the copyright of these tables resides with the publishers, taylor · 2007-03-11 · extracted from...

66
Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these tables resides with Taylor and Francis. They may be used freely for educational purposes but their source must be acknowledged. For more details see www.physicsofmatter.com CHAPTER 2 Tables These tables are from Understanding the properties of matter by Michael de Podesta. The copyright of these tables resides with the publishers, Taylor and Francis. They may be used freely for educational purposes, but their source must be acknowledged. For more details see www.physicsofmatter.com

Upload: others

Post on 25-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

CHAPTER 2

Tables

These tables are from

Understanding the properties of matter

by Michael de Podesta.

The copyright of these tables resides with the publishers, Taylorand Francis.

They may be used freely for educational purposes, but their sourcemust be acknowledged.

For more details see www.physicsofmatter.com

Ale
Highlight
Page 2: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 2.1 The properties of particles that are treated as fundamental in this book. The most importantproperties of the particles for understanding the properties of matter are the first two rows of the table:mass and electric charge. The internal angular momentum (spin) and magnetic moment of the particlesare discussed in the text below.

Property Units Electron Neutron Proton

Mass Atomic mass unitsu = 1.661 × 10–27 kg

5.485 × 10 – 4

≈1/18361.0085 1.0071

Electric charge Proton chargee = 1.602 × 10–19 C

–1 0 +1

Magnetic moment Bohr magneton

µB = 9.274 × 10–24 J T–1

1.001 1.0419 × 10 –3 1.521 × 10 –3

Magnetic moment Nuclear magneton

µN = 5.051 × 10–27 J T–1

1837.8 1.913 2.793

Intrinsic (spin)angular momentum

Planck constant divided by 2πh = 1.054 × 10–34 J s

12

12

12

Electric dipole moment Cm 0 0 0

Lifetime Stable Stable within nucleihalf life ≈ 15 minutes

in free space.

Stable

Page 3: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 2.2. The elements with atomic numbers up to 105 together with their date of discovery. The term‘Old’ as a date of discovery indicates that the element was known in antiquity. The names of the ele-ments tell many fascinating stories about their discovery.

ZElement, symbol, date ofdiscovery Origin of name

1 Hydrogen, H, (1766) Greek: Hydros Genes: mean-ing Water Forming

2 Helium, He, (1895) Greek: Helios meaning Sun3 Lithium, Li, (1817) Greek: Lithos meaning Stone4 Beryllium, Be, (1797) Greek: Beryllos meaning Beryl5 Boron, B, (1808) Arabic: Buraq6 Carbon, C, (Old) Latin: Carbo meaning Char-

coal7 Nitrogen, N, (1772) Greek: Nitron Genes meaning

Nitre Forming8 Oxygen, O, (1774) Greek: Oxy Genes meaning

Acid Forming9 Fluorine, F, (1886) Latin: Fluere meaning To Flow10 Neon, Ne, (1898) Greek: Neos meaning New11 Sodium, Na, (1807) English: Soda: The symbol

comes from the Latin Natrium12 Magnesium, Mg, (1755) Greek: Magnesia, a district in

Thessaly13 Aluminium, Al, (1825) Latin: alumen meaning alum14 Silicon, Si, , (1824) Latin: Silicis meaning Flint15 Phosphorus, P, (1669) Greek: Phosphorus meaning

Bringer of Light16 Sulphur, S, (Old) Sanskrit: Sulvere meaning

Sulphur17 Chlorine, Cl, (1774) Greek: Chloros meaning Pale

Green18 Argon, Ar, (1894) Greek: Argos meaning Inactive19 Potassium, K, (1807) English: Potash: The symbol

comes from the Latin Kalium20 Calcium, Ca, (1808) Latin: Calix meaning Lime21 Scandium, Sc, (1879) Latin: Scandia meaning Scan-

dinavia22 Titanium, Ti, (1791) Titans, Sons of the Earth

Goddess.23 Vanadium, V, (1801) Vanadis, Scandinavian god-

dess24 Chromium, Cr, (1780) Greek: Chroma meaning

Colour25 Manganese, Mn, (1774) Latin: Magnes meaning Mag-

net26 Iron, Fe, (Old) Saxon: Iron: The symbol

comes from the Latin Ferrum27 Cobalt, Co, (1735) German: kobald meaning

Goblin28 Nickel, Ni, (1751) German: Kupfernickel meaning

either Devil’s Copper or StNicholas’ Copper

29 Copper, Cu, (Old) Latin: Cuprum meaning Cyprus30 Zinc, Zn, (1400) German: Zink31 Gallium, Ga, (1875) Latin: Gallia meaning France32 Germanium, Ge, (1886) Latin: Germania meaning

German33 Arsenic, As, (1280) Greek: Arsenikon meaning

Yellow Orpiment

ZElement, symbol, date ofdiscovery Origin of name

34 Selenium, Se, (1817) Greek: Selene meaning Moon35 Bromine, Br, (1826) Greek: Bromos meaning

Stench36 Krypton, Kr, (1898) Greek: Kryptos meaning Hid-

den37 Rubidium, Rb, (1861) Latin: Rubidius meaning

Deepest Red38 Strontium, Sr, (1790) English: Strontian in Scotland39 Yttrium, Y, (1794) The town of Ytterby in Sweden40 Zirconium, Zr, (1789) Arabic: Zargun meaning Gold

Colour41 Niobium, Nb, (1801) Greek: Niobe, a daughter of

Tantalus: Also called Colum-bium in USA

42 Molybdenum, Mo, (1781) Greek: Molybdos meaningLead

43 Technetium, Tc, (1937) Greek: Technikos meaningArtificial

44 Ruthenium, Ru, (1808) Latin: Ruthenia meaning Rus-sia

45 Rhodium, Rh, (1803) Greek: Rhodon meaning Rose46 Palladium, Pd, (1803) The asteroid Pallas47 Silver, Ag, (Old) Saxon: Siolfur meaning Silver:

The symbol comes from theLatin Argentum

48 Cadmium, Cd, (1817) Latin: Cadmia meaning Calo-mine

49 Indium, In, (1863) Indigo50 Tin, Sn, (Old) Saxon: Tin: The symbol comes

from the Latin Stannum51 Antimony, Sb, (Old) Greek: Anti+Monos meaning

not alone. The symbol is fromLatin Stibium

52 Tellurium, Te, (1783) Latin: Tellus meaning Earth53 Iodine, I, (1811) Greek: Iodes meaning Violet54 Xenon, Xe, (1898) Greek: Xenos meaning

Stranger55 Caesium, Cs, (1860) Latin: Caesius meaning Sky

Blue56 Barium, Ba, (1808) Greek: Barys meaning Heavy57 Lanthanum, La, (1839) Greek: Lanthanein meaning

To Lie Hidden58 Cerium, Ce, (1803) Ceres, an asteroid discovered

in 180159 Praseodymium, Pr, (1885) Greek: Prasios Didymos

meaning Green Twin60 Neodymium, Nd, (1885) Greek: Neos Didymos mean-

ing New Twin61 Promethium, Pm, (1945) Greek: Prometheus62 Samarium, Sm, (1879) The mineral Samarskite63 Europium, Eu, (1901) Europe64 Gadolinium, Gd, (1880) J. Gadolin, a Finnish chemist65 Terbium, Tb, (1843) The town of Ytterby in Sweden66 Dysprosium, Dy, (1886) Greek: Dysprositos meaning

Hard To Obtain

Page 4: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

ZElement, symbol, date ofdiscovery Origin of name

67 Holmium, Ho, (1878) Latin: Holmia meaning Stock-holm

68 Erbium, Er, (1842) The town of Ytterby in Sweden69 Thulium, Tm, (1879) Thule, meaning Ancient

Scandinavia: The UttermostNorth

70 Ytterbium, Yb, (1878) The town of Ytterby in Sweden71 Lutetium, Lu, (1907) Latin: Lutetia meaning Paris72 Hafnium, Hf, (1923) Latin: Hafnia meaning Copen-

hagen73 Tantalum, Ta, (1802) Greek: Tantalos, the father of

Niobe74 Tungsten, W, (1783) Swedish: Tung Sten meaning

Heavy Stone: The symbolcomes from the alternativename Wolfram

75 Rhenium, Re, (1925) Latin: Rhenus meaning Rhine76 Osmium, Os, (1803) Greek: Osme meaning Smell77 Iridium, Ir, (1803) Latin: Iris meaning Rainbow78 Platinum, Pt, (Old) Spanish: Platina meaning

Silver79 Gold, Au, (Old) Saxon: Gold80 Mercury, Hg, (Old) Latin: The planet Mercury: The

symbol comes from the LatinHydragyrum meaning LiquidSilver

81 Thallium, Tl, (1861) Greek: Thallos meaning GreenTwig

82 Lead, Pb, (Old) Saxon: Lead: The symbolcomes from the Latin Plum-bum

ZElement, symbol, date ofdiscovery Origin of name

83 Bismuth, Bi, (1450) German: Bisemutem84 Polonium, Po, (1898) Poland85 Astatine, At, (1940) Greek: Astatos meaning un-

stable86 Radon, Rn, (1900) Radium87 Francium, Fr, (1939) France88 Radium, Ra, (1898) Latin: Radius meaning Ray89 Actinium, Ac, (1899) Greek: aktinos meaning Ray90 Thorium, Th, (1815) Thor The Scandinavian god of

war91 Protractinium, Pa, (1917) Greek: Protos meaning First92 Uranium, U, (1789) The planet Uranus93 Neptunium, Np, (1940) The planet Neptune94 Plutonium, Pu, (1940) The planet Pluto95 Americium, Am, (1944) English: America96 Curium, Cm, (1944) Pierre and Marie Curie97 Berkelium, Bk, (1949) English: Berkeley98 Californium, Cf, (1950) English: California99 Einsteinium, Es, (1952) Albert Einstein100 Fermium, Fm, (1952) Enrico Fermi101 Mendelevium, Md, (1955) Dmitri Mendeleyev102 Nobelium, No, (1958) Alfred Nobel103 Lawrencium, Lr, (1961) Ernest O. Lawrence104 Rutherfordium, Rf, (1964) Ernest Rutherford105 Dubnium, Db, (1967) The town of Dubna, home to a

centre for nuclear research

Page 5: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 2.3 Photon energies, frequencies, and wavelengths.Frequency(Hz)

Wavelength(m)

Energy (eV)

Comment

106 3×102 4.14×10–9 Radio broadcasts

107 3×101 4.14×10–8

108 3 4.14×10–7 Television broadcasts

109 3×10–1 4.14×10–6 A gigahertz: microwaveovens and mobilephones

1010 3×10–2 4.14×10–5 Infra-red

1011 3×10–3 4.14×10–4 Infra-red

1012 3×10–4 4.14×10–3 A terahertz: Infra-red:Typical frequency ofatomic vibration

6.6 ×1012 4.55 ×10–4 2.5×10–2 Infra-red: corresponds toprocesses occurring ataround room tempera-ture (290K)

1013 3×10–5 4.14×10–2 Infra-red

4 ×1014 7.5 ×10–7 1.654 Red light: Correspondsto processes involvingelectrons in the outer(valence) shells ofatoms

1015 3 × 10–7 4.14 Blue light: correspondsto processes involvingelectrons in the outer(valence) shells ofatoms

1016 3×10–8 4.14×101 Ultra-violet light

1017 3×10–9 4.14×102 Ultra-violet light

1018 3×10–10 4.14×103 Ultra-violet light

1019 3×10–11 4.14×104 X-rays

1020 3×10–12 4.14×105 X-rays: corresponds toprocesses involvingelectrons in the innershells of atoms

1021 3×10–13 4.14×106 X-rays

1022 3×10–14 4.14×107 X-rays

1023 3×10–15 4.14×108 Gamma rays: Corre-sponds to processesthat occur within nuclei

Page 6: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.For more details see www.physicsofmatter.com

Table 3.1 The SI base units. Notice that, with the exception of the kilogram, the definitions are in termsof physical phenomena and not defining artefacts. Although the definitions seem obscure, the language iscarefully chosen in order to make accurate realisations of the standards feasible.The copyright of this table belongs to the National Physical Laboratory. It has been reproduced withpermission from with the National Physical Laboratory. It may be used freely for educational purposes,but its source (NPL) must be acknowledged.

Quantity:Unit (abbreviation) DefinitionTime:second (s)

The second is the duration of 9,192,631,770 periods of the radiation correspondingto the transition between two hyperfine levels of the ground state of the caesium-133 atom.

Length:metre (m)

The metre is the length of the path travelled by light in vacuum during a time inter-val 1/299,792,458 of a second.

Note: This defines 299,792,458 ms–1 as the exact speed of light in a vacuum.

Mass:kilogram (kg)

The kilogram is the unit of mass; it is equal to the mass of the international proto-type of the kilogram

Electric Current:ampere (A)

The ampere is that constant current which, if maintained in two straight parallelconductors of infinite length, of negligible circular cross-section, and placed 1 metreapart in vacuum, would produce between these conductors a force equal to2 × 10–7 newton, per metre of length.

Thermodynamic temperature:kelvin (K)

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the ther-modynamic temperature of the triple point of pure water.

Amount of substance:mole (mol)

The mole is the amount of substance of a system which contains as many elemen-tary entities as there are atoms in 0.012 kilogram of carbon 12.

Luminous Intensity:candela (cd)

The candela is the luminous intensity, in a given direction, of a source that emitsmonochromatic radiation 540 × 1012 hertz and that has a radiant intensity of1/683 watt per steradian

Table 3.2 SI supplementary units. The copyright of this table belongs to the National Physical Labora-tory. It has been reproduced with permission from with the National Physical Laboratory. It may be usedfreely for educational purposes, but its source (NPL) must be acknowledged.

Quantity Name Symbol

Expression interms of SI baseunits

plane angle radian rad m m–1 =1solid angle steradian sr m2 m–2 =1

Page 7: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.For more details see www.physicsofmatter.com

Table 3.3 SI derived units with special names. The name of the units are all written with lower caseletters (with the exception of degree Celsius), but that the symbols for the units have upper case letters: becareful to distinguish between seimens (S) and seconds (s). The symbol for the ohm, Ω, is the greek letter‘W’, called omega.The copyright of this table belongs to the National Physical Laboratory. It has been reproduced with per-mission from with the National Physical Laboratory. It may be used freely for educational purposes, butits source (NPL) must be acknowledged.

