the continental record of stage 11: a revie€¦ · the continental record of stage 11: a review...

10
The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de VEvolution (UMR CNRS 5554), Universite Montpellier II, Montpellier, France AND Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York The review of terrestrial records of marine isotope stage 11 indicates that they are mostly yielded by pollen and loess sequences. They occur in different locali- ties around the world and show different time resolution and environmental con- ditions. Other records are discussed which correspond to more particular condi- tions, i.e., the Lake Baikal deposits, or the terrestrial malacofauna from tufa de- posits in Western Europe. If almost all the records indicate moister conditions than present, the temperature estimates vary from similar to the present, to warmer from place to place. Another problem related to the interpretation of ter- restrial deposits of stage 11 is the time resolution and the sampling interval of the related deposits that makes correlation with other proxies even more difficult due to the long duration of this interglacial. However, a scenario is proposed to link the different reviewed record based on a general warm climate of MIS 11. 1. INTRODUCTION The continental stratigraphy of Europe is complicated and there are conflicting interpretations about which European terrestrial interglacial correlates with marine isotope stage (MIS) 11 [Sarnthein, Stremme, and Man- gini, 1986]. Kukla [in Smiley et al, 1991] demonstrated by comparing marine and continental records, that MIS 11 corresponds to the terrestrial interglacial named Hol- steinian in northern Europe (Figs. 1, 2). Most workers have now adopted the correlation of MIS 11 with Hol- steinian and I accept that correlation in this summary. Identification of the continental equivalent of MIS 11 (Holsteinian) is most certain in continuous sequences that Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question Geophysical Monograph 137 Copyright 2003 by the American Geophysical Union 10.1029/137GM15 contain a complete sequence of superimposed climate cy- cles (Fig. 2). However the time resolution in the continu- ous sequences is not always fine enough to resolve de- tailed climatic and environmental changes that are present in records from ice cores or high-accumulation rate ma- rine cores. The lack of high-resolution terrestrial records must be taken into account when comparing terrestrial re- cords to ice core and marine records. The purpose of this study is to review the most significant terrestrial records of MIS 11. For convenience the records are grouped by depositional setting. 3($ At least three well developed pollen series which record the terrestrial equivalent of MIS 11 are known from Europe. These are Plateau de Devres (Lac du Bouchet- Praclaux) in the French Massif Central, Ioannina 249, and Tenaghi Philippon in Greece (Fig. 1). The variations of 213

Upload: others

Post on 13-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

The Continental Record of Stage 11: A Review

Denis-Didier Rousseau

Paleoenvironnements et Palynologie, Institut des Sciences de VEvolution (UMR CNRS 5554), Universite Montpellier II, Montpellier, France

AND Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

The review of terrestrial records of marine isotope stage 11 indicates that they are mostly yielded by pollen and loess sequences. They occur in different locali­ties around the world and show different time resolution and environmental con­ditions. Other records are discussed which correspond to more particular condi­tions, i.e., the Lake Baikal deposits, or the terrestrial malacofauna from tufa de­posits in Western Europe. If almost all the records indicate moister conditions than present, the temperature estimates vary from similar to the present, to warmer from place to place. Another problem related to the interpretation of ter­restrial deposits of stage 11 is the time resolution and the sampling interval of the related deposits that makes correlation with other proxies even more difficult due to the long duration of this interglacial. However, a scenario is proposed to link the different reviewed record based on a general warm climate of MIS 1 1 .

1. INTRODUCTION

The continental stratigraphy of Europe is complicated and there are conflicting interpretations about which European terrestrial interglacial correlates with marine isotope stage (MIS) 11 [Sarnthein, Stremme, and Man-gini, 1986]. Kukla [in Smiley et al, 1991] demonstrated by comparing marine and continental records, that MIS 11 corresponds to the terrestrial interglacial named Hol-steinian in northern Europe (Figs. 1, 2). Most workers have now adopted the correlation of MIS 11 with Hol-steinian and I accept that correlation in this summary.

Identification of the continental equivalent of MIS 11 (Holsteinian) is most certain in continuous sequences that

E a r t h ' s C l i m a t e a n d O r b i t a l E c c e n t r i c i t y :

T h e M a r i n e I s o t o p e S tage 11 Q u e s t i o n

G e o p h y s i c a l M o n o g r a p h 137

C o p y r i g h t 2 0 0 3 b y t h e A m e r i c a n G e o p h y s i c a l U n i o n

1 0 . 1 0 2 9 / 1 3 7 G M 1 5

contain a complete sequence of superimposed climate cy-cles (Fig. 2). However the time resolution in the continu-ous sequences is not always fine enough to resolve de-tailed climatic and environmental changes that are present in records from ice cores or high-accumulation rate ma-rine cores. The lack of high-resolution terrestrial records must be taken into account when comparing terrestrial re-cords to ice core and marine records. The purpose of this study is to review the most significant terrestrial records of MIS 11. For convenience the records are grouped by depositional setting. 2. PEAT AND LAKE RECORDS 

At least three well developed pollen series which record the terrestrial equivalent of MIS 11 are known from Europe. These are Plateau de Devres (Lac du Bouchet-Praclaux) in the French Massif Central, Ioannina 249, and Tenaghi Philippon in Greece (Fig. 1). The variations of

213

200429
Typewritten Text
200429
Typewritten Text
200429
Typewritten Text
Page 2: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

214 CONTINENTAL RECORD OF STAGE 11: A REVIEW

F i g u r e 1. L o c a t i o n o f t h e d i f f e r e n t r e c o r d s d i s c u s s e d i n t he t e x t . F i l l e d c i r c l e s c o r r e s p o n d t o i n d i v i d u a l l o n g se­

q u e n c e s , f i l l e d squa r res c o r r e s p o n d t o t h e o c c u r r e n c e o f t h e E u r o p e a n m o l l u s k l o c a l i t i e s (Lyrodiscus b i o m e ) o f m a r i n e

i s o t o p e s tage 11.

