the cohomology of coherent sheaves - unirioja...mohamed barakat & markus lange-hegermann university...

54
Overview Affine Schemes Projective Schemes The Standard Module The Cohomology of Coherent Sheaves Mohamed Barakat & Markus Lange-Hegermann University of Kaiserslautern & RWTH-Aachen University Mathematics Algorithms and Proofs 2010, Logroño Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The Cohomology of Coherent Sheaves

    Mohamed Barakat & Markus Lange-Hegermann

    University of Kaiserslautern & RWTH-Aachen University

    Mathematics Algorithms and Proofs 2010, Logroño

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://homalg.math.rwth-aachen.de/index.php/extensions/gradedmoduleshttp://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://www.mathematik.uni-kl.dehttp://www.mathematik.rwth-aachen.dehttp://www.unirioja.es/dptos/dmc/MAP2010/http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    1 Affine SchemesFrom rings to schemesFrom modules to quasi-coherent sheaves

    2 Projective SchemesFrom graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    3 The Standard ModuleThe module of global sections

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    Overview

    1 Affine SchemesFrom rings to schemes

    From modules to quasi-coherent sheaves

    2 Projective SchemesFrom graded rings to projective schemes

    From graded modules to quasi-coherent sheaves

    3 The Standard ModuleThe module of global sections

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The spectrum of a ring

    DefinitionLet R be a commutative ring with one. The set

    Spec(R) := {p ⊳ R | p prime}

    is called the (prime) spectrum of R. Define the vanishinglocus of an ideal I E R

    V (I) := {p ∈ Spec(R) | p ⊃ I} = V (√I).

    The set {V (√I) | I E R} forms the set of closed subsets of a

    topology on X = Spec(R), the so-called ZARISKI topology :PROOF. V (R) = ∅, V (〈0〉) = Spec(R), V (I) ∪ V (J) = V (IJ),and

    ⋂V (Ii) = V (

    ∑Ii).

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The spectrum of a ring

    DefinitionLet R be a commutative ring with one. The set

    Spec(R) := {p ⊳ R | p prime}

    is called the (prime) spectrum of R. Define the vanishinglocus of an ideal I E R

    V (I) := {p ∈ Spec(R) | p ⊃ I} = V (√I).

    The set {V (√I) | I E R} forms the set of closed subsets of a

    topology on X = Spec(R), the so-called ZARISKI topology :PROOF. V (R) = ∅, V (〈0〉) = Spec(R), V (I) ∪ V (J) = V (IJ),and

    ⋂V (Ii) = V (

    ∑Ii).

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The spectrum of a ring

    DefinitionLet R be a commutative ring with one. The set

    Spec(R) := {p ⊳ R | p prime}

    is called the (prime) spectrum of R. Define the vanishinglocus of an ideal I E R

    V (I) := {p ∈ Spec(R) | p ⊃ I} = V (√I).

    The set {V (√I) | I E R} forms the set of closed subsets of a

    topology on X = Spec(R), the so-called ZARISKI topology :PROOF. V (R) = ∅, V (〈0〉) = Spec(R), V (I) ∪ V (J) = V (IJ),and

    ⋂V (Ii) = V (

    ∑Ii).

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The spectrum of a ring

    DefinitionLet R be a commutative ring with one. The set

    Spec(R) := {p ⊳ R | p prime}

    is called the (prime) spectrum of R. Define the vanishinglocus of an ideal I E R

    V (I) := {p ∈ Spec(R) | p ⊃ I} = V (√I).

    The set {V (√I) | I E R} forms the set of closed subsets of a

    topology on X = Spec(R), the so-called ZARISKI topology :PROOF. V (R) = ∅, V (〈0〉) = Spec(R), V (I) ∪ V (J) = V (IJ),and

    ⋂V (Ii) = V (

    ∑Ii).

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Definition

    For the prime spectrum U := Spec(R) define the structuresheaf OU as the sheaf with stalks being the local ringsOU |p := Rp := (R \ p)−1R for all p ∈ U and ... . The sheaf ofrings OU is called the sheafification of the ring R. The locallyringed space (U,OU ) is called the affine scheme of R.