Quantity Name SymbolExpression in terms ofother units

Expression in terms ofSI base units

frequency hertz Hz s–1

force newton N m kg s–2

pressure

stress

pascal Pa N m–2 m–1 kg s–2

energy

work

quantity of heat

joule J N m m2 kg s–2

power

radiant flux

watt W J s–1 m2 kg s–3

electric charge

quantity of electricity

coulomb C s A

electrical potential

potential difference

electromotive force

volt V W A–1 m2 kg s–3 A–1

capacitance farad F C V–1 m2 kg –1 s4 A–1

electric resistance ohm Ω V A–1 m2 kg s–3 A2

electric conductance siemens S A V–1 m2 kg –1 s3 A–1

magnetic flux weber Wb V s m2 kg s–2 A–1

magnetic flux density tesla T Wb m–2 kg s–2 A–1

inductance henry H Wb A–1 m2 kg s–2 A–2

Celsius temperature degree celsius °C K

luminous flux lumen lm cd sr

illuminance lux lx lm m–2 m–2 cd sr

Page 8: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.1 The density of various gases at STP in units of kg m–3. The lines in the table separategases of monatomic, diatomic and polyatomic molecules.

GasA(u)

Density(kg m–3)

Helium, He 4.0030 0.1786Neon, Ne 20.180 0.9003Argon, Ar 39.948 1.782Krypton, Kr 83.800 3.739Xenon, Xe 131.29 5.858Hydrogen, H2 2.0160 0.08995Nitrogen, N2 28.014 1.250Oxygen, O2 31.998 1.428Chlorine, Cl2 70.906 3.164

Methane, CH4 16.043 0.7158Ethane, C2H6 30.070 1.342Propane, C3H8 44.097 1.968

Table 5.2 The major components of dry atmospheric air. Typically water vapour is also present at alevel of roughly 0.5%.

GasMolecular

mass% by

volume

Nitrogen, N2 28.01 78.09Oxygen, O2 32.00 20.95Argon, Ar 39.95 0.93Carbon dioxide, CO2 44.00 0.03

Page 9: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.3 The molar volume of various gases at STP in units of 10–3 m3. The lines in the table sepa-rate gases of monatomic, diatomic and polyatomic molecules.

Gas

Molardensity

(m–3)

Massof 1 mol

(×××× 10–3 kg)

Molarvolume

(×××× 10–3 m3)

Helium, He 44.6158 4.0030 22.4136Neon, Ne 44.6152 20.180 22.4139Argon, Ar 44.6162 39.948 22.4134Krypton, Kr 44.6168 83.800 22.4131Xenon, Xe 44.6174 131.29 22.4128Hydrogen, H2 44.6160 2.0160 22.4135Nitrogen, N2 44.6168 28.014 22.4131Oxygen, O2 44.6162 31.998 22.4134Chlorine, Cl2 44.6172 70.906 22.4129

Methane, CH4 44.6170 16.043 22.4130Ethane, C2H6 44.6178 30.070 22.4126Propane, C3H8 44.6182 44.097 22.4124

Table 5.4 Values of the expansivity coefficients ββββV and ββββP for gases whose initial pressure is 0.1333MPa at 0 °C, valid in the temperature range 0 °C to 100 °C. The pressure 0.1333 MPa is a littlegreater than normal atmospheric pressure.

Gas ββββV (°C–1) ββββP (°C–1)

Helium, He 3.6580 × 10–3 3.6605 × 10–3

Hydrogen, H2 3.6588 × 10–3 3.6620 × 10–3

Nitrogen, N2 3.6735 × 10–3 3.6744 × 10–3

Air 3.6728 × 10–3 3.6744 × 10–3

Neon, Ne 3.6600 × 10–3 3.6617 × 10–3

Table 5.5 Comparison of experimental and theoretical expansivities of gases. See also Table 5.4.

Gas ββββV (°C–1)% difference betweentheory and experiment

Helium, He 3.6580 × 10–3 – 0.082Hydrogen, H2 3.6588 × 10–3 – 0.060Nitrogen, N2 3.6735 × 10–3 + 0.342Air 3.6728 × 10–3 + 0.323Neon, Ne 3.6600 × 10–3 – 0.027

Page 10: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.6 The molar heat capacities at constant pressure CP(J K–1 mol–1) for the monatomic noble gases.These data are graphed in Figure 5.3.• The shaded figures correspond to data taken in the liquid or solid phase. For each gas the boiling

temperature and melting temperature are separated by less than 5 K.• The data between the two double lines is from a separate source from the rest of the table. Notice

that the extra measurement resolution still shows agreement between the heat capacities of the dif-ferent gases.

T(K) He Ne Ar Kr Xe

50 — — 24.8 25.1 25.1

100 — — 20.8 31.6 28.2

150 — — 20.8 20.8 33.6

200 — — 20.8 20.8 20.8

298.15 20.786 20.786 20.786 20.786 20.786

400 20.8 20.8 20.8 20.8 20.8

600 20.8 20.8 20.8 20.8 20.8

800 20.8 20.8 20.8 20.8 20.8

1000 20.8 20.8 20.8 20.8 20.8

1500 20.8 20.8 20.8 20.8 20.8

2000 20.8 20.8 20.8 20.8 20.8

2500 20.8 20.8 20.8 20.8 20.8

Table 5.7 The molar heat capacities at constant pressure CP(J K–1 mol–1) for some diatomic gases.These data are graphed in Figure 5.4.

• The shaded figures correspond to data taken in the liquid or solid phase.

T(K) H2 02 N2 F2 Cl2 Br2 I250 — 46.1 41.5 — 29.2 33.3 35.8

100 — 29.1 29.1 — 42.3 43.6 45.6

150 — 29.1 29.1 — 51.0 49.2 49.6

200 — 29.1 29.1 — 54.2 53.8 51.5

400 29.2 30.1 29.2 33.0 35.3 36.7 80.3

600 29.3 32.1 30.1 35.2 36.6 37.3 37.6

800 29.6 33.7 31.4 36.3 37.2 37.5 37.8

1000 30.2 34.9 32.7 37.0 37.5 37.7 37.9

1500 32.3 36.6 34.9 37.9 38.0 38.0 38.2

2000 34.3 37.8 36.0 38.4 38.3 38.2 38.5

2500 36.0 38.9 36.0 38.8 38.6 38.5 38.8

Page 11: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.8 The ratio of the principal heat capacities (γ = CP /CV) of some gases. The shaded results corre-spond to a pressure of 200 atmospheres (20 MPa). The notes below each section of the table summarisethe results for that class of gases. There appears to be a trend towards a reduction in γ as the temperatureis increased. Where no temperature shown, the temperature of the measurement is not known but isprobably either 0 °C or close to 20 °C.Gas T(°C) T(K) γγγγ Gas T(°C) T(K) γγγγMonatomic gases Triatomic gasesHe 0.0 273.20 1.630 O3 — — 1.290Ar 0.0 273.20 1.667 H20 100.0 373.20 1.334Ne 19.0 292.20 1.642 CO2 10.0 283.20 1.300Kr 19.0 292.20 1.689 CO2 300.0 573.20 1.220Xe 19.0 292.20 1.666 CO2 500.0 773.20 1.200Hg 310.0 583.20 1.666 NH3 — — 1.336All the above results are close to 1.66 N20 — — 1.324Diatomic gases H2S — — 1.340H2 10.0 283.20 1.407 CS2 — — 1.239N2 20.0 293.20 1.401 SO2 20.0 293.20 1.260O2 10.0 283.20 1.400 SO2 500.0 773.20 1.200CO 1800.0 2073.2 1.297 All the above results are close to 1.3NO — — 1.394 Polyatomic gasesMost of the above results are close to 1.4 CH4 — — 1.313C: Air C2H6 — — 1.220Air -79.3 193.90 1.405 C3H8 — — 1.130Air 10.0 283.20 1.401 C2H2 — — 1.260Air 500.0 773.20 1.357 C2H4 — — 1.264Air 900.0 1173.2 1.320 C6H6 20.0 293.20 1.400Air 0.0 273.20 1.828 C6H6 99.7 372.90 1.105Air -79.3 193.90 2.333 CHCl3 30.0 303.20 1.110Most of the above results are close to 1.4 except for CHCl3 99.8 373.00 1.150those shaded. CCl4 — — 1.130

The above results are between 1.1 and 1.4

Page 12: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.9 The number of degrees of freedom p for the molecules of a variety of gases predicted from themeasured value of γ according to Equation 5.48. Values are plotted only for those gases included in Ta-ble 5.8.

Gas γγγγ T(K) p Gas γγγγ T(K) p

A: Some monatomic gases D: Some triatomic gasesHe 1.630 273.20 3.17 O3 1.290 — 6.90Ar 1.667 273.20 3.00 H20 1.334 373.20 5.99Ne 1.642 292.20 3.12 CO2 1.300 283.20 6.67Kr 1.689 292.20 2.90 CO2 1.220 573.20 9.09Xe 1.666 292.20 3.00 CO2 1.200 773.20 10.00Hg 1.666 583.20 3.00 NH3 1.336 — 5.95

N20 1.324 — 6.17B: Some diatomic gases H2S 1.340 — 5.88H2 1.407 283.20 4.91 CS2 1.239 — 8.37N2 1.401 293.20 4.99 SO2 1.260 293.20 7.69O2 1.400 283.20 5.00 SO2 1.200 773.20 10.00CO 1.297 2073.2 6.73NO 1.394 — 5.08 E: Some polyatomic gases

CH4 1.313 — 6.39C: Air C2H6 1.220 — 9.09Air 1.405 193.90 4.94 C3H8 1.130 — 15.4Air 1.401 283.20 4.99 C2H2 1.260 — 7.69Air 1.357 773.20 5.60 C2H4 1.264 — 7.58Air 1.320 1173.2 6.25 C6H6 1.400 293.20 5.00Air 1.828 273.20 2.42 C6H6 1.105 372.90 19.0Air 2.333 193.90 1.50 CHCl3 1.110 303.20 18.2

CHCl3 1.150 373.00 13.3CCl4 1.130 — 15.4

Page 13: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.11 Measured values of the thermal conductivities of some gases. The units are 10–2 W m–1 K–1.For example, the thermal conductivity of argon at 273.2 K is 1.63 × 10–2 W m–1 K–1.

Temperature (K)Gas 73.2 173.2 273.2 373.2 1273

Monatomic gasesHelium, He 5.95 10.45 14.22 17.77 41.90

Neon, Ne 1.74 3.37 4.65 5.66 12.80

Argon, Ar — 1.09 1.63 2.12 5.00

Krypton, Kr — 0.57 0.87 1.15 2.90

Xenon, Xe — 0.34 0.52 0.70 1.90

Radon, Ra — — 0.33 0.45 —

Diatomic gasesHydrogen, H2 5.09 11.24 16.82 21.18 —

Fluorine, Fl2 — 1.56 2.54 3.47 —

Chlorine, Cl2 — — 0.79 1.15 —

Bromine, Br2 — — 0.40 0.60 —

Nitrogen, N2 — 1.59 2.40 3.09 7.40

Oxygen, O2 — 1.59 2.45 3.23 8.60

Carbon monoxide, CO — 1.51 2.32 3.04 —

Air, N2/O2 — 1.58 2.41 3.17 7.60

Polyatomic gasesAmmonia, NH4 — — 2.18 3.38 —

Carbon dioxide, CO2 — — 1.45 2.23 7.90

Ethane, C2H6 — 1.80 — — —

Ethene, C2H4 — 1.40 — — —

Methane, CH4 — 1.88 3.02 — —

Sulpur dioxide, SO2 — — 0.77 — —

Water/Steam, H20 — — 1.58 2.35 —

Page 14: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.12 Calculated and experimental values for κ for argon at various temperatures. Also shown isthe inferred value(a) for the molecular diameter.

T (K)Data

(W m–1 K–1)Prediction(W m–1 K–1) Ratio

a(nm)

173.2 1.09 × 10–2 5.23 × 10–3 2.08 0.21

273.2 1.63 × 10–2 6.57 × 10–3 2.48 0.19

373.2 2.12 × 10–2 7.68 × 10–3 2.76 0.18

1273 5.00 × 10–2 14.19 × 10–3 3.52 0.16

Table 5.13 Results from an analysis of the thermal conductivity data assuming the data has the form κ =AT x. The significance of a is discussed in the text.

Gas A x a (nm)

Helium, He 30.91 × 10 – 4 0.685 0.108

Neon, Ne 9.14 × 10 – 4 0.695 0.198

Argon, Ar 2.34 × 10 – 4 0.754 0.391

Krypton, Kr 0.93 × 10 – 4 0.806 0.620

Xenon, Xe 0.42 × 10 – 4 0.857 0.923

Radon, Ra 0.12 × 10 – 4 0.994 1.73

Page 15: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.14 The speed of sound in a selection of gases listed in order of increasing molecular mass M inatomic mass units u. The shaded entries in the table are gases that have a ‘partner’ gas in the table withthe same molecular mass. See the text for more details.

Gas M T(K)

csound

(ms–1 )

Hydrogen, H2 2.0 273.2 1286

Helium, He 4.0 273.2 971.9

Deuterium, D2 4.0 273.2 890

Methane, CH4 16.0 273.2 430

Ammonia, NH3 18.0 273.2 415

Water (steam), H2O 18.0 373.2 473

Water (steam), H2O 18.0 407.2 494

Fluorine, F2 19.0 373.2 332

Heavy Water (steam), D2O 20.0 373.2 451

Neon, Ne 20.2 273.2 434

Acetylene, C2H2 26.0 273.2 329

Nitrogen, N2 28.0 273.2 337

Carbon monoxide, CO 28.0 273.2 337

Ethylene, C2H4 28.0 273.2 318

Ethane, C2H6 30.0 283.2 308

Ethane, C2H6 30.0 304.2 316

Nitric oxide, NO 30.0 283.2 324

Nitric oxide, NO 30.0 289.2 334

Oxygen, O2 32.0 303.2 332

Methanol, CH3OH 32.0 370.2 335

Hydrogen sulphide, H2S 33.1 273.2 310

Hydrogen chloride, HCl 36.5 273.2 296

Argon, Ar 40.0 273.2 307.8

Nitrous oxide, N2O 44.0 298.2 268

Propane, C3H8 44.0 273.2 238

Carbon dioxide, CO2 44.0 273.2 259

Ethanol, C2H5OH 46.0 326.2 258

Sulphur dioxide, SO2 64.0 273.2 211

Chlorine, Cl2 70.9 293.2 219

Carbon disulphide, CS2 76.0 273.2 192

Benzene, C6H6 78.0 273.2 177

Bromine, Br 2 79.9 331.2 149

Hydrogen bromide, HBr 80.9 273.2 200

Krypton, Kr 83.8 273.2 213

Cyclohexane, C6H12 84.0 303.2 181

Hydrogen iodide, HI 127.9 273.2 157

Xenon, Xe 131.3 273.2 170

Sulphur hexafluoride, SF6 146.0 284.2 133

Carbon tetrachloride, CCl4 153.8 370.2 145

Iodine, I2 263.8 453.2 138

Page 16: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.15 Details of gases whose molecules have relative molecular mass of 4 and 28. The table en-ables a detailed comparison of theoretical expectations and experimental results for the dependence ofthe speed of sound upon molecular complexity.