AP (arboreal pollen) curve, which mirrors the marine 8 1 8 0 curve, allow the recognition of climate cycles in which interglacials are characterized high percentages of arbo-real pollen (Fig. 3).

In the Plateau de Devres (Lac du Bouchet-Praclaux) section, which is located at an elevation of about 1100m, MIS 11 is correlated with the Holsteinian interglacial and is locally named the Praclaux interglacial. Pollen zones have been identified in the Plateau de Devres section which describe a precise vegetation succession [Reille and de Beaulieu, 1995] (Fig. 3). The beginning of the in-terglacial (Fig. 3, Zone 2) is marked by the simultaneous expansion of Quercus and Corylus. The occurrence of Acer, Ulmus, Fraxinus and Ilex indicate temperate cli-matic conditions. A short interval with the development of Taxus (Zone 3) suggests moister and colder conditions. In the overlying Zone 4, Abies expands strongly. How-ever, the occurrence of Buxus, Vitis, and other thermo-philous taxa clearly indicate continued temperate condi-tions, especially in summer. The overlying Zone 5 shows the expansion of Fagus compared to Quercus whereas Buxus and Abies reach their highest percentages. The end of the interglacial is marked by the decline of Abies corre-sponding to cooler conditions although Pterocarya, a thermophilous plant is still observed. The highest zone (Zone 7) corresponds to a boreal forest. The interpretation of this vegetation succession clearly indicates that the Praclaux or Holsteinian interglacial included variable en-vironmental and climatic conditions, not necessarily

warmer than younger interglacials, including the present one, even if pollen grains of Buxus and Vitis indicate sus-tained temperature. On the contrary, Reille and de Beau-lieu, [1995] suggest the pollen record of the Praclaux in-dicates moister conditions compared to the present.

A similar interpretation was derived from the analysis of the pollen sequence at La Cote (1000m elevation), in the French Alps [Field et al, 2000] where almost the same vegetation succession was identified. Climatic esti-mates were derived from parallel investigation of pollen and beetle remains. Although the optimum climatic con-ditions were interpreted as similar to modern conditions, the coleopteran assemblages indicate that the peak inter-glacial was warmer and wetter than modern conditions.

The Ioannina 249 record was recovered from a plain at an elevation of about 470m in Greece [Tzedakis, 1993; 1994; Tzedakis et al, 1997] (Fig. 4). MIS 11 is again well developed and is correlated with two pollen zones, the Dodoni I and II respectively. During this interval, the pollen concentration is the highest observed in the record and the pollen composition indicates the occurrence of a dense forest environment. Both Dodoni I and II intervals have high Abies percentages that differentiate them from younger forest interglacials from this area. The lower Do-doni I is characterized by the dominance of Ul-mus/Zelkova (the highest values for the entire sequence) with also high percentages of Buxus. In contrast, Dodoni II is characterized by the expansion of Quercus with Tilia and Corylus. In addition the important taxa in the Dodoni

Page 3: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

R O U S S E A U 2 1 5

OCEAN LOESS CLASSICAL SYSTEMS

N.AMERICA EUROPE

AGE MIS SPECMAP TER GLC CK CHINA C.USB GL INT ALPS GLAC INT

F i g u r e 2 . C o n t i n e n t a l r e c o r d s o f M I S 1 1 . M a r i n e i s o t o p e s tage 1 1 a c c o r d i n g t o S P E C M A P (Imbrie et al, 1 9 8 4 ) a n d

c o m p a r i s o n w i t h t he l oess ( E u r o p e a n , g e n e r a l a n d C h i n e s e ) , N o r t h A m e r i c a n , E u r o p e a n A l p i n e , a n d N o r t h E u r o p e a n

P l a i n Q u a t e r n a r y s t r a t i g r a p h i e s ( a f t e r K u k l a i n Smiley et al., 1 9 9 1 m o d i f i e d ) .

T E R : t e r m i n a t i o n s , G L C : g l a c i a l c y c l e s , C K : s t r a t i g r a p h i c p o s i t i o n o f te r races at R e d H i l l ( C z e k r e p u b l i c ) , C . U S E :

c u r r e n t c o m m o n usage , G L : N o r t h A m e r i c a n g l a c i a l s , I N T . : N o r t h A m e r i c a n i n t e r g l a c i a l s , G L A C : N o r t h E u r o p e a n

g l a c i a t i o n s , I N T : N o r t h E u r o p e a n i n t e r g l a c i a l s . W I S : W i s c o n s i n i a n , S A N : S a n g a m o n i a n , 111. I l l i n o i a n , E . M . U . . I L L :

E a r l y , M i d d l e a n d U p p e r I l l i n o i a n , Y A R : Y a r m o u t h i a n , W : W u r m , R W : R i s s - W u r m , R : R i s s , M R : M i n d e l - R i s s . F :

F a u n a l d i s p e r s a l e v e n t .

F i g u r e 3 . L a c d u B o u c h e t p o l l e n s e q u e n c e , a, C o m p a r i s o n o f t h e A P ( A r b o r e a l p o l l e n g r a i n s ) - P i n u s p e r c e n t a g e s w i t h

t h e S P E C M A P 8 1 8 0 c u r v e . I n d i c a t i o n o f t he s t r a t i g r a p h y w i t h l o c a t i o n o f t h e P r a c l a u x - H o l s t e i n i a n i n t e r g l a c i a l ( f r o m

D e B e a u l i e u m o d i f i e d ) , b , S i m p l i f i e d p o l l e n d i a g r a m ( s e l e c t e d t rees) o f t h e H o l s t e i n i a n ( a f t e r Reille andDe Beaulieu, 1 9 9 5 m o d i f i e d ) .