    In ... I didn’t tell you how to define OU (U(I)) for a general openset U(I) := U \ V (I) (cf. [Har77, p. 70]). But for thedistinguished open sets of the form D(f) := U \ V (〈f〉) forf ∈ R, which form a basis of the ZARISKI topology:

    OU (D(f)) := Rf = R[1f] = R[x]/〈xf − 1〉, OU (U) = R.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Definition

    For the prime spectrum U := Spec(R) define the structuresheaf OU as the sheaf with stalks being the local ringsOU |p := Rp := (R \ p)−1R for all p ∈ U and ... . The sheaf ofrings OU is called the sheafification of the ring R. The locallyringed space (U,OU ) is called the affine scheme of R.

    In ... I didn’t tell you how to define OU (U(I)) for a general openset U(I) := U \ V (I) (cf. [Har77, p. 70]). But for thedistinguished open sets of the form D(f) := U \ V (〈f〉) forf ∈ R, which form a basis of the ZARISKI topology:

    OU (D(f)) := Rf = R[1f] = R[x]/〈xf − 1〉, OU (U) = R.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Definition

    For the prime spectrum U := Spec(R) define the structuresheaf OU as the sheaf with stalks being the local ringsOU |p := Rp := (R \ p)−1R for all p ∈ U and ... . The sheaf ofrings OU is called the sheafification of the ring R. The locallyringed space (U,OU ) is called the affine scheme of R.

    In ... I didn’t tell you how to define OU (U(I)) for a general openset U(I) := U \ V (I) (cf. [Har77, p. 70]). But for thedistinguished open sets of the form D(f) := U \ V (〈f〉) forf ∈ R, which form a basis of the ZARISKI topology:

    OU (D(f)) := Rf = R[1f] = R[x]/〈xf − 1〉, OU (U) = R.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Definition

    For the prime spectrum U := Spec(R) define the structuresheaf OU as the sheaf with stalks being the local ringsOU |p := Rp := (R \ p)−1R for all p ∈ U and ... . The sheaf ofrings OU is called the sheafification of the ring R. The locallyringed space (U,OU ) is called the affine scheme of R.

    In ... I didn’t tell you how to define OU (U(I)) for a general openset U(I) := U \ V (I) (cf. [Har77, p. 70]). But for thedistinguished open sets of the form D(f) := U \ V (〈f〉) forf ∈ R, which form a basis of the ZARISKI topology:

    OU (D(f)) := Rf = R[1f] = R[x]/〈xf − 1〉, OU (U) = R.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Definition

    For the prime spectrum U := Spec(R) define the structuresheaf OU as the sheaf with stalks being the local ringsOU |p := Rp := (R \ p)−1R for all p ∈ U and ... . The sheaf ofrings OU is called the sheafification of the ring R. The locallyringed space (U,OU ) is called the affine scheme of R.

    In ... I didn’t tell you how to define OU (U(I)) for a general openset U(I) := U \ V (I) (cf. [Har77, p. 70]). But for thedistinguished open sets of the form D(f) := U \ V (〈f〉) forf ∈ R, which form a basis of the ZARISKI topology:

    OU (D(f)) := Rf = R[1f] = R[x]/〈xf − 1〉, OU (U) = R.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Definition

    For the prime spectrum U := Spec(R) define the structuresheaf OU as the sheaf with stalks being the local ringsOU |p := Rp := (R \ p)−1R for all p ∈ U and ... . The sheaf ofrings OU is called the sheafification of the ring R. The locallyringed space (U,OU ) is called the affine scheme of R.

    In ... I didn’t tell you how to define OU (U(I)) for a general openset U(I) := U \ V (I) (cf. [Har77, p. 70]). But for thedistinguished open sets of the form D(f) := U \ V (〈f〉) forf ∈ R, which form a basis of the ZARISKI topology:

    OU (D(f)) := Rf = R[1f] = R[x]/〈xf − 1〉, OU (U) = R.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Example

    The affine space Ank := Spec(k[x1, . . . , xn]).