Gas M

Number ofatoms permolecule Expected γγγγ T(K)

Csound

(theoretical)√√√√(γγγγRT/M)

Csound

(experimental)Table 5.14

He 4.0 1 1.667 (p=3) 273.2 972.8 971.9

D2 4.0 2 1.400 (p=5) 273.2 891.5 890.0

N2 28 2 1.400 (p=5) 273.2 336.9 337.0

CO 28 2 1.400 (p=5) 273.2 336.9 337.0

CH2CH2 28 6 1.2 (p=10?) 273.2 ≈312 318.0

Page 17: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.16 The relative dielectric permittivity ε of various gases at atmospheric pressure (1.013 × 105

Pa). For pressures below atmospheric pressure ε varies linearly with pressure. The relative permittivityof vacuum is exactly 1, and all the gases in the table have values of ε within 1% of unity. The tableshows the value of 104 (ε – 1), which clearly shows the variation between gases. The table also showsthe relative molecular mass of the molecules of the gas.

Different experimenters find different values of ε and the data for 104 (ε – 1) should all be treated as ac-curate to only about 10%. The entry for ethanol has two alternative values to indicate two particularlydivergent values for 104 (ε – 1). For other entries I have taken averages of tabulated results, or ignoredentries in tables that were clearly in error.

The data refer to values obtained with electric fields oscillating at radio frequencies, ≈ 106 Hz. Theshaded entries in the table, i.e. helium, hydrogen, argon, oxygen, nitrogen, and air, are typical results forε valid from DC up to optical frequencies ≈ 1015 Hz. The variation over that range is within ±2 of theleast significant figure in the table.

Gas M T (°C ) 104(εεεε – 1)Monatomic gasesHelium, He 4.0 20 0.65Neon, Ne 20.2 0 1.3Argon, Ar 40.0 20 5.16Mercury, Hg 200.6 180 7.4Mercury, Hg 200.6 180 7.4Diatomic gasesHydrogen, H2 2.0 0 2.72Hydrogen, H2 2.0 20 2.54Nitrogen, N2 28.0 20 5.47Oxygen, O2 32.0 20 4.94Air (dry, no CO2) 28.8 20 5.36Carbon monoxide, CO 28.0 23 6.92Triatomic gasesCarbon dioxide, CO2 44.0 0 9.88Carbon dioxide, CO2 44.0 20 9.22Carbon dioxide, CO2 44.0 100 7.23Nitrous oxide, N2O 44.0 25 11Water (steam) H2O 18.0 100 60Polyatomic gasesEthane, C2H6 30.0 0 15Benzene, C6H6 65.0 100 32.7Methanol, CH3OH 32.0 100 57Ethanol, C2H5OH 44.0 100 61 or 78Ammonia, NH3 18.0 0 8.34Ammonia, NH3 18.0 100 4.87

Page 18: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.18 The refractive index of various gases as 106(nlight–1) together with the molecular weight ofthe molecules of the gas. The data refer to gases at STP (P = 0.1013 MPa: T = 0 °C). The refractive indexis that appropriate to the bright yellow ‘D’ lines in the emission spectrum of sodium vapour and variesslightly with frequency.

Gas M (nlight–1) ×××× 106

Hydrogen, H2 2 132

Helium, He 4 36

Methane, CH4 18 444

Water vapour, H2O 18 254

Ammonia, NH4 18 376

Neon, Ne 20 67

Nitrogen, N2 28 297

Carbon monoxide, CO 28 338

Air 29 293

Nitric oxide, NO 30 297

Oxygen, O2 32 271

Methanol, CH3OH 32 586

Hydrogen sulphide, H2S 34 633

Hydrogen chloride, HCl 36 447

Fluorine, F2 38 195

Argon, Ar 40 281

Nitrous oxide, N2O 44 516

Carbon dioxide, CO2 44 451

Ethanol, C2H5OH 46 878

Sulphur dioxide, SO2 64 686

Chlorine, Cl2 71 773

Carbon disulphide, CS2 76 481

Benzene, C6H6 78 1762

Hydrogen bromide, HBr 81 570

Krypton, Kr 84 427

Hydrogen iodide, HI 128 906

Xenon, Xe 131 702

Bromine, Br2 160 1132

Page 19: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 5.19 Comparison of the experimental values of the refractive index of gases with the prediction oftheir refractive index based on Equation 2.17. Before comparing the data, the dielectric constant datahave been corrected to STP using factors discussed in §5.6.2. The first three entries in the table are fornon-polar gases and the last two are for polar gases. Notice the good agreement between theory and ex-periment for the non-polar gases, and the massive disagreement for water vapour.

Gas 104(εεεε – 1) TCorrection

factor

104(εεεε – 1)

(STP)

Prediction

106( εεεε – 1)

Experiment

106(nlight – 1)

Non-polar gasesHe 0.65 20 293/273 0.70 35 36Ne 1.3 0 1 1.3 65 67Ar 5.16 20 293/273 5.54 277 281Polar gasesNH3 8.34 0 1 8.34 416 376H2O 60 100 (293/273)2 69.1 3449 254

Page 20: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.1 The approximate values of the density of some solids.Solid ρρρρ(kg m–3)MetalsAluminium/Dural 2700–2800Phosphor–bronze 8900Brass 8400–8500Gold (22 carat) 17500Gold (9 carat) 11300Mild steel 7900Stainless steel 7700–7800Wrought iron 7800Invar 8000Platinum/Iridium 21500WoodBalsa 200Pine 500Oak 700Beech 750Teak 850Ebony 1200Natural materialsAmber 1100Beeswax 950Granite 2700Ice 920Coal 1.4–1.6Mica 2800

Page 21: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.2 The density of the elements (kg m–3). Also shown is the atomic number Z and the atomicweight A in units of the atomic mass unit u = 1.66 × 10–27 kg. For example, the density of magnesium,whose atoms each contain 12 protons, is 1.738 × 103 kg m–3. The mass of an atom of magnesium is24.31 × 1.66 × 10–27 kg. The densities of elements that are normally gaseous at room temperature areevaluated at a temperature just below their freezing point at atmospheric pressure. For helium, whichdoes not solidify at atmospheric pressure at any temperature, the density is evaluated at 4.2 K and 25atmospheres (25 ×105 Pa) pressure which is sufficient to cause solidification.

Z Element and symbol A Density Z Element and symbol A Density1 Hydrogen, H 1.008 892 Helium, He 4.003 120 51 Antimony, Sb 121.7 66923 Lithium , Li 6.941 533 52 Tellurium, Te 127.6 62474 Beryllium, Be 9.012 1846 53 Iodine, I 126.9 49535 Boron, B 10.81 2466 54 Xenon, Xe 131.3 35606 Carbon (graphite), C 12.01 2266 55 Caesium, Cs 132.9 19006 Carbon (diamond), C 12.01 3513 56 Barium, Ba 137.3 35947 Nitrogen, N 14.01 1035 57 Lanthanum, La 138.9 61748 Oxygen, O 16.00 1460 58 Cerium, Ce 140.1 67119 Fluorine, F 19.00 1140 59 Praseodymium, Pr 140.9 677910 Neon, Ne 20.18 1442 60 Neodymium, Ne 144.2 7000

11 Sodium, Na 22.99 966 61 Promethium, Pm 145.0 722012 Magnesium, Mg 24.31 1738 62 Samarium, Sm 150.4 753613 Aluminium, Al 26.98 2698 63 Europium, Eu 152.0 524814 Silicon, Si 28.09 2329 64 Gadolinium, Gd 157.2 787015 Phosphorus, P 30.97 1820 65 Terbium, Tb 158.9 826716 Sulphur, S 32.06 2086 66 Dysprosium, Dy 162.5 853117 Chlorine, Cl 35.45 2030 67 Holmium, Ho 164.9 879718 Argon, Ar 39.95 1656 68 Erbium, Er 167.3 904419 Potassium, K 39.10 862 69 Thulium, Th 168.9 932520 Calcium, Ca 40.08 1530 70 Ytterbium, Yb 173.0 6966

21 Scandium, Sc 44.96 2992 71 Lutetium, Lu 175.0 984222 Titanium, Ti 47.90 4508 72 Hafnium, Hf 178.5 1327623 Vanadium, V 50.94 6090 73 Tantalum, Ta 180.9 1667024 Chromium, Cr 52.00 7194 74 Tungsten, W 183.9 1925425 Manganese, Mn 54.94 7473 75 Rhenium, Re 186.2 2102326 Iron, Fe 55.85 7873 76 Osmium, Os 190.2 2258027 Cobalt, Co 58.93 8800 77 Iridium, Ir 192.2 2255028 Nickel, Ni 58.70 8907 78 Platinum, Pt 195.1 2145029 Copper, Cu 63.55 8933 79 Gold, Au 197.0 1928130 Zinc, Zn 65.38 7135 80 Mercury, Hg 200.6 13546

31 Gallium, Ga 69.72 5905 81 Thallium, Th 204.4 1187132 Germanium, Ge 72.59 5323 82 Lead, Pb 207.2 1134333 Arsenic, As 74.92 5776 83 Bismuth, Bi 209.0 980334 Selenium, Se 78.96 4808 84 Polonium, Po 209.0 940035 Bromine, Br 79.90 3120 85 Astatine, At 210.0 —36 Krypton, Kr 83.80 3000 86 Radon, Rn 222.0 440037 Rubidium, Rb 85.47 1533 87 Francium, Fr 223.0 —38 Strontium, Sr 87.62 2583 88 Radium, Ra 226.0 500039 Yttrium, Y 88.91 4475 89 Actinium, Ac 227.0 1006040 Zirconium, Zr 91.22 6507 90 Thorium, Th 232.0 11725

41 Niobium, Nb 92.91 8578 91 Protractinium, Pa 231.0 1537042 Molybdenum, Mo 95.94 10222 92 Uranium, U 238.0 1905043 Technetium, Tc 97.00 11496 93 Neptunium, Np 237.0 2025044 Ruthenium, Ru 101.1 12360 94 Plutonium, Pu 244.0 1984045 Rhodium, Rh 102.9 12420 95 Americium, Am 243.0 1367046 Palladium, Pd 106.4 11995 96 Curium, Cm 247.0 1330047 Silver, Ag 107.9 10500 97 Berkelium, Bk 247.0 1479048 Cadmium, Cd 112.4 8647 98 Californium, Cf 251.0 1510049 Indium, In 114.8 7290 99 Einsteinium, Es 254.0 —50 Tin, Sn 118.7 7285 100 Fermium, Fm 257.0 —

Page 22: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.3 The atomic number Z, atomic mass A and the density ρ of the lanthanide elements extractedfrom Table 7.2. The row marked %A is the % density increase (compared with La) expected if the sepa-ration between atoms is unchanged and only the atomic mass changes. The row marked %ρ is the %density increase (compared with La) actually found. It shows that the 59% density increase is muchgreater than can be explained by the 26% increase in atomic mass alone.

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Z 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

A 138.9 140.1 140.9 144.2 145 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0%A 0 0.87 1.44 3.84 4.39 8.28 9.40 13.21 14.41 16.99 18.74 20.41 21.62 24.57 25.96

ρρρρ 6174 6711 6779 7000 7220 7536 5248 7870 8267 8531 8797 9044 9325 6966 9842

%ρρρρ 0 8.7 9.8 13.4 16.9 22.1 -15.0 27.4 33.9 38.2 42.5 46.5 51.4 12.8 59.4

Page 23: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.4 The bulk modulus of the elements in their solid state. The temperature of the measurementsvaries considerably and there are discrepancies of the up to 50% in figures from different sources.

Z ElementB

(GPa) Z ElementB

(GPa) Z ElementB

(GPa)1 Hydrogen 0.2 29 Copper 137.8 59 Praseodymium 30.62 Helium 0.1 30 Zinc 72.0 60 Neodymium 32.73 Lithium 11.1 31 Gallium 56.9 61 Promethium 35.04 Beryllium 100.3 32 Germanium 7.7 62 Samarium 39.45 Boron 178.0 33 Arsenic 22.0 63 Europium 14.76 Carbon (diamond) 542.0 34 Selenium 8.3 64 Gadolinium 38.36 Carbon (graphite) 33.0 35 Bromine 1.9 65 Terbium 39.97 Nitrogen 1.2 36 Krypton 3.5 66 Dysprosium 38.48 Oxygen 37 Rubidium 1.9 67 Holmium 39.79 Fluorine 38 Strontium 1.2 68 Erbium 41.1

10 Neon 1.1 39 Yttrium 36.6 69 Thulium 39.711 Sodium 6.4 40 Zirconium 83.3 70 Ytterbium 13.312 Magnesium 44.7 41 Niobium 170.2 71 Lutetium 41.113 Aluminum 75.5 42 Molybdenum 231.0 72 Hafnium 109.014 Silicon 98.8 43 Technetium 297.0 73 Tantalum 200.015 Phosphorous (Red) 10.9 44 Ruthenium 320.8 74 Tungsten 323.215 Phosphorous(White) 4.9 45 Rhodium 270.4 75 Rhenium 372.016 Sulphur 17.8 46 Palladium 182.0 76 Osmium 418.017 Chlorine 47 Silver 100.7 77 Iridium 355.018 Argon 2.7 48 Cadmium 41.6 78 Platinum 228.019 Potassium 3.1 49 Indium 41.1 79 Gold 217.020 Calcium 17.2 50 Tin 58.2 80 Mercury 25.021 Scandium 43.5 51 Antimony 42.0 81 Thallium 35.922 Titanium 105.1 52 Tellurium 23.0 82 Lead 45.823 Vanadium 161.9 53 Iodine 7.7 83 Bismuth 31.324 Chromium 160.1 54 Xenon 3.6 84 Polonium 26.025 Manganese 118.0 55 Caesium 1.6 29 Copper 137.826 Iron 169.8 56 Barium 10.3 30 Zinc 72.027 Cobalt 191.4 57 Lanthanum 24.328 Nickel 186.0 58 Cerium 23.9

Page 24: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.5 Values of the bulk modulus of the noble gas solids calculated according to Equation 7.6,compared with experimental data from Table 7.4.

SubstanceNe Ar Kr Xe

σ (× 10–10 m) 2.74 3.44 3.65 3.98ε (× 10–3 eV) 3.1 10.3 14.0 20.075.13ε/σ3(×109 Pa) 1.81 3.18 3.46 3.81Data 1.1 2.7 3.5 3.6Ratio (theory/expt) 1.65 1.18 0.99 1.06

Table 7.6 Values of the bulk modulus of the alkali metals calculated according to Equation 7.11, com-pared with experimental data from Table 7.4.