Page 4: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

216 CONTINENTAL RECORD OF STAGE 11: A REVIEW

Depth AP/NAP (m) (%) 0

Ap concentration Pollen Marine Isotope (x 1000 grains/cm3) Zones Stages

0 10 103040 0 10 2010 40 SO CO 0 0 10 200 0 0 10 0 10 2030 10203040 0 10 0 01020 0 10

Figure 4. Pollen sequence at Ioannina (Greece), a) Variation in the AP (Arboreal pollen grains)-NAP (Non Arboreal pollen grains) percentage on the left, in AP concentration, pollen zones, correlation with the marine isotope chronology, b) Simplified pollen diagram of the Dodoni pollen zones (after Tzedakis, 1994 modified).

I interval are reduced in Dodoni II. The high pollen con-centration of warm taxa such as Buxus, Ulmus, Zelkova, and Alnus indicate high temperature conditions and the presence of Fagus, indicates low precipitation and high temperature conditions. The record of MIS 11 in Ioannina 249 is in complete agreement with the record from Tenaghi, Philippon [Wijmstra and Smit, 1976; Wijmstra and Yound, 1992] in Macedonia, north of Ioannima. The Tenaghi record spans the past 975 ka and shows a strong terrestrial biomass development during the Lekanis inter-glacial which is correlated with MIS 11 [Wijmstra and Young, 1992]. Wijmstra and Young [1992] identified a se-ries of pollen zones that represent the succession of vegetation during the Lekanis interglacial. From the bot-tom up, an oak forest with Tilia, Ulmus and Fraxinus rep-

resenting humid and warm conditions passed to a pine forest indicating increasing dryness. Then an evergreen oak forest invaded the lower belts of the pine forest, fol-lowed by a mixed oak forest with carpinus, Tilia, Ostrya, Fraxinus and Acer. The succession described in the Lekanis interglacial is considered to represent a Mediter-ranean type of climax vegetation, which was not reached in the following younger interglacials [Wijmstra and Smit, 1976].

Two additional long sequences from the Mediterranean area come from Hula in northern Israel and Amazyabu 1 in southern Israel. In these sequences interglacials corre-spond to interpluvial periods with a strong influence of the Sahara and therefore few rains originating from the Mediterranean [Fuji and Horowitz, 1989; Horowitz, 1989]. The terrestrial equivalent of MIS 11 was identified in pollen zone QVI. The pollen sequence indicates an ev-ergreen oak forest with pine stands and a dry Mediterra-nean climate. Comparison between the northern and southern Israel sites shows different environmental con-ditions implying a steep climatic gradient between north and south (Fig 5). The vegetation in northern Israel indi-cates desert environment while southern Israel experi-enced steppe, i.e., moister conditions which is unlike to-day.

A long record (last 800 kyr) is preserved in the Biwa sequence from Japan [Fuji and Horowitz, 1989]. The

Figure 5. Comparison between the long terrestrial pollen rec-ords in Israel and Japan, pollen zones, and correlation with the SPECMAP chronology (after Fuji and Horowitz, 1989 modi-fied).

Page 5: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

ROUSSEAU 217

a

4 High plain of Bogota *>• Xerophytic vegetation * Mag dale na river Forest line

-

Alnus

1 1 .-III i t L

i 20b 600 8clo lodo 12(A) 14(A)

H (1 1 A P ( * )

2(A) 4(A) 6(A) 8(lo lodo 12(lo 14clo

Figure 6. Pollen sequence of Funza Bogota (Colombia), a) Variation of the vegetation according to the present interglacial and last glacial maximum scenarios, b) Variation of AP (Arbo-real pollen grains) and Alnus percentages ( Alnus was excluded from the pollen sum. This explains maximum values can reach >100%) versus time. Indication of stage 11 interval (after Hooghiemstra et al,. 1993 modified).

Biwa sequence shows that the vegetation succession dur-ing the different interglacials was similar to present con-ditions (Fig. 5). However pollen zone 9, which correlates with MIS 11, indicates warmer conditions compared with modern. Furthermore, the Biwa record indicates the pres-ence of significant cooling within MIS 11 that is appar-ently coeval with the cold episode observed in the French Lac du Bouchet-Praclaux sequence.

The Funza Bogota pollen sequence in Columbia, cored from a plain located at 2550m elevation, contains a record of the last 3.5 myrs [Hooghiemstra and Melice, 1994; Hooghiemstra et al, 1993]. The AP curve indicates that

during the interval correlated with MIS 11 (Fig. 6), the upper limit of the Andean forest was higher than 3000m with a temperature higher than the present value of 14.8°C. Furthermore, a high percentage of Alnus is re-corded which, in the Bogota area, is an indication of swamps where Alnus mostly lives. Thus this high con-centration could be interpreted as indicating more humid-ity but such a conclusion is speculative, as the lake level at that time was low (Fig. 6).

The long record from Lake George in Australia also contains an interval correlated with MIS 11 [Williams et al, 1993]. However pollen is not preserved in the MS 11 interval so interpretations of temperature and vegetation succession are not possible [Singh and Geissler, 1985], However the MIS 11 interval of the core contains less charcoal than younger interglacial intervals suggesting fewer fires and thus possibly wetter conditions prevailed during MIS 11 (Fig. 7).

Lake Baikal in Siberia provides another record of ter-restrial conditions during MIS 11 [Williams et al 1997]. Data on biogenic silica flux measured in Lake Baikal cores shows that the highest productivity and biogenic

Figure 7. Comparison between SPECMAP isotope record and the charcoal and pollen sequences from Lake George (Austra-lia), (after Williams etal, 1993 modified).

Page 6: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

218 CONTINENTAL RECORD OF STAGE 11: A REVIEW

silica accumulation over the last 800,000 kyr occurred during MIS 11. The long interglacial conditions of MIS 11 in the Lake Baikal record abruptly ended at about 394 - 390Ka due to a dramatic cooling in this region of South East Siberia. The abrupt cooling is thought to be caused by a the response of continental Asia to insolation forcing [Karabanov, et al, 2000]. The warm conditions are also indicated by the occurrence of a dark coniferous forest with Abies, Picea, Pinus sibirica which lately passed to a sparse steppe flora characteristics of glacial arid condi-tions.