    For I E k[x1, . . . , xn] the affine subschemeV (I) := Spec(k[x1, . . . , xn]/I).

    The two ingredients “prime spectrum” and “sheaf” preexistedthe definition of an affine scheme (U,OU ) but it wasGROTHENDIECK who put them together.

    Corollary

    {rings}op ≃ {affine schemes}.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Example

    The affine space Ank := Spec(k[x1, . . . , xn]).

    For I E k[x1, . . . , xn] the affine subschemeV (I) := Spec(k[x1, . . . , xn]/I).

    The two ingredients “prime spectrum” and “sheaf” preexistedthe definition of an affine scheme (U,OU ) but it wasGROTHENDIECK who put them together.

    Corollary

    {rings}op ≃ {affine schemes}.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Example

    The affine space Ank := Spec(k[x1, . . . , xn]).

    For I E k[x1, . . . , xn] the affine subschemeV (I) := Spec(k[x1, . . . , xn]/I).

    The two ingredients “prime spectrum” and “sheaf” preexistedthe definition of an affine scheme (U,OU ) but it wasGROTHENDIECK who put them together.

    Corollary

    {rings}op ≃ {affine schemes}.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The affine scheme associated to a ring

    Example

    The affine space Ank := Spec(k[x1, . . . , xn]).

    For I E k[x1, . . . , xn] the affine subschemeV (I) := Spec(k[x1, . . . , xn]/I).

    The two ingredients “prime spectrum” and “sheaf” preexistedthe definition of an affine scheme (U,OU ) but it wasGROTHENDIECK who put them together.

    Corollary

    {rings}op ≃ {affine schemes}.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    Schemes

    Definition

    A scheme is a locally ringed space (X,OX ) in which each pointx ∈ X has an open neighborhood U such that the locally ringedspace (U,OX |U ) is an affine scheme.

    We don’t know how to “glue” rings

    {rings} ⊂ ? (algebra)

    but we know how to glue topological spaces and how to gluetheir structure sheaves

    {rings}op ≃ {affine schemes} ⊂ {schemes} (geometry)

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    Schemes

    Definition

    A scheme is a locally ringed space (X,OX ) in which each pointx ∈ X has an open neighborhood U such that the locally ringedspace (U,OX |U ) is an affine scheme.

    We don’t know how to “glue” rings

    {rings} ⊂ ? (algebra)

    but we know how to glue topological spaces and how to gluetheir structure sheaves

    {rings}op ≃ {affine schemes} ⊂ {schemes} (geometry)

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    Schemes

    Definition

    A scheme is a locally ringed space (X,OX ) in which each pointx ∈ X has an open neighborhood U such that the locally ringedspace (U,OX |U ) is an affine scheme.

    We don’t know how to “glue” rings

    {rings} ⊂ ? (algebra)

    but we know how to glue topological spaces and how to gluetheir structure sheaves

    {rings}op ≃ {affine schemes} ⊂ {schemes} (geometry)

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The quasi-coherent sheaf associated to a module

    For an R-module M define the sheafification M̃ to be thesheaf on Spec(R) satisfying

    M̃p := Mp := (R \ p)−1M = Rp ⊗R M

    and

    M̃(D(f)) := Mf := Rf ⊗R M

    for any p ∈ Spec(R) and any f ∈ R. M̃ is the prototype of aquasi-coherent sheaf.

    Corollary

    {R-modules} ≃˜

    //{quasi-coherent sheaves on Spec(R)}

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The quasi-coherent sheaf associated to a module

    For an R-module M define the sheafification M̃ to be thesheaf on Spec(R) satisfying

    M̃p := Mp := (R \ p)−1M = Rp ⊗R M

    and

    M̃(D(f)) := Mf := Rf ⊗R M

    for any p ∈ Spec(R) and any f ∈ R. M̃ is the prototype of aquasi-coherent sheaf.

    Corollary

    {R-modules} ≃˜

    //{quasi-coherent sheaves on Spec(R)}

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    The quasi-coherent sheaf associated to a module

    For an R-module M define the sheafification M̃ to be thesheaf on Spec(R) satisfying

    M̃p := Mp := (R \ p)−1M = Rp ⊗R M

    and

    M̃(D(f)) := Mf := Rf ⊗R M

    for any p ∈ Spec(R) and any f ∈ R. M̃ is the prototype of aquasi-coherent sheaf.