SubstanceLi Na K Rb Cs

n (× 1028 m–3) 4.63 2.53 1.33 1.08 0.86εF (× eV) 4.7 3.14 2.05 1.78 1.532nεF /3(×109 Pa) 23.2 8.5 2.9 2.06 1.41Data 11.1 6.4 3.1 1.9 1.6Ratio (theory/expt) 2.10 1.33 0.94 1.08 0.88

Page 25: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.7 The coefficient of linear expansivity α for various solids at temperatures around room temperature. (Kaye &Laby ). The volume expansivity of the elements is given by β = 3α as shown in Example 7.4.

Elemental metals αααα (°C–1) Miscellaneous αααα (°C–1) Alloys αααα (°C–1)

Aluminium (Al) 23 Brick 3–10 Brass (68% Cu/32% Zn) 18–19

Antimony (Sb) ≈ 11 Cement and concrete 10–14 Bronze (80% Cu/20% Sn) 17–18

Bismuth (Bi) ≈ 13 Marble 3–15 Constantan (60% Cu/40% Ni) 15–17

Cadmium (Cd) ≈ 30 Lead glass (46% pbo) ≈ 8 Duralumin (95% Al/4% Cu) 23

Chromium (Cr) ≈ 7 Typical glass ≈ 8–10 Magnalium (90% Al/10% Mg) ≈ 23

Cobalt (Co) ≈ 12 Porcelain 2–6 Nickel steel(10% Ni/90%Fe) 13

Copper (Cu) 16.7 Silica 0.4 Nickel steel(36% Ni/64%Fe) 0–1.5

Gold (Au) 13 Typical wood (along grain) 3–5 Nickel steel(43% Ni/57%Fe) 7.9

Iridium (Ir) 6.5 Typical wood (across grain) 35–60 Nickel steel(58% Ni/42%Fe) 11.4

Iron (Fe) 11.7 Carbon steel ≈11

Lead (Pb) 29 Plastics Stainless steel (74%Fe/18%Cr/8%Ni) 29

Magnesium (Mg) 25 Epoxy resins 45–65 Phosphor-bronze 17

Nickel (Ni) 12.8 Epoxy resins 45–65 Platinum–Iridium (90% Pt/10% Ir) 8.7

Palladium (Pd) ≈ 11 Polycarbonates 66

Platinum (Pt) 8.9 Low-density polyethylene 40–150 CarbonRhodium (Rh) 8.4 Medium-density polyethylene 80–220 Diamond 1.0

Silver (Ag) 19 High density polyethylene 200–360 Graphite (polycrystalline) 7.1

Tantalum (Ta) 6.5 Natural rubber 220

Thallium (Tl) ≈ 28 Hard rubber 60

Tin (Sn) ≈ 21 Perspex 50–90

Titanium (Ti) ≈ 9 Nylon 80–280

Tungsten (W) 4.5 Polystyrene 34–210

Vanadium (V) ≈ 8 Polyvinyl chloride (pvc) 70–80

Zinc (Zn) ≈ 30

Page 26: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.8 Expected and experimentally determined values the coefficient of linear expansivity thermalexpansivity α for some alloys and their component metals.

Alloy compositionExpected(see text)

Experimentalαααα ( °C–1 )

Aluminium alloysDuralumin (95% Al/4% Cu) 22.5 × 10–6 23 × 10–6

Magnalium (90% Al/10% Mg) 23.2 × 10–6 ≈ 23 × 10–6

Aluminium — 23 × 10–6

Copper — 16.7 × 10–6

Magnesium — ≈25 × 10–6

Copper alloysBrass (68% Cu/32% Zn) 21 × 10–6 18-19 × 10–6

Bronze (80% Cu/20% Sn) 17.6 × 10–6 17-18 × 10–6

Constantan (60% Cu/40% Ni) 15.1 × 10–6 15-17 × 10–6

Copper — 16.7 × 10–6

Zinc — ≈30 × 10–6

Tin — ≈21 × 10–6

Ni — 12.8 × 10–6

Platinum alloysPlatinum-Iridium (90% Pt/10% Ir)

8.66 × 10–6 8.7 × 10–6

Platinum — 8.9 × 10–6

Iridium — 6.5 × 10–6

Iron alloysNickel steel (10% Ni/90%Fe) 11.8 × 10–6 13 × 10–6

Nickel steel(36% Ni/64%Fe) 12.1 × 10–6 0–1.5 × 10–6

Nickel steel(43% Ni/57%Fe) 12.2 × 10–6 7.9 × 10–6

Nickel steel(58% Ni/42%Fe) 12.3 × 10–6 11.4 × 10–6

Stainless steel (74%Fe/18% Cr/8%Ni)

10.9 × 10–6 29 × 10–6

Iron — 11.7 × 10–6

Nickel — 12.8 × 10–6

Chromium — 7 × 10–6

Page 27: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.9 The speed of sound in solids at 20 °C showing cL, the speed of longitudinal waves, and cT, the speed oftransverse (shear waves).

Speed of soundElemental metals cL(ms–1) cT(ms–1)

Aluminium, Al 6374 3111Beryllium, Be 12890 8880Cadmium, Cd 2780 —

Chromium, Cr 6608 4005Copper, Cu 4759 2325Gold, Au 3240 1200Iron, Fe 5957 3224Lead, Pb 2160 700Magnesium, Mg 5823 3163Manganese, Mn 4600 —Molybdenum, Mo 6475 3505Nickel, Ni 5700 3000Niobium, Nb 5068 2092Platinum, Pt 3260 1730Silver, Ag 3704 1698Tantalum, Ta 4159 2036Tin, Sn 3380 1594Titanium, Ti 6130 3182Tungsten, W 5221 2887Uranium, U 3370 1940Vanadium, V 6023 2774Zinc, Zn 4187 2421Zirconium, Zr 4650 2250

Insulators cL(ms–1) cT(ms–1)

Carbon (diamond) 18350 9200Glass (crown) 5660 3420Glass (heavy flint) 5260 2960Glass (pyrex) 5640 3280Quartz crystal X-cut 5720 —Quartz fused 5970 3765Concrete 4250–5250 —Ice (-20°C) ≈3840 —

Plastics cL(ms–1) cT(ms–1)

Polyethylene 2000 3111Polystyrene 2350 1120PVC 2300 —

Rubber 1600 4005

Page 28: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.10 The molar heat capacity at constant pressure CP of the elements at room temperature 25 °C(298.15K). The shaded data are elements that are either liquids or gases at this temperature.

Z Element Aρρρρ

(kg m–3)CP

(J K mol–1) Z Element Aρρρρ

(kg m–3)CP

(J K mol–1)1 Hydrogen, H 1.008 89 28.824 49 Indium, In 114.8 7290 26.742 Helium, He 4.003 120 20.786 50 Tin, Sn 118.7 7285 26.993 Lithium , Li 6.941 533 24.770 51 Antimony, Sb 121.7 6692 25.234 Beryllium, Be 9.012 1846 16.44 52 Tellurium, Te 127.6 6247 25.735 Boron, B 10.81 2466 11.09 53 Iodine, I 126.9 4953 54.4386 Carbon (graphite), C 12.01 2266 8.53 54 Xenon, Xe 131.3 3560 20.7866 Carbon (diamond), C 12.01 3513 6.11 55 Caesium, Cs 132.9 1900 32.177 Nitrogen, N 14.01 1035 29.125 56 Barium, Ba 137.3 3594 28.078 Oxygen, O 16.00 1460 29.355 57 Lanthanum, La 138.9 6174 27.119 Fluorine, F 19.00 1140 31.300 58 Cerium, Ce 140.1 6711 26.9410 Neon, Ne 20.18 1442 20.786 59 Praseodymium, Pr 140.9 6779 27.20

11 Sodium, Na 22.99 966 28.24 60 Neodymium, Ne 144.2 7000 27.4512 Magnesium, Mg 24.31 1738 24.89 61 Promethium, Pm 145.0 7220 26.8113 Aluminium, Al 26.98 2698 24.35 62 Samarium, Sm 150.4 7536 29.5414 Silicon, Si 28.09 2329 20.0 63 Europium, Eu 152.0 5248 27.6615 Phosphorus, P 30.97 1820 23.84 64 Gadolinium, Gd 157.2 7870 37.0316 Sulphur, S 32.06 2086 22.64 65 Terbium, Tb 158.9 8267 28.9117 Chlorine, Cl 35.45 2030 33.907 66 Dysprosium, Dy 162.5 8531 28.1618 Argon, Ar 39.95 1656 20.786 67 Holmium, Ho 164.9 8797 27.1519 Potassium, K 39.10 862 29.58 68 Erbium, Er 167.3 9044 28.1220 Calcium, Ca 40.08 1530 25.31 69 Thulium, Th 168.9 9325 27.03

21 Scandium, Sc 44.96 2992 25.52 70 Ytterbium, Yb 173.0 6966 26.7422 Titanium, Ti 47.90 4508 25.02 71 Lutetium, Lu 175.0 9842 26.8623 Vanadium, V 50.94 6090 24.89 72 Hafnium, Hf 178.5 13276 25.7324 Chromium, Cr 52.00 7194 23.35 73 Tantalum, Ta 180.9 16670 25.3625 Manganese, Mn 54.94 7473 26.32 74 Tungsten, W 183.9 19254 24.2726 Iron, Fe 55.85 7873 25.10 75 Rhenium, Re 186.2 21023 25.4827 Cobalt, Co 58.93 8800 24.81 76 Osmium, Os 190.2 22580 24.7028 Nickel, Ni 58.70 8907 26.07 77 Iridium, Ir 192.2 22550 25.1029 Copper, Cu 63.55 8933 24.44 78 Platinum, Pt 195.1 21450 25.8630 Zinc, Zn 65.38 7135 25.40 79 Gold, Au 197.0 19281 25.42

31 Gallium, Ga 69.72 5905 25.86 80 Mercury, Hg 200.6 13546 27.9832 Germanium, Ge 72.59 5323 23.35 81 Thallium, Th 204.4 11871 26.3233 Arsenic, As 74.92 5776 24.64 82 Lead, Pb 207.2 11343 26.4434 Selenium, Se 78.96 4808 25.36 83 Bismuth, Bi 209.0 9803 25.5235 Bromine, Br 79.90 3120 75.69 84 Polonium, Po 209 9400 25.7536 Krypton, Kr 83.80 3000 20.79 85 Astatine, At 21037 Rubidium, Rb 85.47 1533 31.06 86 Radon, Rn 222 4400 20.78638 Strontium, Sr 87.62 2583 26.40 87 Francium, Fr 223 2410 31.7039 Yttrium, Y 88.91 4475 26.53 88 Radium, Ra 226 5000 25.7640 Zirconium, Zr 91.22 6507 25.36 89 Actinium, Ac 227 10060 27.20

41 Niobium, Nb 92.91 8578 24.60 90 Thorium, Th 232 11725 27.3242 Molybdenum, Mo 95.94 10222 24.06 91 Protractinium, Pa 231 15370 27.2043 Technetium, Tc 97 11496 25.88 92 Uranium, U 238 19050 27.6644 Ruthenium, Ru 101.1 12360 24.06 93 Neptunium, Np 237 20250 29.6245 Rhodium, Rh 102.9 12420 24.98 94 Plutonium, Pu 244 19840 32.8046 Palladium, Pd 106.4 11995 25.98 95 Americium, Am 243 13670 25.8647 Silver, Ag 107.9 10500 25.35 96 Curium, Cm 247 1330 27.7048 Cadmium, Cd 112.4 8647 25.98

Page 29: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.11 The predicted value of the heat capacity of monatomic solids according to the Debye theory.Also tabulated is the fraction of the high temperature limiting value (3R) expected at the temperatureindicated.

T/ΘΘΘΘD C(T) J K–1 mol–1 C(T) /R0 0 00.01 1.944 × 10–3 7.7927 × 10–5

0.02 1.555 × 10–2 6.2342 × 10–4

0.03 5.248 × 10–2 2.1040 × 10–3

0.04 0.1244 4.9873 × 10–3

0.05 0.2430 9.7408 × 10–3

0.06 0.4198 1.6829 × 10–2

0.07 0.6658 2.6693 × 10–2

0.08 0.9903 3.9702 × 10–2

0.09 1.399 5.6074 × 10–2

0.1 1.891 7.5821 × 10–2

0.2 9.195 0.368630.3 15.158 0.607700.4 18.604 0.745850.5 20.588 0.825410.6 21.795 0.873800.7 22.572 0.904950.8 23.098 0.926030.9 23.469 0.940891.0 23.739 0.951731.1 23.942 0.959871.2 24.098 0.966121.3 24.221 0.971031.4 24.318 0.974951.5 24.398 0.978131.6 24.463 0.980741.7 24.517 0.982911.8 24.562 0.984741.9 24.601 0.986292.0 24.634 0.98761

Page 30: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.12 The Debye temperatures θD of several elements as determined by analysis of the T 3 behav-iour of their low-temperature heat capacity (Equation 7.61 ).

Element Z ΘΘΘΘD (K) Element Z ΘΘΘΘD (K)Beryllium 4 1440 Zirconium 40 291C(Diamond) 6 2230 Molybdenum 42 450Magnesium 12 400 Silver 47 225Aluminium 13 428 Cadmium 48 209Titanium 22 420 Tin 50 200Vanadium 23 380 Tantalum 73 240Chromium 24 630 Tungsten 74 400Manganese 25 410 Platinum 78 240Iron 26 470 Gold 79 165Nickel 28 450 Lead 82 105Copper 29 343 Uranium 92 207

Page 31: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.13 The electrical resistivity of the elements which are solid at around room temperature. Takecare with the exponents of values in this table which vary from entry to entry and column to column by46 orders of magnitude.