In summary the different pollen and lacustrine records reviewed here indicate variable temperature and moisture conditions around the world during MIS 11. The differ-ences in time resolution of the individual records do not permit detailed comparison between regions. Some rec-ords, especially those in Europe and Japan indicate that the terrestrial equivalent of MIS 11 includes several stages and at least one significant cooling.

3. COASTAL RECORDS 1 (pollen Zone 11) Afromontane forest trees expanded form higher to lower elevations twice (subzones l i d and b). Both ex-pansions were interpreted as corresponding to cool but more humid conditions during MIS 11 (Jahns et al., 1998).

Core GIK 16867-3 off Gabon, contains a record of the last 700 ka. A maximum of lowland tropical forest (Al-chornea, Uapaca) expansion is recorded just at the end of MIS 12, before the transition to MIS 11. This transition is marked by the presence of Rhisophora indicating exten-sion of the mangrove swamps along the coasts [Dupont et al, 1998].

Pollen studies of the Rangitawa fossil beds, North West of Wellington in New Zealand, indicates that this unit was deposited during MIS 11 under a warm and humid cli-mate in shallow marine and estuarine environments. In addition, marine mollusk shell assemblages sampled in the same unit include taxa indicating warmer waters than present [Bussell, 1986].

As a final example, the multidisciplinary study of the coastal deposits in northern Chile, at Mejillones Peninsula (23°S) indicates a particularly warm climate in this area during MIS 11 [Ortlieb et al, 1996]. The interpretation is mainly based on the occurrence of marine mollusk species

which are now living only north of 6°S, and which were absent from the area during younger interglacials. The conclusion of this study is that the lagoonal and protected embayments were warmer than the open marine environ-ments during this MIS 11 suggesting different conditions than those prevailing at present or during other late Pleistocene interglacials.

The review of these coastal records leads to similar in-terpretations gained from the pollen records. Climate during MIS 11 was variable and there is no single pattern of generally warmer conditions at all localities.

4. LOESS RECORDS

Loess sequences provide another source of information on past climate change and terrestrial environmental con-ditions. Loess sequences mostly occur in the Northern Hemisphere at the southern margin of the former ice-sheets or in the path of prevailing winds from regions of persistent high pressure to low pressure cells. Loess se-quences that include several climatic cycles can provide reliable records of past climatic changes. In China the Central Chinese loess plateau preserves a complete record of the past 2.4 Myrs in a series of stratigraphic units that can recognized across the entire plateau [ftukla, 1987]. Pal eomagnetic stratigraphy of the Chinese loess sequence permits precise correlation of the loess sequence with ma-rine records.

In the Ch inese loess sequence, MIS 11 is represented by a soil complex named S4 within the Upper Lishi forma-tion [Kukla, 1987] (Fig. 2). Environmental information is provided by measuring the iron oxide ratio which is an index of the weathering. The iron oxide ratio reflects the percentage of iron liberated from iron bearing silicate minerals through chemical weathering [Guo et al, 1996, 1998]. At Changwu (southern loess plateau) the iron ox-ide index in soil S4 reaches the highest values found in the loess sequence [Guo et al, 1998] whereas at Xifeng (100 km northward), the iron oxide ratio in S4 is lower. In fact the iron oxide ratios in S4 at Xifeng are lower than ratios that are found in soils considered to be equivalent to the last interglacial. The interpretation of the MIS 11 iron oxide ratio data is that compared to present time, condi-tions were wetter during MIS 11 in the loess plateau due to a strengthened summer monsoon. However the in-creased monsoon was not strong enough to carry high precipitation to Xifeng. The conclusion is supported by the pollen assemblages in Luochuan. A rich pollen as-semblage with Anacardiaceae and Thalictrum lead Want et al., [in Kukla, 1987] to conclude that the soil surface during S4 was wetter compared to the soils of the Lower Lishi formation. Thus the iron oxide ratio and pollen data

Page 7: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

ROUSSEAU 219

Changwu iron index Marine isotope

15 20 25 30 35 40

F i g u r e 8. V a r i a t i o n o f t he w e a t h e r i n g i n d e x i n t e n s i t y i n t h e C h i n e s e loess p l a t e a u , a) L o c a t i o n o f t h e C h a n g w u se­

q u e n c e , b ) V a r i a t i o n i n t he i r o n i n d e x r e p r e s e n t i n g t h e w e a t h e r i n g i n t e n s i t y ( a f t e r Guo et al, 1 9 9 8 m o d i f i e d ) .

are compatible with the interpretation that a strengthening of the summer monsoon regime during MIS 11 over cen-tral China carried enough precipitation, at least over the southern belt of the Central loess plateau to induce a strong weathering of the loess deposits (Fig 8).

5. A UNIQUE EUROPEAN FAUNAL EVENT

A sequence of loess and paleosols at St. Pierre-les El-beuf in the Seine Valley, northwest France includes a rec-ord of MIS 11 [Lautridou and Verron, 1970]. The basal unit of the Elbeuf IV soil complex, which is correlated with MIS 11, is a tufa (Fig 9). The sediment overlying the tufa contains a terrestrial malacofauna which has an un-usual composition compared to the modern local fauna [Rousseau, 1992; Rousseau, Puissegur, and Lecolle, 1992]. A similar malacofauna is found a few kilometers to the east, still in the Seine Valley, associated with another tufa deposit that has been dated by U/Th at -400 ka. The distinctive Elbeuf IV fossil assemblage has been found at sites in Northern France, southeastern England (Hoxnian age) and southwestern Germany. The distinctive assem-blages are considered coeval and represent environmental conditions that have no modern analogue in Europe. For-est species dominate the assemblages indicating temperate conditions with high moisture. Some of the species still occur in modern assemblages of the Seine Valley but oth-ers are now living in central Europe, some are southern species (one is endemic to the Bayonne area) and one is endemic of the northern part of the British Islands (Fig. 9). One extinct species in the MIS assemblage is related

to a subgenus, Retinella (Lyrodiscus), which is currently endemic to the Canary Islands [Rousseau and Puissegur, 1990]. Plant macrofossils associated with the Elbeuf IV fossil assemblage include Mediterranean and tropical trees including the Laurel of the Canary Islands. Using the Biome concept, the Elbeuf IV assemblage was named the Lyrodiscus biome. The composition of the Lyrodiscus bi-ome indicates that the climate during the deposition of the Elbeuf IV soil complex was warmer and moister than modern conditions.