    Corollary

    {R-modules} ≃˜

    //{quasi-coherent sheaves on Spec(R)}

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From rings to schemesFrom modules to quasi-coherent sheaves

    Quasi-coherent sheaves

    Definition

    Let (X,OX ) be a scheme. A sheaf of OX-modules F is calledquasi-coherent if X can be covered by open affine subsetsUi := Spec(Ri) with F |Ui∼= M̃i (where Mi is some Ri-module).

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    Overview

    1 Affine SchemesFrom rings to schemes

    From modules to quasi-coherent sheaves

    2 Projective SchemesFrom graded rings to projective schemes

    From graded modules to quasi-coherent sheaves

    3 The Standard ModuleThe module of global sections

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The projective space Pnk := Proj(k[x0, . . . , xn])

    We would like to construct Pnk as the scheme

    Pnk “:=” (Ank \ {0})/k∗.

    So consider the graded polynomial ring S := k[x0, . . . , xn]=

    ⊕i≥0 Si. Define the n+ 1 polynomial rings

    Ri := k[x0xi, . . . , xn

    xi] < k(Pnk) := k(

    x1x0, . . . , xn

    x0).

    Define the projective space

    Pnk := Proj(S)

    by gluing together the affine spaces Ui := Spec(Ri) along theiraffine intersections Uij := Ui ∩ Uj := Spec(〈Ri, Rj〉), where〈Ri, Rj〉 is the subring of k(Pnk) generated by Ri and Rj.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The projective space Pnk := Proj(k[x0, . . . , xn])

    We would like to construct Pnk as the scheme

    Pnk “:=” (Ank \ {0})/k∗.

    So consider the graded polynomial ring S := k[x0, . . . , xn]=

    ⊕i≥0 Si. Define the n+ 1 polynomial rings

    Ri := k[x0xi, . . . , xn

    xi] < k(Pnk) := k(

    x1x0, . . . , xn

    x0).

    Define the projective space

    Pnk := Proj(S)

    by gluing together the affine spaces Ui := Spec(Ri) along theiraffine intersections Uij := Ui ∩ Uj := Spec(〈Ri, Rj〉), where〈Ri, Rj〉 is the subring of k(Pnk) generated by Ri and Rj.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The projective space Pnk := Proj(k[x0, . . . , xn])

    We would like to construct Pnk as the scheme

    Pnk “:=” (Ank \ {0})/k∗.

    So consider the graded polynomial ring S := k[x0, . . . , xn]=

    ⊕i≥0 Si. Define the n+ 1 polynomial rings

    Ri := k[x0xi, . . . , xn

    xi] < k(Pnk) := k(

    x1x0, . . . , xn

    x0).

    Define the projective space

    Pnk := Proj(S)

    by gluing together the affine spaces Ui := Spec(Ri) along theiraffine intersections Uij := Ui ∩ Uj := Spec(〈Ri, Rj〉), where〈Ri, Rj〉 is the subring of k(Pnk) generated by Ri and Rj.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The projective space Pnk := Proj(k[x0, . . . , xn])

    We would like to construct Pnk as the scheme

    Pnk “:=” (Ank \ {0})/k∗.

    So consider the graded polynomial ring S := k[x0, . . . , xn]=

    ⊕i≥0 Si. Define the n+ 1 polynomial rings

    Ri := k[x0xi, . . . , xn

    xi] < k(Pnk) := k(

    x1x0, . . . , xn

    x0).