Z Element ρρρρ(ΩΩΩΩ m) σσσσ(S m–1) Z Element ρρρρ(ΩΩΩΩ m) σσσσ(S m–1)

1 Hydrogen, H — — 49 Indium, In 8.37 × 10–8 1.19 × 107

2 Helium, He — — 50 Tin, Sn 1.1 × 10–7 9.1 × 106

3 Lithium , Li 8.55 × 10–8 1.17 × 107 51 Antimony, Sb 3.9 × 10–7 2.56× 106

4 Beryllium, Be 4 × 10–8 2.5 × 107 52 Tellurium, Te 0.00436 2295 Boron, B 18000 5.56 × 105 53 Iodine, I 1.37 × 10–7 7.30 × 108

6 Carbon (diamond), C 1011 10–11 54 Xenon, Xe — —7 Nitrogen, N — — 55 Caesium, Cs 2 × 10–7 5 × 106

8 Oxygen, O — — 56 Barium, Ba 5 × 10–7 2 × 106

9 Fluorine, F — — 57 Lanthanum, La 5.7 × 10–7 1.75 × 106

10 Neon, Ne — — 58 Cerium, Ce 7.3 × 10–7 1.37 × 106

11 Sodium, Na 4.2 × 10–8 2.38 × 107 59 Praseodymium, Pr 6.8 × 10–7 1.47 × 106

12 Magnesium, Mg 4.38 × 10–8 2.28 × 107 60 Neodymium, Ne 6.4 × 10–7 1.56 × 106

13 Aluminium, Al 2.66 × 10–8 3.77 × 107 61 Promethium, Pm 5 × 10–7 2 × 106

14 Silicon, Si 0.001 1000 62 Samarium, Sm 9.4 × 10–7 1.06 × 106

15 Phosphorus, P 1 × 10–9 1 × 109 63 Europium, Eu 9 × 10–7 1.11 × 106

16 Sulphur, S 2 × 1015 5 × 10–16 64 Gadolinium, Gd 1.34 × 10–6 7.46 × 105

17 Chlorine, Cl — — 65 Terbium, Tb 1.14 × 10–6 8.77 × 105

18 Argon, Ar — — 66 Dysprosium, Dy 5.7 × 10–7 1.75 × 106

19 Potassium, K 6.15 × 10–8 1.63 × 107 67 Holmium, Ho 8.7 × 10–7 1.15 × 106

20 Calcium, Ca 3.43 × 10–8 2.92 × 107 68 Erbium, Er 8.7 × 10–7 1.15 × 106

21 Scandium, Sc 6.1 × 10–7 1.64 × 106 69 Thulium, Th 7.9 × 10–7 1.27 × 106

22 Titanium, Ti 4.2 × 10–7 2.38 × 106 70 Ytterbium, Yb 2.9 × 10–7 3.45 × 106

23 Vanadium, V 2.48 × 10–7 4.03 × 106 71 Lutetium, Lu 7.9 × 10–7 1.27 × 106

24 Chromium, Cr 1.27 × 10–7 7.87 × 106 72 Hafnium, Hf 3.51 × 10–7 2.85 × 106

25 Manganese, Mn 1.85 × 10–6 5.41 × 105 73 Tantalum, Ta 1.25 × 10–7 8.03 × 106

26 Iron, Fe 9.71 × 10–8 1.03 × 107 74 Tungsten, W 5.65 × 10–8 1.77 × 107

27 Cobalt, Co 6.24 × 10–8 1.60 × 107 75 Rhenium, Re 1.93 × 10–7 5.18 × 106

28 Nickel, Ni 6.84 × 10–8 1.46 × 107 76 Osmium, Os 8.12 × 10–8 1.23 × 107

29 Copper, Cu 1.67 × 10–8 5.98 × 107 77 Iridium, Ir 5.3 × 10–8 1.89 × 107

30 Zinc, Zn 5.92 × 10–8 1.69 × 107 78 Platinum, Pt 1.06 × 10–7 9.43 × 106

31 Gallium, Ga 2.7 × 10–7 3.70 × 106 79 Gold, Au 2.35 × 10–8 4.26 × 107

32 Germanium, Ge 0.46 2.1739 80 Mercury, Hg 9.41 × 10–7 1.06 × 106

33 Arsenic, As 2.6 × 10–7 3.85 × 106 81 Thallium, Th 1.8 × 10–7 5.56 × 106

34 Selenium, Se 0.01 100 82 Lead, Pb 2.07 × 10–7 4.84 × 106

35 Bromine, Br — — 83 Bismuth, Bi 1.068 × 10–6 9.36 × 105

36 Krypton, Kr — — 84 Polonium, Po 1.4 × 10–6 7.14 × 105

37 Rubidium, Rb 1.25 × 10–7 8 × 106 85 Astatine, At — —38 Strontium, Sr 2.3 × 10–7 4.35 × 106 86 Radon, Rn — —39 Yttrium, Y 5.7 × 10–7 1.75 × 106 87 Francium, Fr — —

40 Zirconium, Zr 4.21 × 10–7 2.37 × 106 88 Radium, Ra 1 × 10–6 1 × 106

41 Niobium, Nb 1.25 × 10–7 8 × 106 89 Actinium, Ac — —

42 Molybdenum, Mo 5.2 × 10–8 1.92 × 107 90 Thorium, Th 1.3 × 10–7 7.69 × 106

43 Technetium, Tc 2.26 × 10–7 4.42 × 106 91 Protractinium, Pa 1.77 × 10–7 5.65 × 106

44 Ruthenium, Ru 7.6 × 10–8 1.32× 107 92 Uranium, U 3.08 × 10–7 3.25 × 106

45 Rhodium, Rh 4.51 × 10–8 2.22 × 107 93 Neptunium, Np 1.22 × 10–6 8.20 × 105

46 Palladium, Pd 1.08 × 10–7 9.26 × 106 94 Plutonium, Pu 1.46 × 10–6 6.85 × 105

47 Silver, Ag 1.59 × 10–8 6.29 × 107 95 Americium, Am 6.8 × 10–7 1.4706 × 106

48 Cadmium, Cd 6.83 × 10–8 1.46 × 107

Page 32: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.14 The resistivities (Ω m) of three alloys at around room temperature is shown in centre of thethree tables below. On either side of the data for the alloy, are the resistivities of the component ele-ments.

Component 1 Alloy Component 2

Cu Cu(Zn) Zn1.55 × 10–8 6.3 × 10–8 5.5 × 10–8

Pt Pt(10% Ir) Ir9.81 × 10–8 24.8 × 10–8 4.7 × 10–8

Pt Pt(10% Rh) Rh9.81 × 10–8 18.7 × 10–8 4.3 × 10–8

Page 33: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.15 Examples of substances which display superconducting behaviour below the temperatureshown.

Substance Alloy

Low-temperature superconductors: elementsAluminium 1.75

Lead 7.2

Niobium 9.25

Tin 3.72

Vanadium 5.4

Low-temperature superconductors: alloysV3Si 17.1

Nb3Sn 18.3

MgB2 39

High-temperature superconductorsYBa2Cu3O7-δ 93

Hg1Ba2Ca2Cu3O10 133

Page 34: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.16 The relative dielectric permittivity ε of various insulators (and semiconductors) The relativepermittivity of vacuum is exactly 1. All measurements refer to 20°C, but are insensitive to small changes≈ ±10°C around this temperature.

Substance εεεεElementsSilicon Si 11.9Germanium Ge 16.0CeramicsAlumina Al2O3 8.5Strontium titanate SrTiO3 200Strontium zirconate SrZrO3 38GlassQuartz SiO2 4.5Borosilicate glass SiO2 with BO 4 – 5Lead glass SiO2 with PbO 7PlasticsPolyethylene 2.3Polystyrene 2.6Polytetrafluoroethylene PTFE 2.1Polyamide Nylon 3 – 4

Table 7.17 Typical orders of magnitude of the resistivity of some insulating substances at around roomtemperature. The data correspond to values of ρ determined one minute after the electric field is applied.

Insulator ρρρρ (ΩΩΩΩ m) Insulator ρρρρ (ΩΩΩΩ m)

Alumina Al2O3 109 – 1012 Paper ≈1010

QuartzSiO2 ≈1016 PTFE 1015 – 1019

Diamond C 1010 – 1011 Polystyrene 1015 - 1019

Boron B 1010 – 1011 Varnish 107

Iodine I2 1013 Soil 102 –104

Glass 109 – 1012 Distilled water 102 –105

Table 7.18 Typical values (and ranges of values) of the dielectric strength of some insulating substances.

Insulator Vm–1

Alumina, Al2O3 10 – 35 × 106

Sapphire, Al2O3 17 × 106

Quartz, SiO2 25 – 40 × 106

Beryllia 10 – 14 × 106

Page 35: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.19 Thermal conductivity κ of solid elements (W K–1 m–1) as a function of absolute temperature.The shaded entries refer to data above the melting temperature of the element. The labels M, I andSC stand for metal, insulator and semiconductor respectively. The two results for phosphorus at 173.2K correspond to different crystal structures known as ‘black’ and ‘yellow’ phosphorus respectively.

Element Temperature (K)

and type of material 73.2 K 173.2 K 273.2 K 373.2 K 1273 KLithium, Li M 94 86 82 47 59Beryllium, Be M 367 218 168 129 93Boron, B I 72 32 19 11 10Carbon (Graphite), C I 70–220 80–230 75–195 50–130 35–70Carbon (Diamond), C I 1700–4900 1000–2600 700–1700 — —Sodium, Na M 141 142 88 78 60Magnesium, Mg M 160 157 154 150 —Aluminium, Al M 241 236 240 233 92Silicon, Si SC 330 168 108 65 32Phosphorous, P I 20 13/0.25 0.18 0.16 —Sulphur, S I 0.39 0.29 0.15 0.17 —Potassium, K M 105 104 53 45 32Scandium, Sc M 15 16Titanium, Ti M 26 22 21 19 21Vanadium, V M 32 31 31 33 38Chromium, Cr M 120 96.5 92 82 66Manganese, Mn M 7 8 — — —Iron, Fe M 99 83.5 72 56 34Cobalt, Co M 130 105 89 69 53Nickel, Ni M 113 94 83 67 71Copper, Cu M 420 403 395 381 354Zinc, Zn M 117 117 112 104 66Gallium, Ga M 43 41 33 45 —Germanium, Ge SC 113 67 46.5 29 17.5Selenium (c-axis), Se I 6.8 4.8 4.8 — —Rubidium, Rb M 59 58 32 29 22Yttrium, Y M 16.5 17 — — —Zirconium, Zr M 26 23 22 21 23Niobium, Nb M 53 53 55 58 64Molybdenum, Mo M 145 139 135 127 113Technetium, Tc M — 51 50 50 —Ruthenium, Ru M 123 117 115 108 98Rhodium, Rh M 156 151 147 137 —Palladium, Pd M 72 72 73 79 93Silver, Ag M 432 428 422 407 377Cadmium, Cd M 100 97 95 89 445Indium, In M 92 84 76 42 —Tin, Sn M 76 68 63 32 40Antimony, Sb M 33 25.5 22 19 27Tellurium(c-axis), Te I 5.1 3.6 2.9 2.4 6.3

Page 36: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 7.20 Thermal conductivity of a variety materials (WK–1 m–1 ). The tables refer to metallic alloys,refractory materials, i.e. those suitable for use in high temperatures without degradation, and a selectionof everyday materials.

173.2K 273.2K 373.2K 573.2K 873.2K 973.2K 1473.2K

Brass (Cu70%,Zn30%) 89 106 128 146 — — —Bronze (Cu90%,Sn10%) — 53 60 80 — — —Carbon steel 48 50 48.5 54.5 — 30.5 —Silicon steel — 25 28.5 31 — 28 —Stainless steel — 24.5 25 25.5 — 24.8 —Alumina (Al2O3) — 40 28 — 9.2 — 5.7Beryllia (BeO) — 300 213 — 61 — 22Fire brick — — — — 1.1 — 1.3Silica (SiO2) fused quartz — 1.33 1.48 — 2.4 — —Zirconia (ZrO2) — — 1.8 — 2.0 — 2.2

Substance κκκκ (WK–1 m–1) Substance κκκκ (WK–1 m–1) Substance κκκκ (WK–1 m–1)

Brick wall ≈1 Porcelain 1.5 Glass wool 0.037Plaster ≈0.13 Rubber ≈0.2 Cotton wool 0.03Timber ≈ 0.15 Polystyrene ≈0.1 Sheep’s wool 0.05Balsa wood ≈0.06 Glass (crown) 1.1 Nylon 0.25Paper 0.06 Glass (flint) 0.85 Epoxy resins ≈0.2Cardboard 0.21 Glass (pyrex) 1.1 Cellular polystyrene ≈0.04

Page 37: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.1 The density of some elements at their melting temperatures in the liquid state. Also given isthe ratio of the liquid density to the density of the solid at 25 °C (Table 7.2). The four elements whichcontract on melting: (silicon, gallium, germanium and bismuth) are shaded.

Z Element A

Liquiddensity(kg m–3)

Rat io o f liquid/solid density

3 Lithium 6.941 516 0.9685 Boron 10.81 2080 0.84311 Sodium 22.99 930 0.96212 Magnesium 24.31 1580 0.90913 Aluminium 26.98 2400 0.88914 Silicon 28.09 2525 1.08016 Sulphur 32.06 1819 0.87219 Potassium 39.10 824 0.95520 Calcium 40.08 1365 0.89222 Titanium 47.90 4130 0.91623 Vanadium 50.94 5550 0.87825 Manganese 54.94 6430 0.86026 Iron 55.85 7100 0.90128 Nickel 58.70 7800 0.87529 Copper 63.55 8000 0.89530 Zinc 65.38 6600 0.92531 Gallium 69.72 6113.6 1.03532 Germanium 72.59 5530 1.03834 Selenium 78.96 4000 0.83237 Rubidium 85.47 1470 0.95940 Zirconium 91.22 5800 0.89141 Niobium 92.91 7830 0.91342 Molybdenum 95.94 9350 0.91544 Ruthenium 101.1 10900 0.88945 Rhodium 102.9 10850 0.87446 Palladium 106.4 10700 0.89247 Silver 107.9 9300 0.88648 Cadmium 112.4 8020 0.92750 Tin 118.7 6980 0.95851 Antimony 121.7 6490 0.97052 Tellurium 127.6 5770 0.92455 Caesium 132.9 1845 0.97156 Barium 137.3 3323 0.92572 Hafnium 178.5 12000 0.90473 Tantalum 180.9 15000 0.90074 Tungsten 183.9 17600 0.91475 Rhenium 186.2 18800 0.89476 Osmium 190.2 20100 0.89077 Iridium 192.2 20000 0.88778 Platinum 195.1 19700 0.91879 Gold 197.0 17320 0.89881 Thallium 204.4 11290 0.95182 Lead 207.2 10690 0.94283 Bismuth 209.0 10050 1.02592 Uranium 238.0 17907 0.940

Page 38: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.2 The density of substances that are liquids at room temperature. The table gives the name ofthe substance, the chemical formula for its molecules, the relative molecular mass of each molecule, thedensity and the temperature of the density measurement. Only the last three entries in the table are inor-ganic.