The different terrestrial records of MIS 11 summarized in this report indicate variable climatic conditions from generally similar too warmer than modern conditions. The review also indicates that conditions were variable during MIS 11. A marked north-south gradient apparently ex-isted in Europe with higher temperature than today in some places but generally more humid conditions in mid latitudes and low precipitation in the Mediterranean basin. The SE Asian monsoon was intensified and the high plain of Bogota experienced hot and wet conditions. Warmer than modern temperatures are indicated along the Chilean and New Zealand coasts. A consistent pattern seen in the terrestrial records is the indication of higher moisture (ta-ble 1). If more precipitation occurred over continental ar-eas then increased evaporation should prevail in the source areas (marine) and thus higher sea surface tem-peratures (SST). However few marine studies have pro-vided evidence for higher SST during MIS 11 although

Page 8: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

220 CONTINENTAL RECORD OF STAGE 11: A REVIEW

F i g u r e 9. E u r o p e a n m o l l u s k r e c o r d o f s tage 1 1 . a, S t P i e r r e - l e s - E l b e u f l oess s e q u e n c e b ) V e r n o n s e c t i o n s h o w i n g the

s t r a t i g r a p h i c p o s i t i o n o f t he d e p o s i t s , c p resen t d i s t r i b u t i o n o f m o l l u s k spec ies b e l o n g i n g t o t h e S tage 1 1 Lyrodiscus b i o m e : 1 , Ruthenica filograna; 2 , Acicula polita; 3 , Laminifera pauli; 4 , Hygromiacinctella; 5 , Leiostyla anglica a n d

6 , Aegopis verticillus. T h e h a t c h e d z o n e i n d i c a t e s t h e d i s t r i b u t i o n o f t h i s p a r t i c u l a r b i o l o g i c a l a s s e m b l a g e . T h e p resen t

d i s t r i b u t i o n o f Laminifera pauli i n e n d e m i c o f B a y o n n e a rea ( S W o f F r a n c e ) a n d m a r k e d b y a n a r r o w

a l : l o e s s , a 2 : p a l e o s o l , 3 : h u m i c s o i l s , a 4 : f l u v i a t i l e sands , a5 : f l u v i a t i l e g r a v e l s , a 6 : s t o n e l e v e l , a 7 : " c h o c o l a t " l e v e l ,

a 8 : b o t t o m o f t h e q u a r r y , b l : c h a k ( s u b s t r a t u m ) , b 2 : r u b e f a c t i o n , b 3 : s m o o t h f a c i e s t u f a , b 4 : t r a v e r t i n e , b 5 : " suga r ­

p l u m " t u f a f a c i e s , b 6 : c o l l u v i u m . C I : m o d e m d i s t r i b u t i o n , c 2 : S tage 1 1 Lyrodiscus b i o m e d i s t r i b u t i o n . ( a f t e r Rousseau etal, 1 9 9 2 ; Rousseau, 1 9 9 2 m o d i f i e d ) .

T a b l e 1. S u m m a r y t a b l e o f t he d i f f e r e n t c o n t i n e n t a l r e c o r d s o f M I S 1 1 d i s c u s s e d i n t he p a p e r .

A r e a Region Evidence for observed climate

Age Source of evidence

E u r o p e N . F r a n c e - S E n g l a n d W a r m e r a n d m o i s t e r H o l s t e i n i a n

P la teau d e D e v e s

L a C o t e

I o a n n i n a

T e n a g h i P h i l i p p o n

W a r m e r t e m p e r a t u r e i n d i - H o s t e i n i a n

c a t e d b y t h e o c c u r r e n c e o f

Buxus a n d Vitis M o i s t e r e n v i r o n m e n t

P e a k i n t e r g l a c i a l w a r m e r H o s t e i n i a n

a n d m o i s t e r t h a n p r e s e n t

D e n s e f o r e s t e n v i r o n m e n t D o d o n i I a n d II

H i g h t e m p e r a t u r e

L o w p r e c i p i t a t i o n s

M e d i t e r r a n e a n t y p e o f L e k a n i s

c l i m a x v e g e t a t i o n

S t r o n g e r s u m m e r d r o u g h t s

H i g h e r w i n t e r r a i n f a l l s

R o u s s e a u etal, 1 9 9 2

R o u s s e a u , 1 9 9 2

R e i l l e a n d d e B e a u l i e u ,

1 9 9 5

F i e l d etal, 2 0 0 0

T z e d a k i s , 1 9 9 3 , 1 9 9 4

W i j m s t r a a n d S m i t , 1 9 7 6

W i j m s t r a a n d Y o u n g , 1 9 9 2

M o m m e r s t e e g et al., 1995

Page 9: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

R O U S S E A U 2 2 1

T a b l e 1. C o n t i n u e d .

M i d d l e E a s t I s r a e l R e v e r s e d c o n d i t i o n s ( d r i e r Q V I p o l l e n z o n e H o r o w i t z , 1 9 8 9

i n t h e N o r t h a n d m o i s t e r F u j i a n d H o r o w i t z , 1 9 8 9

i n t he S o u t h ) t h a n t o d a y

Eas t A s i a L a k e B a i k a l H i g h e s t b l o o m i n g : w a r m e r S tage 11 W i l l i a m s etal, 1 9 9 7

su r f ace w a t e r t e m p e r a t u r e W i l l i a m s et al, 2 0 0 0

K a r a b a n o v e t a l . , 2 0 0 0

L a k e B i w a W a r m e r e n v i r o n m e n t t h a n P o l l e n z o n e 9 F u j i a n d H o r o w i t z , 1 9 8 9

p r e s e n t

C h i n e s e loess P la teau W a r m e r a n d m o i s t e r S o i l S 4 G u o etal, 1 9 9 8 , 1 9 9 9

S W P a c i f i c L a k e G e o r g e M o i s t e r ? S tage 11 W i l l i a m s etal, 1993

S i n g h a n d G e i s s l e r , 1 9 8 5

R a n g i t a w a f o r m a t i o n W a r m e r s u r f a c e S tage 11 B u s s e l l , 1 9 8 6

W a r m e r a n d m o r e h u m i d

i n t e r v a l

S o u t h A m e r i c a F u n z a B o g o t a T e m p e r a t u r e h i g h e r t h a n P o l l e n z o n e 7 H o o g h i e m s t r a , 1 9 8 9

p r e s e n t

H u m i d i t y h i g h e r ?