    Define the projective space

    Pnk := Proj(S)

    by gluing together the affine spaces Ui := Spec(Ri) along theiraffine intersections Uij := Ui ∩ Uj := Spec(〈Ri, Rj〉), where〈Ri, Rj〉 is the subring of k(Pnk) generated by Ri and Rj.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The projective space P1k := Proj(k[x0, x1])

    Example

    Define the two polynomial rings R0 := k[x1x0 ] = k[t] andR1 := k[

    x0x1] = k[t−1]. The projective line

    P1k := Proj(k[x0, x1])

    as the gluing of the affine spaces

    U0 := Spec(R0) = Spec(k[t]) and

    U1 := Spec(R1) = Spec(k[t−1])

    along their affine intersection U01 := U0 ∩ U1 := Spec(〈R0, R1〉),where 〈R0, R1〉 = k[t, t−1] is LAURENT polynomial ring, which isthe subring of k(P1k) = k(

    x1x0) = k(t) generated by Ri and Rj.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The projective space P1k := Proj(k[x0, x1])

    Example

    Define the two polynomial rings R0 := k[x1x0 ] = k[t] andR1 := k[

    x0x1] = k[t−1]. The projective line

    P1k := Proj(k[x0, x1])

    as the gluing of the affine spaces

    U0 := Spec(R0) = Spec(k[t]) and

    U1 := Spec(R1) = Spec(k[t−1])

    along their affine intersection U01 := U0 ∩ U1 := Spec(〈R0, R1〉),where 〈R0, R1〉 = k[t, t−1] is LAURENT polynomial ring, which isthe subring of k(P1k) = k(

    x1x0) = k(t) generated by Ri and Rj.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Proj construction

    One can analogously define X := Proj(S) for an arbitrarygraded rings S =

    ⊕i≥0 Si. Let m := S>0 :=

    ⊕i>0 Si denote the

    maximal graded ideal in S.

    Define the set

    Proj(S) := {p ⊳ S | p homogeneous prime and p 6⊃ m}.For a homogeneous ideal I E S set

    V (I) = {p ∈ Proj(S) | p ⊃ I}.For p ∈ Proj(S) define the localization S(p) := (S \ p)−1homS.For a homogeneous f ∈ m define S(f) := (Sf )0 andD(f) := Proj(S) \ V (〈f〉) = Spec(S(f)).

    Finally use the above to construct the structure sheaf OX .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    Projective schemes

    Definition

    A projective scheme X is a scheme of the form

    X := Proj(S)

    for some graded ring S =⊕

    i≥0 Si.

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The quasi-coh. sheaf associated to a graded module

    For a graded S-module M =⊕

    i∈ZMi define the sheafificationM̃ to be the quasi-coherent sheaf on Proj(S) satisfying

    M̃p := M(p) :=((S \ p)−1homM

    )0

    and

    M̃(D(f)) := M(f) := (Mf )0 := (Sf ⊗S M)0for any p ∈ Proj(S) and any homogeneous f ∈ m.

    Theorem

    Any quasi-coherent sheaf on a projective scheme X := Proj(S)is the sheafification M̃ of some graded S-module M .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The quasi-coh. sheaf associated to a graded module

    For a graded S-module M =⊕

    i∈ZMi define the sheafificationM̃ to be the quasi-coherent sheaf on Proj(S) satisfying

    M̃p := M(p) :=((S \ p)−1homM

    )0

    and

    M̃(D(f)) := M(f) := (Mf )0 := (Sf ⊗S M)0for any p ∈ Proj(S) and any homogeneous f ∈ m.

    Theorem

    Any quasi-coherent sheaf on a projective scheme X := Proj(S)is the sheafification M̃ of some graded S-module M .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    Up to finite length

    Unfortunately the sheafification does not yield an equivalenceof categories

    {graded S-modules} 6≃˜

    //{quasi-coh. sheaves onProj(S)}

    Theorem

    Two graded S-modules M and N define the samequasi-coherent sheaf iff M≥d ∼= N≥d for some d ∈ Z.

    Q: Is there a way to find a canonical representative in anequivalence class of graded modules “isomorphic in highdegrees”?

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    Up to finite length

    Unfortunately the sheafification does not yield an equivalenceof categories

    {graded S-modules} 6≃˜

    //{quasi-coh. sheaves onProj(S)}

    Theorem

    Two graded S-modules M and N define the samequasi-coherent sheaf iff M≥d ∼= N≥d for some d ∈ Z.

    Q: Is there a way to find a canonical representative in anequivalence class of graded modules “isomorphic in highdegrees”?