Liquid and chemical formula MWDensity(kg m–3 )

Organic liquidsMethanol CH3OH 32 791 @20°CEthanol C2H5OH 46 789 @20°CPropan-1-ol C3H7OH 60 804 @20°CPropan-2-ol C3H7OH 60 786 @20°C2 Methyl-propan-1-ol C4H9OH 74 817 @20°C2 Methyl-propan-2-ol C4H9OH 74 789 @20°CButan-1-ol C4H9OH 74 810 @20°CButan-2-ol C4H9OH 74 808 @20°C2 Methyl-butan-1-ol C5H11O

H88 816 @20°C

2 Methyl-butan-2-ol C5H11OH

88 809 @20°C

Pentanol C5H11OH

88 813 @20°C

Octanol C8H17OH

130 827 @20°C

Aniline C6H7N 86 1026 @15°CAcetone C3H6O 58 787 @25°CBenzene C6H6 78 879 @20°CInorganic liquidsCarbon disulphide CS2 76 1293 @0 °CCarbon tetrachloride CCl4 154 1632 @0 °CWater (see Table 9.3) H2O 18 1000 @0 °C

Page 39: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.3 The density of water (H2O) and heavy water (D2O) as a function of temperature at atmosphericpressure.

T (°C) H2O D2O T (°C) H2O D2O0 999.84 — 40 992.22 1100.02 999.94 — 45 — 1097.94 999.97 — 50 988.04 1095.75 — 1105.6 55 — 1093.36 999.94 — 60 983.20 1090.68 999.85 — 65 — 1087.810 999.70 1106.0 70 977.77 1084.815 — 1105.9 75 — 1081.620 998.20 1105.3 80 971.79 1078.225 — 1104.4 85 — 1074.730 995.65 1103.2 90 965.31 1071.135 — 1101.7 95 — 1067.4

100 958.36 1063.5

Page 40: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.4 The bulk modulus of some liquids at the pressure and temperature shown. The pressure isshown in units of atmospheres, where one atmosphere is approximately 0.1 MPa.

Liquid and formulaP(Atm)

B(GPa)

T(°C)

Organic liquidsMethanol, CH3OH 37 0.97 14.7Ethanol, C2H5OH 1 1.32 0Propan-1-ol, C3H7OH 8 1.04 17.7Propan-2-ol, C3H7OH 8 0.983 17.8Butan-1-ol, C4H9OH 8 1.13 17.4Butan-2-ol, C4H9OH 8 1.03 17.9Ether 1 0.689 0Ether 1000 1.56 0Benzene, C6H6 8 1.10 17.9Inorganic liquidsCarbon disulphide, CS2 8 1.16 15.6Carbon tetrachloride, CCl4 1 1.12 20Water, H2O 1 2.05 15Water, H2O 1000 2.75 15Water, H2O 2500 3.88. 14.2

Page 41: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.5 The coefficient of volume expansivity β for various liquids at temperatures around room tem-perature. The shaded column shows the value of the volume expansivity of the corresponding solid sub-stance. N/A indicates that data is not available.

Substance MW T (°C)ββββ (°C–1)Liquid

ββββ (°C–1)Solid

Organic liquidsAcetic acid CH3COOH 60 20 107 × 10–5 N/AAcetone CH3COCH3 58 20 143 × 10–5 N/AMethanol CH3OH 46 20 119 × 10–5 N/AEthanol C2H5OH 32 20 108 × 10–5 N/AAniline C6H7N 86 20 85 × 10–5 N/ABenzene C6H6 78 20 121 × 10–5 N/AToluene C6H5CH3 92 20 107 × 10–5 N/A

Inorganic liquidsCarbon Disulphide CS2 76 20 119 × 10–5 N/ACarbon Tetrachloride CCl4 154 20 122 × 10–5 N/AWater H2O 18 20 21 × 10–5 N/A

MetalsLithium Li 23 400-1125 19 × 10–5 16.8 × 10–5 @ 20 °CSodium Na 39 96.5 25 × 10–5 21.2 × 10–5 @ 20 °CPotassium K 85.5 64 - 1400 29 × 10–5 24.9 × 10–5 @ 20 °CRubidium Rb 133 39 30 × 10–5 27.0 × 10–5 @ 20 °CCopper Cu 63.6 1084 10 × 10–5 4.95 × 10–5 @ 20 °CCopper Cu 63.6 1084 10 × 10–5 6.09 × 10–5 @ 527 °CMercury Hg 200.6 0 - 100 18.1 × 10–5 N/A

Page 42: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.6 The speed of sound in liquids showing cL, the speed of longitudinal waves. For the elements,where possible, the data for the solid state (taken from Table 7.12) is also included, in the shaded col-umn, for comparison. Data for ice is also included.

SubstanceT(°C)

cL

(ms–1) SubstanceT(°C)

cL

(ms–1) SubstanceT(°C)

cL

(ms–1)cL

(ms–1)

Organic Liquids Elements ElementsAcetic acid 20 1173 Hydrogen, H2 –258 1242 Cadmium, Cd 360 2150 2780Acetone 20 1190 Helium, He –269 211 Copper,Cu 1350 3350 4759Methanol 20 1121 Nitrogen, N2 –189 745 Gallium, Ga 50 2740Ethanol 20 1162 Oxygen, O2 –186 950 Mercury,Hg 20 1454Propanol 20 1223 Sodium, Na 110 2520 Silver, Ag 1150 2630 3704Butanol 20 1258 Potassium, K 80 1869 Tin, Sn 240 2470 3380iso-Pentanol 20 1255 Rubidium, Rb 50 1427 Zinc, Zn 450 2700 4187Hexanol 20 1331 Caesium, Cs 40 980Hexanol 20 1331Heptanol 20 1343

Water 0 1402Ice –20 3840

Page 43: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.7 The viscosity η of various substance in their liquid state in units of mPa s as a function of thetemperature in °C. To obtain the viscosity in units of Pa s, multiply the entries in this table by 10–3. Forexample, the viscosity of mercury at 25 °C is 1.528 × 10–3 Pa s.

Temperature (°C)Substance –100 –50 0 25 30 50 75 100 400 600 700 800 1100Acetic acid — — — 1.116 1.037 0.792 0.591 0.457 — — — — —Acetone — — 0.402 0.310 0.295 0.247 0.200 0.165 — — — — —Benzene — — — 0.603 0.562 0.436 0.332 0.263 — — — — —Carbon disulphide 2.132 0.796 0.445 0.357 0.343 — — — — — — — —Methanol — 2.258 0.797 0.543 0.507 0.392 0.294 0.227 — — — — —Ethanol 98.96 8.318 1.873 1.084 0.983 0.684 0.459 0.323 — — — — —Sodium — — — — — — — 0.680 0.286 0.215 0.192 0.174 —Potassium — — — — — — — 0.458 0.224 0.172 0.155 0.141 —Mercury — — 1.616 1.528 1.497 1.401 1.322 1.255 — — — — —Tin — — — — — — — — 1.33 1.04 0.950 0.890 0.780

Page 44: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.9 The surface energy or surface tension of various substances in their liquid state (10–3 N m–1) ata given temperature in °C. For example, the surface tension of benzene is 28.88 × 10–3 N m–1.

Substance Temperature (°C) γγγγ (mN m–1)Acetic acid 20 27.59Acetone 20 23.46Benzene 20 28.88Carbon disulphide 20 32.32Methanol 20 22.50Ethanol 20 22.39Water 20 72.75

Sodium 100 209.9Potassium 65 110.9Mercury 25 485.5Lead 350 444.5Aluminium 700 900Gold 1100 1120

Page 45: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.13 The heat capacities at constant pressure C P for a selection of substances that are liquids ataround room temperature. The table records the substance name and chemical formula, the relative mo-lecular mass of its constituent molecules, the number of atoms per molecule, and the temperature atwhich the measurement is made. The molar heat capacity is then recorded as in J K–1 and as a multiple ofthe gas constant R.

CP

Substance MW N T (°C) (J K–1 mol–1 ) (R )

Organic liquidsMethanol CH3OH 32 6 12 80.64 9.7Ethanol C2H5OH 46 9 0 105.3 12.7Ethanol C2H5OH 46 9 20 113.4 13.6Ethanol C2H5OH 46 9 40 124.7 15.0Propanol C3H7OH 60 12 18 138.0 16.6Acetic acid C2H4O2 60 8 20 124.3 15.0Acetone C3H6O 58 10 20 124.7 15.0Aniline C6H7N 93 14 15 199.9 24.0Benzene C6H6 78 12 10 110.8 13.3Benzene C6H6 78 12 40 138.1 16.6Bromoethane C2H5Br 109 8 20 100.8 12.1Chloroform CHCl3 120 5 20 113.8 13.7Cyclohexane C6H10 82 16 20 156.5 18.81,2 Dichloroethane C2H4Cl2 98 8 20 129.3 15.6Dichloromethane C2H2Cl2 96 6 20 100.0 12.0Ethanadiol C2H6O2 62 10 20 149.8 18.0Ethyl acetate C4H8O2 82 8 20 170.1 20.5Ethyl nitrate C2H5O3N 91 11 20 170.3 20.5Formamide CH3ON 45 6 20 107.6 12.9Formic acid CH2O2 46 5 20 99.0 11.9Nitromethane CH3O2N 61 7 20 106.0 12.7Nitroethane C2H5O2N 75 10 20 134.2 16.1Toluene C7H8 92 15 18 153.6 18.5

Inorganic liquidsArsenic trifluoride AsF3 132 4 20 126.6 15.2Boron trichloride BCl3 118 4 20 106.7 12.8Bromine Br2 160 2 20 75.7 9.11Carbon disulphide CS2 76 3 20 75.7 9.11Hydrogen cyanide HCN 27 3 20 70.6 8.49Water H2O 18 3 0 75.9 9.13Heavy water D2O 20 3 0 84.3 10.1Mercury Hg 201 1 20 28.0 3.37Hydrazine N2H4 32 6 20 98.9 11.9Silicon tetrachloride SiCl4 170 5 20 145.3 17.5Tin tetrachloride SnCl4 261 5 20 165.3 19.9Titanium tetrachloride TiCl4 190 5 20 145.2 17.5

Page 46: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.14 Thermal conductivity of miscellaneous non-metallic liquids in units of WK–1 m–1. The data isgiven at two temperatures T1 and T2, and varies roughly linearly between these two temperatures. (Fig-ure 9.32 (a)).

Liquid T1 T2 K1 K2

Acetone 193 333 0.198 0.146Aniline 293 0.172Benzene 293 323 0.147 0.137Methanol 233 333 0.223 0.186Ethanol 233 353 0.189 0.150N-butanol 213 353 0.167 0.106N-propanol 233 353 0.168 0.148Toluene 193 353 0.159 0.119

Carbon tetrachloride 253 333 0.115 0.102Water 273 353 0.561 0.673Xenon 173 223 0.07 0.05

Page 47: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.15 Thermal conductivity (W K–1 m–1) of elemental metals in their liquid state. Shaded entriesrefer to the solid state. The data are graphed in Figure 9.33.Liquid 173 K 273 K 373 K 573 K 973 K KL/KS(%)Lithium Li 98 86 82 47 59 57

Sodium Na 141 142 88 78 60 62Potassium K 105 104 53 45 32 51Rubidium Rb 59 58 32 29 22 55Caesium Cs 37 36 20 20.6 17.7 56Mercury Hg 29.5 7.8 9.4 11.7 — 26

Aluminium Al 241 236 240 233 92 39

Bismuth Bi 11 8.2 7.2 13 17 181

Gallium Ga 43 41 33 45 — 80

Tin Sn 76 68 63 32 40 51

Page 48: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.16 Thermal conductivity (WK–1 m–1) and electrical resistivity (Ω m) of elemental metals in theirliquid state. Also evaluated is the quantity ρκ/T known as the Lorentz number and has theoretical valueof 2.45 × 10–8 (W Ω K–2 ).

373 K 573 K 973 KLiquid ρρρρ κκκκ ρρρρκκκκ /T ρρρρ κκκκ ρρρρκκκκ /T ρρρρ κκκκ ρρρρκκκκ /T

Sodium 9.7 × 10–8 88 2.3 × 10–8 16.8 × 10–8 78 2.3 × 10–8 39.2 × 10–8 60 2.4 × 10–8

Potassium 17.5 × 10–8 53 2.5 × 10–8 28.2 × 10–8 45 2.2 × 10–8 66.4 × 10–8 32 2.2 × 10–8

Rubidium 27.5 × 10–8 32 2.4 × 10–8 48 × 10–8 29 2.4 × 10–8 99 × 10–8 22 2.2 × 10–8

Caesium 43.5 × 10–8 20 2.3 × 10–8 67 × 10–8 20.6 2.4 × 10–8 134 × 10–8 17.7 2.4 × 10–8

Mercury 103.5 × 10–8 9.4 2.6 × 10–8 128 × 10–8 11.7 2.6 × 10–8 214 × 10–8 — —

Page 49: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.17 The resistivity (× 10–8 Ω m) of elemental metals with low melting points. The shaded dataabove the line in the table refers to the metals in the solid state and data below line refer to data in theliquid state. The last row of the table shows the ratio of the resistivities in the solid and liquid states. Thefigure is derived from the ratio of the last datum in the solid region to the first datum in the liquid region.

T(K) Na K Rb Cs Hg0 0 0 0 0 0

78.2 0.76 1.30 2.59 4.1 5.8

273.2 4.33 6.49 11.5 18.8 94.1

373.2 9.51 15.8 27.3 44.5 103.5573.2 17.4 27.7 45.1 67.3 128973.2 38.9 64.7 93 128 214

1473.2 88 165 250 338 630ρS/ρL (%) 46 41 42 42 6

Page 50: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.19 The results of calculations of the molecular polarisability of non-polar molecules based ondielectric constant data for both liquid and gaseous states. The value of on Equation 9.51 α/εo =(ε – 1)/nwith n estimated by either Equation 9.49 or 9.50 as appropriate. The data for the densities of liquid hy-drogen, nitrogen and oxygen are estimates based on a 10% decrease of the density of the solid. See Table5.16 for gas data and Table 9.18 for liquid data. The gas data refer to atmospheric pressure (1.013 × 105

Pa). Notice that the inferred value of α is quite similar in liquid and gaseous states.

Liquid Gas

Substanceρρρρ

(kg m–3) εεεε–1n

(××××1028 m3)αααα/εεεεo

(××××10–30)ρρρρ

(kg m–3) εεεε–1n

(××××1028 m3)αααα/εεεεo

(××××10–30)Argon 40 1410 0.53 2.12 25 293 5.16 2.50 21Helium 4 120 0.048 1.81 2.65 293 0.65 2.50 2.6Hydrogen 2 ≈80 0.228 2.41 9.5 293 2.54 2.50 10.2Nitrogen 28 ≈930 0.45 2.00 22.5 293 5.47 2.50 21.9Oxygen 32 ≈1300 0.507 2.45 20.5 293 4.94 2.50 19.8

Page 51: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.20 The results of the calculations of the permanent molecular dipole moment (in C m) of polarmolecules according to Equation 9.53. The gas data refer to atmospheric pressure (1.013 × 105 Pa).