M e j i l l o v e s P e n i n s u l a W a r m e r w a t e r s S tage 11 O r t l i e b etal, 1 9 9 6

T r o p i c a l A f r i c a A t l a n t i c G I K 1 6 7 7 6 C o o l b u t m o i s t e r c l i m a t e P o l l e n z o n e 11 J a h n s e f f l / . , 1 9 9 8

A t l a n t i c G I K 1 6 8 6 7 - E x p a n s i o n o f t h e m a n ­ S tage 11 D u p o n t e r a / . , 1 9 9 8

3 g r o v e

e v i d e n c e f o r i n c r e a s e d n o r t h w a r d a d v e c t i o n o f A t l a n t i c

s u r f a c e w a t e r i n t o t h e N o r d i c S e a s h a s b e e n f o u n d d u r i n g

M I S 1 1 [Poli et al, 1 9 9 9 ; McManus et al, 1 9 9 9 ] . T h e

s u m m a r y p r e s e n t e d h e r e s u g g e s t s s o m e c l e a r d i f f e r e n c e s

b e t w e e n g l o b a l c l i m a t e d u r i n g M I S 1 1 a n d t o d a y . H o w ­

e v e r d e v e l o p m e n t o f d e t a i l e d a n d w e l l - d a t e d r e c o r d s i n a

n u m b e r o f a r e a s i s r e q u i r e d b e f o r e a r e l i a b l e r e c o n s t r u c ­

t i o n o f c l i m a t e a n d c l i m a t e v a r i a b i l i t y d u r i n g M I S 1 1 c a n

b e a c c o m p l i s h e d .

Acknowledgments. T h a n k s t o D i c k P o o r e f o r t he i n v i t a t i o n t o

p resen t t h i s r e v i e w at t he s p e c i a l " S tage 1 1 " U S G S m e e t i n g a n d

t o t he d i f f e r e n t p a r t i c i p a n t s o f w o r k s h o p i n S a n F r a n c i s c o f o r

f r u i t f u l d i s c u s s i o n s , t o D r Z T G u o f o r p r o v i d i n g t he C h a n g w u

v a l u e s o f t he w e a t h e r i n g i n d e x a n d t o D r . J L de B e a u l i e u f o r t h e

L a c d u B o u c h e t - P r a c l a u x s y n t h e t i c d i a g r a m . F i n a l l y s i n c e r e

t h a n k s t o A n d r e D r o x l e r f o r i n v i t i n g m e t o p a r t i c i p a t e t o t h i s

m o n o g r a p h , D i c k P o o r e f o r g r e a t l y i m p r o v i n g t h e E n g l i s h a n d

D o m i n i q u e J o l l y f o r c o m m e n t s . T h i s i s I S E M c o n t r i b u t i o n

2 0 0 1 - 0 9 1 .

R E F E R E N C E S

B u s s e l , M . R . , P a l y n o l o g i c a l e v i d e n c e f o r u p p e r P u t i k a n ( m i d d l e

P l e i s t o c e n e ) i n t e r g l a c i a l a n d g l a c i a l c l i m a t e s at R a n g i t a w a

S t r e a m , S o u t h W a n g a n u i B a s i n , N e w Z e a l a n d , N. Zeal. J. Geol. Geophys., 29, 4 7 1 - 4 7 9 , 1 9 8 6 .

D u p o n t , L . , F . M a r e t , a n d K . W i n n , L a n d - s e a c o r r e l a t i o n b y

m e a n s o f t e r r e s t r i a l a n d m a r i n e p a l y n o m o r p h s f r o m the e q u a ­

t o r i a l Eas t A t l a n t i c : P h a s i n g o f S E t rade w i n d s a n d t he o c e ­

a n i c p r o d u c t i v i t y , Palaeogeogr., Palaeoclimatol, Palaeoe-col, 142, 5 1 - 8 4 , 1 9 9 8 .

F i e l d , M . H . , J . L . d e B e a u l i e u , , J . G u i o t , a n d P. P o n e l , M i d d l e

P l e i s t o c e n e d e p o s i t s at L a C o t e , V a l - d e - L a n s , I se re d e p a r t ­

m e n t , F r a n c e , P l a n t m a c r o f o s s i l , p a l y n o l o g i c a l a n d f o s s i l i n ­

s e c t . i n v e s t i g a t i o n s , Palaeogeogr., Palaeoclimatol, Palaeoe-col, 159, 5 3 - 8 3 , 2 0 0 0 .

F u j i , N . , a n d A , H o r o w i t z , B r u n h e s e p o c h p a l e o c l i m a t e s o f J a ­

p a n a n d I s r a e l , Palaeogeogr., Palaeoclimatol, Palaeoecol, 7 2 , 7 9 - 8 8 , 1 9 8 9 .

G u o , Z . T . , T . L i u , J . G u i o t , N . W u , H . L u , J . H a n , J . L i u , a n d Z .

G u , H i g h f r e q u e n c y p u l s e s o f E a s t A s i a n m o n s o o n c l i m a t e i n

t h e las t t w o g l a c i a t i o n s : l i n k w i t h the N o r t h A t l a n t i c . Clim. Dyn.^12, 7 0 1 - 7 0 9 , 1 9 9 6

G u o , Z . T . , T . S . L i u , , N . F e d o r o f f , , L . Y . W e i , Z . L . D i n g , , N . Q .

