constrain mixing because

knowledge of initial luminosities is poorSingle source:

If ; averaged over many paths

(Csáki, Kaloper, Terning 2001)

Page 45: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Active Galactic Nuclei

Strong correlation between 2 keV X-ray luminosity and optical luminosity (~5eV)

Use observations of 77 AGN from COMBO-17 and ROSAT surveys (z=0.061-2.54)

Likelihood ratio r14 Assuming initial polarisation r>11 Allowing all polarisations

Is this really a preference for ALPsm? Or just an indication of more structure in the scatter?

(Steffen et al. 2006)

Page 46: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Fingerprints

105 bootstrap resamplings (with replacement) of the data - all samples 77 data points

Compute the central moments of the data

is the standard deviation is the skewness of the data …

Compare this with simulations of the best fit Gaussian and ALPsm models

Page 47: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Fingerprints

Page 48: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Conclusions I

• Chameleons automatically explain the observed acceleration of the universe.

• The could be detected by PVLAS experiments, evade the CAST bound and predict ellipticity>rotation.

• Casimir force experiments can test for chameleons.

• The next generation of experiments could detect them or rule them out as dark energy candidates.

Page 49: The Chameleon A.C.Davis with P.Brax, C van deBruck, C.Burrage, J. Khoury, A.Weltman,D.Mota, C.Shelpe, D. Seery and D.Shaw PRD70(04)123518, PRL 99(07)121103;

Conclusions II • Their coupling to matter is screened in

precision tests of the electroweak physics due to UV sensitivity or vacuum polarisation and gauge invariance.

• Scatter in astrophysical luminosity relations can be used to study the mixing with photons in magnetic fields. Applied to AGN this shows strong evidence for chameleons/ALP strong mixing over Gaussian scatter.