Liquid Gas

Substance MT

(K)ρρρρ

(kg m–3) εεεε–1n

(××××1028 m3)p

(××××10–30)T

(K) εεεε–1n

(××××1028 m3)p

(××××10–30)Methanol 32 298 791 31.6 1.49 15.2 373 57 1.97 6.29Ethanol 46 298 789 23.3 1.03 15.7 373 61 or 78 1.97 6.5 or 7.4Water 18 293 1000 79.4 3.35 16.0 373 60 1.97 6.45

Page 52: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.18 The relative dielectric permittivity ε of various insulating liquids. The relative permittivity ofvacuum is exactly 1.

Substance MW T εεεε – 1 εεεεArgon, Ar 40 82 K 0.53 1.53Helium, He 4 4.19 K 0.048 1.048Hydrogen, H2 2 20.4 K 0.228 1.228Nitrogen, N2 28 70 K 0.45 1.45Oxygen, O2 32 80 K 0.507 1.507

Methanol, CH3OH 32 25 °C 31.6 32.6Ethanol, C2H5OH 46 25 °C 23.3 24.3Propanol, C3H7OH 60 25 °C 19.1 20.1Butanol, C4H9OH 74 20 °C 16.8 17.8Pentanol, C5H11OH 88 25 °C 12.9 13.9Hexanol, C6H13OH 102 25 °C 12.3 13.3

Aniline, C6H7N 86 20 °C 5.90 6.90Acetone, C3H6O 58 25 °C 19.7 20.7Carbon disulphide, CS2 76 20 °C 1.64 2.64Water, H2O 18 20 °C 79.4 80.4

Page 53: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.19 The results of calculations of the molecular polarisability of non-polar molecules based ondielectric constant data for both liquid and gaseous states. The value of on Equation 9.51 α/εo =(ε – 1)/nwith n estimated by either Equation 9.49 or 9.50 as appropriate. The data for the densities of liquid hy-drogen, nitrogen and oxygen are estimates based on a 10% decrease of the density of the solid. See Table5.16 for gas data and Table 9.18 for liquid data. The gas data refer to atmospheric pressure (1.013 × 105

Pa). Notice that the inferred value of α is quite similar in liquid and gaseous states.

Liquid Gas

Substanceρρρρ

(kg m–3) εεεε–1n

(××××1028 m3)αααα/εεεεo

(××××10–30)ρρρρ

(kg m–3) εεεε–1n

(××××1028 m3)αααα/εεεεo

(××××10–30)Argon 40 1410 0.53 2.12 25 293 5.16 2.50 21Helium 4 120 0.048 1.81 2.65 293 0.65 2.50 2.6Hydrogen 2 ≈80 0.228 2.41 9.5 293 2.54 2.50 10.2Nitrogen 28 ≈930 0.45 2.00 22.5 293 5.47 2.50 21.9Oxygen 32 ≈1300 0.507 2.45 20.5 293 4.94 2.50 19.8

Page 54: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.20 The results of the calculations of the permanent molecular dipole moment (in C m) of polarmolecules according to Equation 9.53. The gas data refer to atmospheric pressure (1.013 × 105 Pa).

Liquid Gas

Substance MT

(K)ρρρρ

(kg m–3) εεεε–1n

(××××1028 m3)p

(××××10–30)T

(K) εεεε–1n

(××××1028 m3)p

(××××10–30)Methanol 32 298 791 31.6 1.49 15.2 373 57 1.97 6.29Ethanol 46 298 789 23.3 1.03 15.7 373 61 or 78 1.97 6.5 or 7.4Water 18 293 1000 79.4 3.35 16.0 373 60 1.97 6.45

Page 55: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.21 The refractive index of various liquids for yellow light.

Substance and chemical formula MW nlight

Water, H2O 18 1.33Carbon tetrachloride, CCl4 152 1.405Toluene, C7H8 92 1.497Methanol, CH3OH 32 1.329Ethanol, C2H5OH 44 1.3614Propan-1-ol, C3H7OH 56 1.3852Propan-2-ol, C2H5OHCH2 56 1.3742Acetic acid, CH3COOH 1.3716Benzene, C6H6 78 1.501Aniline, C6H7N 86 1.586Hydrogen disulphide, HS2 65 1.885

Page 56: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 9.22 Calculation of the refractive indices of liquid water, methanol and benzene from the data onthe refractive index of their vapours (Table 5.18). The predictions for nlight–1 are 20 to 25% below theexperimental values. The method of calculation is described in Equations 9.55 to 9.61.

Gas Liquid

Substance MWNumber

density (m–3) nlight

Molecularpolarisability

αααα (F–1m4)

Density

(kg m–3)

Numberdensity

(m–3)

Prediction

nlight–1

Actual

nlight–1

Water H2O 18 2.689 × 1025 1.000254 1.647 ×10–40 1000 3.346 × 1028 0.27 0.33Methanol CH3OH 32 2.689 × 1025 1.000586 3.860 ×10–40 791 1.489 × 1028 0.284 0.329Benzene C6H6 78 2.689 × 1025 1.001762 11.61 × 10–40 879 6.786 × 1027 0.375 0.501

Page 57: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.1 Thermal data for the elements: the melting and boiling temperatures in kelvin, and the en-thalpies of fusion (melting) and vaporisation. The data refer to standard atmospheric pressure unless oth-erwise stated. Two elements – arsenic and carbon – which sublime when heated at atmospheric pressure.These are discussed in §11.7 on the solid ⇒ gas transition, and their the enthalpies of fusion and vapori-sation are estimated from studies at high pressure.

Z NameAtomicweight

Density(kg m–3)

Meltingpoint(K)

Boilingpoint(K)

Enthalpy offusion

(kJ mol –1)

Enthalpy ofvaporisation

(kJ mol –1)1 Hydrogen 1.008 89 14.01 20.28 0.12 0.462 Helium 4.003 120 0.95 4.216 0.021 0.0823 Lithium 6.941 533 453.7 1620 4.6 134.74 Beryllium 9.012 1846 1551 3243 9.8 308.85 Boron 10.81 2466 2365 3931 22.2 538.96 Carbon 12.01 2266 Sublimes at ≈ 3700 105 710.97 Nitrogen 14.01 1035 63.15 77.4 0.72 5.5778 Oxygen 16 1460 54.36 90.188 0.444 6.829 Fluorine 19 1140 53.48 85.01 5.1 6.548

10 Neon 20.18 1442 24.56 27.1 0.324 1.173611 Sodium 22.99 966 371 1156.1 2.64 89.0412 Magnesium 24.31 1738 922 1363 9.04 128.713 Aluminium 26.98 2698 933.5 2740 10.67 293.7214 Silicon 28.09 2329 1683 2628 39.6 383.315 Phosphorous 30.97 1820 317.3 553 2.51 51.916 Sulphur 32.06 2086 386 717.82 1.23 9.6217 Chlorine 35.45 2030 172 239.18 6.41 20.40318 Argon 39.95 1656 83.8 87.29 1.21 6.5319 Potassium 39.1 862 336.8 1047 2.4 77.5320 Calcium 40.08 1530 1112 1757 9.33 149.95

21 Scandium 44.96 2992 1814 3104 15.9 304.822 Titanium 47.9 4508 1933 3560 20.9 428.923 Vanadium 50.94 6090 2160 3650 17.6 458.624 Chromium 52 7194 2130 2945 15.3 348.7825 Manganese 54.94 7473 1517 2235 14.4 219.726 Iron 55.85 7873 1808 3023 14.9 35127 Cobalt 58.93 8800 1768 3143 15.2 382.428 Nickel 58.7 8907 1726 3005 17.6 371.829 Copper 63.55 8933 1356.6 2840 13 304.630 Zinc 65.38 7135 692.73 1180 6.67 115.3

31 Gallium 69.72 5905 302.93 3676 5.59 256.132 Germanium 72.59 5323 1210.6 3103 34.7 334.333 Arsenic 74.92 5776 Sublimes at 886 27.7 31.934 Selenium 78.96 4808 490 958.1 5.1 26.3235 Bromine 79.9 3120 265.9 331.93 10.8 3036 Krypton 83.8 3000 116.6 120.85 1.64 9.0537 Rubidium 85.47 1533 312.2 961 2.2 69.238 Strontium 87.62 2583 1042 1657 6.16 138.9139 Yttrium 88.91 4475 1795 3611 17.2 393.340 Zirconium 91.22 6507 2125 4650 23 581.641 Niobium 92.91 8578 2741 5015 27.2 696.642 Molybdenum 95.94 10222 2890 4885 27.6 594.1

Page 58: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Z NameAtomicweight

Density(kg m–3)

Meltingpoint(K)

Boilingpoint(K)

Enthalpy offusion

(kJ mol –1)

Enthalpy ofvaporisation

(kJ mol –1)43 Technetium 97 11496 2445 5150 23.81 585.2244 Ruthenium 101.1 12360 2583 4173 23.7 567.845 Rhodium 102.9 12420 2239 4000 21.55 495.446 Palladium 106.4 11995 1825 3413 17.2 393.347 Silver 107.9 10500 1235.1 2485 11.3 255.148 Cadmium 112.4 8647 594.1 1038 6.11 99.8749 Indium 114.8 7290 429.32 2353 3.27 226.450 Tin 118.7 7285 505.12 2543 7.2 290.4

51 Antimony 121.7 6692 903.9 1908 20.9 67.9152 Tellurium 127.6 6247 722.7 1263 13.5 50.6353 Iodine 126.9 4953 386.7 457.5 15.27 41.6754 Xenon 131.3 3560 161.3 166.1 3.1 12.6555 Caesium 132.9 1900 301.6 951.6 2.09 65.956 Barium 137.3 3594 1002 1910 7.66 150.957 Lanthanum 138.9 6174 1194 3730 10.04 399.658 Cerium 140.1 6711 1072 3699 8.87 313.859 Praseodymium 140.9 6779 1204 3785 11.3 332.660 Neodymium 144.2 7000 1294 3341 7.113 283.761 Promethium 145 7220 1441 3000 12.6 —62 Samarium 150.4 7536 1350 2064 10.9 191.663 Europium 152 5248 1095 1870 10.5 175.764 Gadolinium 157.2 7870 1586 3539 15.5 311.765 Terbium 158.9 8267 1629 3396 16.3 39166 Dysprosium 162.5 8531 1685 2835 17.2 29367 Holmium 164.9 8797 1747 2968 17.2 25168 Erbium 167.3 9044 1802 3136 17.2 292.969 Thulium 168.9 9325 1818 2220 18.4 24770 Ytterbium 173 6966 1097 1466 9.2 159

71 Lutetium 175 9842 1936 3668 19.2 42872 Hafnium 178.5 13276 2503 5470 25.5 661.173 Tantalum 180.9 16670 3269 5698 31.4 753.174 Tungsten 183.9 19254 3680 5930 35.2 799.175 Rhenium 186.2 21023 3453 5900 33.1 707.176 Osmium 190.2 22580 3327 5300 29.3 627.677 Iridium 192.2 22550 2683 4403 26.4 563.678 Platinum 195.1 21450 2045 4100 19.7 510.579 Gold 197 19281 1337.6 3080 12.7 324.480 Mercury 200.6 13546 234.28 629.73 2.331 59.15

81 Thallium 204.4 11871 576.6 1730 4.31 162.182 Lead 207.2 11343 600.65 2013 5.121 179.483 Bismuth 209 9803 544.5 1833 10.48 179.184 Polonium 209 9400 527 1235 10 100.885 Astatine 210 — 575 610 23.8 —86 Radon 222 4400 202 211.4 2.7 19.187 Francium 223 — 300 950 — —88 Radium 226 5000 973 1413 7.15 136.889 Actinium 227 10060 1320 3470 14.2 293

Page 59: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Z NameAtomicweight

Density(kg m–3)

Meltingpoint(K)

Boilingpoint(K)

Enthalpy offusion

(kJ mol –1)

Enthalpy ofvaporisation

(kJ mol –1)90 Thorium 232 11725 2023 5060 19.2 543.991 Protactinium 231 15370 2113 4300 16.7 48192 Uranium 238 19050 1405 4018 15.5 422.693 Neptunium 237 20250 913 4175 9.46 336.694 Plutonium 244 19840 914 3505 2.8 343.595 Americium 243 13670 1267 2880 14.4 238.5

Page 60: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.2 Thermal data for the various substances: the melting and boiling temperatures in kelvin, andthe enthalpies of fusion (melting) and vaporisation. The data refer to standard atmospheric pressure un-less otherwise stated and (s) indicates that the substance sublimes rather than boils and the melting tem-perature is obtained under pressure. (*) indicates a large discrepancy of ± 20 K amongst data from differ-ent sources.

Substance MWDensity(kg m–3)

Meltingpoint(K)

Boilingpoint(K)

Enthalpy offusion

(kJ mol –1)

Enthalpy ofvaporisation

(kJ mol –1)Acetic acid CH3COOH 60 1049 289.75 391.1 11.535 —Acetone CH3COCH3 58 787 177.8 329.3 5.691 —Aniline C6H7N 93 1026 266.85 457.6 10.555 —Benzene C6H6 78 877 278.65 353.2 9.951 —Chloroform CHCl3 119 — 209.55 334.4 8.800 —Cyclohexane C6H10 82 779 279.65 353.8 2.630 —Ethyl acetate C4H8O2 88 — 189.55 350.2 10.481 —Methanol CH3OH 32 791 179.25 337.7 3.177 —Ethanol C2H5OH 46 789 155.85 351.5 5.021 —Propan-1-ol C3H7OH 60 804 146.65 370.3 5.195 —Propan-2-ol C3H7OH 60 786 — — — —Butan-1-ol C4H9OH 74 810 183.65 390.35 9.282 —Butan-2-ol C4H9OH 74 808 298.55 372.65 6.786 —Toluene C7H8 92 867 178.15 383.8 6.851 —

Lithium fluoride LiF 25.9 2635 1118 1949 — —Lithium chloride LiCl 42.39 2068 878 1620(*) — —Lithium bromide LiBr 86.9 3464 823 1538 — —Sodium chloride NaF 42.0 2558 1266 1968 — —Sodium fluoride NaCl 58.4 2165 1074 1686 — —Sodium bromide NaBr 102.9 3203 1020 1663 — —Potassium fluoride KF 58.1 2480 1131 1778 — —Potassium chloride KCl 74.6 1984 1043 1273(s) — —Potassium bromide KBr 119.0 2750 1007 1708 — —Carbon dioxide CO2 44 — 216.55 194.7 — —Carbontetrachloride CCl4 154 1632 — — — —Carbon disulphide CS2 76 1293 162.35 319.6 4.395 —Carbon monoxide CO 28 — 74.15 81.7 — —Water H2O 18 998 273.15 373.15 5.994 40.608

Page 61: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these figures resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.3 Comparison of NA∆Ee with the experimental value of the latent heat of vaporisation L. Thefinal column shows the ratio of these two quantities NA∆Ee/L. The values of ∆Ee are drawn from Table9.12.