W u , H . Y . L u „ W . Y . J i a n g , a n d Z . S . A n , , C l i m a t e e x t r e m e s i n

l oess o f C h i n a c o u p l e d w i t h t he s t r e n g t h o f d e e p - w a t e r f o r ­

m a t i o n i n t h e N o r t h A t l a n t i c , Global Planet. Change, 18,113-1 2 8 , 1 9 9 8 .

H o o g h i e m s t r a , H . , a n d J . L . M e l i c e , P l e i s t o c e n e e v o l u t i o n o f o r ­

b i t a l p e r i o d i c i t i e s i n t h e h i g h - r e s o l u t i o n p o l l e n r e c o r d F u n z a I ,

Page 10: The continental record of stage 11: A revie€¦ · The Continental Record of Stage 11: A Review Denis-Didier Rousseau Paleoenvironnements et Palynologie, Institut des Sciences de

222 CONTINENTAL RECORD OF STAGE 11: A REVIEW

E a s t e r n C o r d i l l e r a , C o l o m b i a , Spec. Pub. Inter. Assoc. Sedi-mentol, 19,117-126,1994.

H o o g h i e m s t r a , H . , J . L . M e l i c e , , A . B e r g e r , a n d N . J . S h a c k l e t o n ,

F r e q u e n c y s p e c t r a a n d p a l e o c l i m a t i c v a r i a b i l i t y o f t he h i g h -

r e s o l u t i o n 3 0 - 1 4 5 0 k a F u n z a I p o l l e n r e c o r d ( E a s t e r n C o r d i l ­

l e r a , C o l o m b i a ) , Quat. Sci. Rev., 12,141-156,1993.

H o r o w i t z , A . , C o n t i n u o u s p o l l e n d i a g r a m s f o r t h e l as t 3 .5 M . Y .

f r o m I s r a e l : v e g e t a t i o n , c l i m a t e a n d c o r r e l a t i o n w i t h t he o x y ­

g e n i s o t o p e r e c o r d , Palaeogeogr., Palaeoclimatol, Palaeoe-col, 72, 6 3 - 7 8 , 1 9 8 9 .

I m b r i e , J . , J . D . H a y s , D . G . M a r t i n s o n , A . M c l n t y r e , A C . M i x ,

J .J . M o r l e y , N . G . P i s i a s , W . L . P r e l l , a n d N . J . S h a c k l e t o n , , T h e

o r b i t a l t h e o r y o f P l e i s t o c e n e c l i m a t e : S u p p o r t f r o m a r e v i s e d

c h r o n o l o g y o f t h e m a r i n e O r e c o r d . I n : J . I . A . B e r g e r , J .

H a y s , G . K u k l a a n d B . S a l t z m a n ( E d i t o r ) , Milankovitch and Climate. R e i d e l P u b l . C o m p . , D o r d r e c h t , p p . 2 6 9 - 3 0 5 , 1 9 8 4

J a h n s , S . , M . H i i l s , a n d M . S a r t h e i n , V e g e t a t i o n a n d c l i m a t e

h i s t o r y o f w e s t e q u a t o r i a l A f r i c a b a s e d o n a m a r i n e p o l l e n r e ­

c o r d o f f L i b e r i a ( s i t e G I K 1 6 7 7 6 ) c o v e r i n g t h e las t 4 0 0 , 0 0 0

y e a r s , Rev. Paleobot. Palynol, 102, 2 7 7 - 2 8 8 , 1 9 9 8 .

K a r a b a n o v , E . B . , A A . P r o k o p e n k o , D . F . W i l l i a m s , E . V .

B e z r u k o v a , K . K h u r s e v i c h , M . I . K u z m i n , a n d A . N . G v o z d -

k o v . T h e e v i d e n c e o f a b m p t d e e p c o o l i n g o f S i b e r i a d u r i n g

i n t e r g l o a c i a l s tage 1 1 . EOS, 8 1 , F 7 3 3 , 2 0 0 0 .

K u k l a , G . , L o e s s S t r a t i g r a p h y i n C e n t r a l C h i n a , Quat. Sci. Rev., 6,191-219,1987.

L a u t r i d o u , J .P . , a n d G . , V e r r o n , P a l e o s o l s et l oess de S a i n t -

P i e r r e - L e s - E l b e u f ( S e i n e - M a r i t i m e ) , Bull. Assoc. Fr. Et. Quat., 23-24,145-165,1970.

M c M a n u s , J . , D . W . O p p o , a n d J . L C u l l e n , A 0 . 5 - m i l l i o n - y e a r

r e c o r d o f m i l l e n i a l - s c a l e c l i m a t e v a r i a b i l i t y i n t he N o r t h A t ­

l a n t i c , Science, 283, 9 7 1 - 9 7 5 , 1 9 9 9 .

O r t l i e b , L . , A . D i a z , a n d N . G u z m a n , A w a r m i n t e r g l a c i a l e p i ­

sode d u r i n g o x y g e n i s o t o p e s tage 1 1 i n N o r t h e r n C h i l e , Quat.. Sci. Rev., 15, 8 5 7 - 8 7 1 , 1 9 9 6 .

P o l i , M . S . , R . C . T h u n e l l , a n d D . R i o , M i l l e n i a l - s c a l e c h a n g e s i n

N o r t h A t l a n t i c d e e p w a t e r c i r c u l a t i o n d u r i n g m a r i n e i s t o p e

stages 1 1 a n d 1 2 : L i n k a g e t o A n t a r c t i c c l i m a t e , Geology, 28, 8 0 7 - 8 1 0 , 2 0 0 0 .

R e i l l e , M . , a n d J . L de B e a u l i e u , L o n g P l e i s t o c e n e P o l l e n R e c ­

o r d s f r o m t h e P r a c l a u x C r a t e r , S o u t h - C e n t r a l F r a n c e , Quat. Res., 44, 2 0 5 - 2 1 5 , 1 9 9 5 .