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    From graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    Up to finite length

    Unfortunately the sheafification does not yield an equivalenceof categories

    {graded S-modules} 6≃˜

    //{quasi-coh. sheaves onProj(S)}

    Theorem

    Two graded S-modules M and N define the samequasi-coherent sheaf iff M≥d ∼= N≥d for some d ∈ Z.

    Q: Is there a way to find a canonical representative in anequivalence class of graded modules “isomorphic in highdegrees”?

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    Overview

    1 Affine SchemesFrom rings to schemes

    From modules to quasi-coherent sheaves

    2 Projective SchemesFrom graded rings to projective schemes

    From graded modules to quasi-coherent sheaves

    3 The Standard ModuleThe module of global sections

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    The global sections of the twisted sheaves

    Let S be a graded NOETHERIAN ring and M a finitely generatedgraded S-module. Denote by M [i] the shifted S-module with

    M [i]j := Mi+j

    and by

    H0(M̃ [i]) := M̃ [i](Proj(S))

    the global sections of the coherent twisted sheaf M̃ [i].

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    The global sections of the twisted sheaves

    Let S be a graded NOETHERIAN ring and M a finitely generatedgraded S-module. Denote by M [i] the shifted S-module with

    M [i]j := Mi+j

    and by

    H0(M̃ [i]) := M̃ [i](Proj(S))

    the global sections of the coherent twisted sheaf M̃ [i].

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    The global sections of the twisted sheaves

    Let S be a graded NOETHERIAN ring and M a finitely generatedgraded S-module. Denote by M [i] the shifted S-module with

    M [i]j := Mi+j

    and by

    H0(M̃ [i]) := M̃ [i](Proj(S))

    the global sections of the coherent twisted sheaf M̃ [i].

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    The standard module

    DefinitionThe truncated direct sum

    H0≥0(M̃ ) :=⊕

    i≥0H0(M̃ [i])

    has a natural S-module structure. We call it the standardmodule of the coherent sheaf M̃ (truncated at 0).

    Theorem

    The sheafification of the standard module of a sheaf M̃ is againisomorphic to M̃ :

    ˜H0≥0(M̃ )

    ∼= M̃ .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    The standard module

    DefinitionThe truncated direct sum

    H0≥0(M̃ ) :=⊕

    i≥0H0(M̃ [i])

    has a natural S-module structure. We call it the standardmodule of the coherent sheaf M̃ (truncated at 0).

    Theorem

    The sheafification of the standard module of a sheaf M̃ is againisomorphic to M̃ :

    ˜H0≥0(M̃ )

    ∼= M̃ .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    The standard module

    DefinitionThe truncated direct sum

    H0≥0(M̃ ) :=⊕

    i≥0H0(M̃ [i])

    has a natural S-module structure. We call it the standardmodule of the coherent sheaf M̃ (truncated at 0).

    Theorem

    The sheafification of the standard module of a sheaf M̃ is againisomorphic to M̃ :

    ˜H0≥0(M̃ )

    ∼= M̃ .

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    software demo

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

  • OverviewAffine Schemes

    Projective SchemesThe Standard Module

    The module of global sections

    Mohamed Barakat and Markus Lange-Hegermann, AnAxiomatic Setup for Algorithmic Homological Algebra andan Alternative Approach to Localization, to appear inJournal of Algebra and its Applications(arXiv:1003.1943).

    Robin Hartshorne, Algebraic geometry, Springer-Verlag,New York, 1977, Graduate Texts in Mathematics, No. 52.MR MR0463157 (57 #3116)

    Mohamed Barakat & Markus Lange-Hegermann The Cohomology of Coherent Sheaves

    http://arxiv.org/abs/1003.1943http://www.mathematik.uni-kl.de/~barakat/http://wwwb.math.rwth-aachen.de/markus/http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves

    OverviewAffine SchemesFrom rings to schemesFrom modules to quasi-coherent sheaves

    Projective SchemesFrom graded rings to projective schemesFrom graded modules to quasi-coherent sheaves

    The Standard ModuleThe module of global sections