Substance∆∆∆∆Ee(J)×××× 10-21

NA∆∆∆∆Ee

(kJ mol–1)L

(kJ mol–1) NA∆∆∆∆Ee/LCopper 486 292.7 300.5 0.97Silver 403 242.7 255.06 0.95Gold 516 310.7 324.43 0.96Aluminium 447 269.2 290.8 0.92Tin 436 262.6 290.37 0.90

Helium 0.13 0.078 0.08 0.98Neon 3.23 1.95 1.77 1.10Argon 10.8 6.50 6.52 0.99Krypton 17.2 10.36 9.03 1.15Xenon 24.4 14.69 12.64 1.16

Page 62: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.4 The critical parameters of various substances discussed in Chapter 6 and Chapter 8. PC,VCand TC are the critical pressure, molar volume and temperature. ZC is the compression factor which isdiscussed in §11.5.3. The next column gives the density at the critical point, calculated from the mo-lecular mass and VC. This may be compared with the density of the substance in the liquid state wellaway from TC. For the inorganic substances where the liquid density data is not available, the solid den-sity has been used instead The final column gives the ratio of the density at the critical point to that at atemperature well below the critical point.

SubstancePC

(MPa)

VC(××××10–6 m3

mol–1)TC(K)

ZC=PCVC/RTC

CriticalDensity(kg m–3)

LiquidDensity(kgm–3)

Den-sityRatio

Methanol, CH3OH 8.09 118 512.6 0.224 271 791 0.343Ethanol, C2H5OH 6.14 167 513.9 0.240 275 789 0.349Propan-1-ol , C3H7OH 5.17 219 536.8 0.254 274 804 0.340Acetic acid, C2H4O2 5.79 171 594.5 0.200 351 1049 0.334Acetone, C3H6O 4.7 213 508.1 0.237 272 787 0.346Aniline, C6H7N 5.3 274 698.9 0.250 339 1026 0.330Benzene, C6H6 4.9 254 562.2 0.266 307 879 0.349Bromoethane, C2H5Br 6.23 215 503.8 0.320 507 1456 0.348Chloroform, CHCl3 5.5 240 536.4 0.296 500 1498 0.333Cyclohexane, C6H10 4.02 308 553.4 0.269 266 941.6 0.282Ethyl acetate, C4H8O2 3.83 286 523.2 0.252 287 900.6 0.319Toluene, C7H8 4.11 320 591.8 0.267 288 868.8 0.331Carbon monoxide, CO 3.50 93.1 133 0.295 300.75 — —Carbon dioxide, CO2 7.38 94.0 304.2 0.274 468.09 — —Carbon disulphide, CS2 7.9 173 552 0.298 439.31 1263 0.348Carbon tetrachloride,CCl4

4.56 276 556.4 0.272 550.72 1604 0.343

Hydrogen, H2 1.294 65.5 32.99 0.309 30.534 89 0.343Nitrogen, N2 3.39 90.1 126.2 0.291 310.77 1035 0.300Oxygen, O2 5.08 78 154.8 0.308 410.26 1460 0.281Chlorine, Cl2 7.71 124 417 0.276 572.58 2030 0.282Bromine, Br2 10.3 135 584 0.287 1185.2 3120 0.380Helium, He 0.229 58 5.2 0.307 68.966 120 0.575Neon, Ne 2.73 41.7 44.4 0.309 479.62 1442 0.333Argon, Ar 4.86 75.2 150.7 0.292 531.91 1656 0.321Krypton, Kr 5.50 92.3 209.4 0.292 910.08 3000 0.303Xenon, Xe 5.88 119 289.7 0.291 1100.8 3560 0.309Radon, Rn 6.3 — 377 — 4400Water, H2O 22.12 59.1 647.3 0.243 304.57 1000 0.305Heavy water, D2O 21.88 54.9 644.2 0.224 364.30 1100 0.331

Page 63: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these figures resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.5 The cohesive energies Uo of the elements in units of kJ mol–1. Uo is the energy required toseparate the atoms of a solid at T = 0 K into isolated neutral atoms.

Z ElementUo

(kJ mol–1 ) Z ElementUo

(kJ mol–1 ) Z ElementUo

(kJ mol–1 )1 Hydrogen — 32 Germanium 372 63 Europium 1792 Helium — 33 Arsenic 285.3 64 Gadolinium 4003 Lithium 158 34 Selenium 237 65 Terbium 3914 Beryllium 320 35 Bromine 118 66 Dysprosium 2945 Boron 561 36 Krypton 11.2 67 Holmium 3026 Carbon 711 37 Rubidium 82.2 68 Erbium 3177 Nitrogen 474 38 Strontium 166 69 Thulium 2338 Oxygen 251 39 Yttrium 422 70 Ytterbium 1549 Fluorine 81 40 Zirconium 603 71 Lutetium 42810 Neon 1.92 41 Niobium 730 72 Hafnium 62111 Sodium 107 42 Molybdenum 658 73 Tantalum 78212 Magnesium 145 43 Technetium 661 74 Tungsten 85913 Aluminium 327 44 Ruthenium 650 75 Rhenium 77514 Silicon 446 45 Rhodium 554 76 Osmium 78815 Phosphorous 331 46 Palladium 376 77 Iridium 67016 Sulphur 275 47 Silver 284 78 Platinum 56417 Chlorine 135 48 Cadmium 112 79 Gold 36818 Argon 7.74 49 Indium 243 80 Mercury 6519 Potassium 90.1 50 Tin 303 81 Thallium 18220 Calcium 178 51 Antimony 265 82 Lead 19621 Scandium 376 52 Tellurium 211 83 Bismuth 21022 Titanium 468 53 Iodine 107 84 Polonium 14423 Vanadium 512 54 Xenon 15.9 85 Astatine —24 Chromium 395 55 Caesium 77.6 86 Radon 18.525 Manganese 282 56 Barium 183 87 Francium —26 Iron 413 57 Lanthanum 431 88 Radium 16027 Cobalt 424 58 Cerium 417 89 Actinium 41028 Nickel 428 59 Praseodymium 357 90 Thorium 59829 Copper 336 60 Neodymium 328 91 Protactinium —30 Zinc 130 61 Promethium — 92 Uranium 53631 Gallium 271 62 Samarium 206

Page 64: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these tables resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.6 The equilibrium vapour pressure (Pa) of water substance above the solid or liquid surface asa function of temperature. The shaded data on the liquid corresponds to data taken on supercooled water.

T (°C) Solid Liquid T (°C) Solid Liquid–90 0.009 — –15 165.5 191.50–80 0.053 — –14 181.5 208.03–70 0.258 — –13 198.7 225.50–60 1.077 — –12 217.6 244.57–50 3.940 — –11 238.0 264.98–40 12.88 — –10 260.0 286.58–30 38.12 — –9 284.2 310.18–29 42.27 — –8 310.2 335.26–28 46.80 — –7 338.3 362.06–27 51.87 — –6 368.7 390.86–26 57.34 — –5 401.8 421.80–25 63.47 — –4 437.4 454.74–24 70.14 — –3 475.8 489.81–23 77.34 — –2 517.4 527.55–22 85.34 — –1 562.4 567.83

–21 94.01 — 0 610.6 610.6–20 103.4 — 1 — 656.9–19 113.8 — 2 — 706.0–18 125.2 — 3 — 758.1–17 137.5 — 4 — 813.6–16 151.0 — 5 — 872.5

6 — 935.27 — 10028 — 10739 — 114810 — 1228.111 — 1312.712 — 1402.613 — 1497.714 — 1598.515 — 1705.3

Page 65: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

Extracted from Understanding the properties of matter by Michael de Podesta.The copyright of these figures resides with Taylor and Francis.

They may be used freely for educational purposes but their source must be acknowledged.For more details see www.physicsofmatter.com

Table 11.7 The melting, boiling and triple-point temperatures of various substances. The Ttr values areoften known extremely accurately. The TM and TB values are typically known to within ≈ 10 mK.

Substance T M (K) T Tr (K) T B (K)Oxygen 54.35 54.3584 90.188Nitrogen 63.15 63.150 77.352Argon 83.75 83.8058 87.29Water 273.15 273.16 373.15

Page 66: The copyright of these tables resides with the publishers, Taylor · 2007-03-11 · Extracted from Understanding the properties of matter by Michael de Podesta. The copyright of these

UNDERSTANDING THE PROPERTIES OF MATTER: WEB CHAPTER 2

© Michael de Podesta 2002W2.6

Table W2.1 Molar magnetic susceptibility of the elements at around room temperature. The data are summarised in FigureW2.3. The shading in the table corresponds to the shading in Figure and highlights elements with a large susceptibilities.

ZElement, atomic mass (u) and den-sity (kg m–3)

χχχχM

(m3 mol–1) ZElement, atomic mass (u) anddensity (kg m–3)

χχχχM

(m3 mol–1)1 Hydrogen, H 1.008 89 — 51 Antimony, Sb 121.7 6692 –1.22 × 10–9

2 Helium, He 4.003 120 — 52 Tellurium, Te 127.6 6247 –4.98 × 10–10

3 Lithium, Li 6.941 533 1.78 × 10–10 53 Iodine, I 126.9 4953 –5.58 × 10–10

4 Beryllium, Be 9.012 1846 –1.17 × 10–10 54 Xenon, Xe 131.3 3560 –5.51 × 10–10

5 Boron, B 10.81 2466 –8.43 × 10–11 55 Caesium, Cs 132.9 1900 3.72 × 10–10

6 Carbon, C 12.01 2266 –7.57 × 10–11 56 Barium, Ba 137.3 3594 2.61 × 10–10

7 Nitrogen, N 14.01 1035 — 57 Lanthanum, La 138.9 6174 1.53 × 10–9

8 Oxygen, O 16 1460 — 58 Cerium, Ce 140.1 6711 3.04 × 10–8

9 Fluorine, F 19 1140 — 59 Praseodymium, Pr 140.9 6779 6.30 × 10–8

10 Neon, Ne 20.18 1442 –8.48 × 10–11 60 Neodymium, Nd 144.2 7000 7.07 × 10–8

11 Sodium, Na 22.99 966 2.02 × 10–10 61 Promethium, Pm 145 7220 —12 Magnesium, Mg 24.31 1738 1.65 × 10–10 62 Samarium, Sm 150.4 7536 2.29 × 10–8

13 Aluminium, Al 26.98 2698 2.08 × 10–10 63 Europium, Eu 152 5248 4.27 × 10–7

14 Silicon, Si 28.09 2329 –5.06 × 10–11 64 Gadolinium, Gd 157.2 7870 Ferro15 Phosphorus, P 30.97 1820 –3.41 × 10–10 65 Terbium, Tb 158.9 8267 1.83 × 10–6

16 Sulphur, S 32.06 2086 –1.95 × 10–10 66 Dysprosium, Dy 162.5 8531 1.30 × 10–6

17 Chlorine, Cl 35.45 2030 — 67 Holmium, Ho 164.9 8797 9.05 × 10–7

18 Argon, A 39.95 1656 — 68 Erbium, Er 167.3 9044 5.57 × 10–7

19 Potassium, K 39.1 862 2.62 × 10–10 69 Thulium, Tm 168.9 9325 3.21 × 10–7

20 Calcium, Ca 40.08 1530 5.61 × 10–10 70 Ytterbium, Yb 173 6966 3.13 × 10–9

21 Scandium, Sc 44.96 2992 3.96 × 10–9 71 Lutetium, Lu 175 9842 2.28 × 10–10

22 Titanium, Ti 47.9 4508 1.92 × 10–9 72 Hafnium, Hf 178.5 13276 9.46 × 10–10

23 Vanadium, V 50.94 6090 3.20 × 10–9 73 Tantalum, Ta 180.9 16670 1.94 × 10–9

24 Chromium, Cr 52 7194 2.31 × 10–9 74 Tungsten, W 183.9 19254 7.36 × 10–10

25 Manganese, Mn 54.94 7473 6.59 × 10–9 75 Rhenium, Re 186.2 21023 8.49 × 10–10

26 Iron, Fe 55.85 7873 Ferro 76 Osmium, Os 190.2 22580 1.24 × 10–10

27 Cobalt, Co 58.93 8800 Ferro 77 Iridium, Ir 192.2 22550 3.21 × 10–10

28 Nickel, Ni 58.7 8907 Ferro 78 Platinum, Pt 195.1 21450 2.54 × 10–9

29 Copper, Cu 63.55 8933 –6.87 × 10–11 79 Gold, Au 197 19281 –3.51 × 10–10

30 Zinc, Zn 65.38 7135 –1.44 × 10–10 80 Mercury, Hg 200.6 13546 —31 Gallium, Ga 69.72 5905 –2.72 × 10–10 81 Thallium, Tl 204.4 11871 –6.40 × 10-10

32 Germanium, Ge 72.59 5323 –9.64 × 10–11 82 Lead, Pb 207.2 11343 –2.88 × 10-10

33 Arsenic, As 74.92 5776 –6.87 × 10–11 83 Bismuth, Bi 209 9803 –3.52 × 10-9

34 Selenium, Se 78.96 4808 –3.16 × 10–10 84 Polonium, Po 209 9400 —35 Bromine, Br 79.9 3120 — 85 Astatine, At 210 — —36 Krypton, Kr 83.8 3000 — 86 Radon, Rn 222 4400 —37 Rubidium, Rb 85.47 1533 2.13 × 10–10 87 Francium, Fr 223 — —38 Strontium, Sr 87.62 2583 1.16 × 10–9 88 Radium, Ra 226 5000 —39 Yttrium, Y 88.91 4475 2.40 × 10–9 89 Actinium, Ac 227 10060 —40 Zirconium, Zr 91.22 6507 1.53 × 10–9 90 Thorium, Th 232 11725 1.67 × 10-9

41 Niobium, Nb 92.91 8578 2.56 × 10–9 91 Protactinium, Pa 231 15370 —42 Molybdenum, Mo 95.94 10222 1.15 × 10–9 92 Uranium, U 238 19050 5.14 × 10-9

43 Technetium, Tc 97 11496 3.01 × 10–9 93 Neptunium, Np 237 20250 —44 Ruthenium, Ru 101.1 12360 5.43 × 10–10 94 Plutonium, Pu 244 19840 7.73 × 10-9

45 Rhodium, Rh 102.9 12420 1.40 × 10–9 95 Americium, Am 243 13670 1.22 × 10-8

46 Palladium, Pd 106.4 11995 7.13 × 10–9

47 Silver, Ag 107.9 10500 –2.45 × 10–10

48 Cadmium, Cd 112.4 8647 –2.48 × 10–10

49 Indium, In 114.8 7290 –8.04 × 10–10

50 Tin, Sn 118.7 7285 –4.75 × 10–10