R o u s s e a u , D . D . , I s c a u s a l e c o l o g i c a l b i o g e o g r a p h y a p r o g r e s s i v e

resea rch p r o g r a m ? , Quat. Sci. Rev., 11, 5 9 3 - 6 0 1 , 1 9 9 2 .

R o u s s e a u , D . D . , a n d J .J . P u i s s e g u r , P h y l o g e n e s e et

b i o g e o g r a p h i e d e Retinella {Lyrodiscus) P i l s b r y {Gastero-poda; Zonitidae), Geobios, 23, 5 7 - 7 0 , 1 9 9 0 .

R o u s s e a u , D . D . , J .J . P u i s s e g u r , a n d F . L e c o l l e , W e s t - E u r o p e a n

m o l l u s c s a s s e m b l a g e s o f s tage 1 1 , C l i m a t i c i m p l i c a t i o n s , Pa-

laeogeogr., Palaeoclimatol, Palaeoecol, 92,15-29,1992.

S a m t h e i n , M . , H . E . S t r e m m e , a n d A . M a n g i n i , T h e H o s l t e i n i n ­

t e r g l a c i a t i o n : t i m e - s t r a t i g r a p h i c p o s i t i o n a n d c o r r e l a t i o n t o

s t a b l e - i s o t o p e s t r a t i g r a p h y o f deep -sea s e d i m e n t s , Quat. Res., 26, 2 8 3 - 2 9 8 , 1 9 8 6 .

S i n g h , G . , a n d E . A . G e i s s l e r , L a t e C a i n o z o i c h i s t o r y o f f i r e ,

v e g e t a t i o n , l a k e l e v e l s a n d c l i m a t e at L a k e G e o r g e , N e w

S o u t h W a l e s , A u s t r a l i a , Phil. Trans. R. Soc. London, B311, 3 7 9 - 4 4 7 , 1 9 8 5 .

S m i l e y , T . L . , R . A . B r y s o n , J . E . K i n g , , G . J . K u k l a , a n d G . I .

S m i t h , Q u a t e r n a r y p a l e o c l i m a t e s , in Quaternary Nonglacial Geology: Conterminous U.S, e d i t e d b y R . B . M o r r i s o n , p p . 1 3 -

4 4 . T h e G e o l o g y o f N o r t h A m e r i c a , B o u l d e r , 1 9 9 1 .

T z e d a k i s , P .C . , L o n g t e r m t ree p o p u l a t i o n s i n N o r t h w e s t G r e e c e

t h r o u g h m u l t i p l e Q u a t e r n a r y c l i m a t i c c y c l e s , Nature, 364, 4 3 7 - 4 4 0 , 1 9 9 3 .

T z e d a k i s , P .C . , V e g e t a t i o n c h a n g e t h r o u g h g l a c i a l - i n t e r g l a c i a l

c y c l e s : a l o n g p o l l e n s e q u e n c e p e r s p e c t i c v e , Phil. Trans. R. Soc. London, B345, 4 0 3 - 4 3 2 , 1 9 9 4 .

T z e d a k i s , P .C . , V . A n d r i e u , J . L . de B e a u l i e u , S . C r o w h u r s t , M .

F o l l i e r i , H . H o o g h i e m s t r a , D . M a g r i , M . R e i l l e , L . S a d o r i , N .

S h a c k l e t o n , a n d W i j m s t r a , T . A . , , C o m p a r i s o n o f t e r res t r i a l

a n d m a r i n e r e c o r d s o f c h a n g i n g c l i m a t e o f the las t 5 0 0 , 0 0 0

yea rs , Earth Planet. Sci. Let, 150,171-176,1997.

W i j m s t r a , T . A . , a n d A . S m i t , P a l y n o l o g y o f t he m i d d l e p a r t ( 3 0 -

7 8 m e t r e s ) o f t he 1 2 0 m d e e p s e c t i o n i n N o r t h e r n G r e e c e

( M a c e d o n i a ) , ActaBot. Neerl, 25, 2 9 7 - 3 1 2 , 1 9 7 6 .

W i j m s t r a , T . A . , a n d R. Y o u n g , V e g e t a t i o n a l a n d c l i m a t i c t r a n s i ­

t i o n s b e t w e e n i n t e r g l a c i a l a n d g l a c i a l P e r i o d s d u r i n g the las t 1

m i l l i o n yea rs i n N o r t h e r n G r e e c e , in Start of a Glacial, e d i t e d

b y G . J . K u k l a , a n d E . W e n t , p p . 9 7 - 1 1 2 , S p r i n g e r - V e r l a g ,

H e i d e l b e r g , 1 9 9 2 .

W i l l i a m s , D . F . , J . P e c k , E . B . K a r a b a n o v , A . A . P r o l o p e n k o , V .

K r a v c h i n s k y , J . K i n g , a n d M . I . K u z m i n , L a k e B a i k a l r e c o r d

o f c o n t i n e n t a l c l i m a t e r e s p o n s e t o o r b i t a l i n s o l a t i o n d u r i n g t h e

past 5 m i l l i o n y e a r s , Science, 278,1114-1117,1997.

W i l l i a m s , M . A . J . , D . L . D u n k e r l e y , P. D e D e c k k e r , A . P . K e r ­

s h a w , a n d S t o k e s , T . , Quaternary Environments, A r n o l d E . ,

L o n d o n , 1 9 9 3 .

D e n i s - D i d i e r R o u s s e a u , P a l e o e n v i r o n n e m e n t s et P a l y n o l o g i e ,

I n s t i t u t des S c i e n c e s de l ' E v o l u t i o n ( U M R C N R S 5 5 5 4 ) , U n i v e r -

s i te M o n t p e l l i e r I I , case 6 1 , p l a c e E . B a t a i l l o n , 3 4 0 9 5 M o n t p e l -

l i e r c e d e x 0 5 , F r a n c e ( e m a i l : d e n i s @ d s t u . u m v - m o n t p 2 . f r )