the cosmic background imager – jodrell bank, 28 feb 2005 2 cmb polarization results from the...

77

Upload: julian-gibbs

Post on 29-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy
Page 2: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

2The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CMB Polarization Results from the

Cosmic Background ImagerSteven T. Myers

National Radio Astronomy Observatory

Socorro, NM

Page 3: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

3The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The Cosmic Background Imager

• A collaboration between– Caltech (A.C.S. Readhead PI, S. Padin PS.)– NRAO– CITA– Universidad de Chile– University of Chicago

• With participants also from– U.C. Berkeley, U. Alberta, ESO, IAP-Paris, NASA-MSFC,

Universidad de Concepción

• Funded by– National Science Foundation, the California Institute of

Technology, Maxine and Ronald Linde, Cecil and Sally Drinkward, Barbara and Stanley Rawn Jr., the Kavli Institute, and the Canadian Institute for Advanced Research

Page 4: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

4The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The CMB Landscape

Page 5: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

5The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Thermal History of the Universe

Courtesy Wayne Hu – http://background.uchicago.edu

““First 3 minutes”:First 3 minutes”:very hot (10 million very hot (10 million °°K)K)like interior of Sunlike interior of Sunnucleosynthesis!nucleosynthesis!

After “recombination”:After “recombination”:cooler, transparent, cooler, transparent, neutral hydrogen gasneutral hydrogen gas

Before “recombination”:Before “recombination”:hot (3000hot (3000°°K)K)like surface of Sun like surface of Sun opaque, ionized plasmaopaque, ionized plasma

““Surface of last scattering” Surface of last scattering” TT≈≈30003000°°K zK z≈≈10001000THIS IS WHAT WE SEE AS THIS IS WHAT WE SEE AS THE CMB!THE CMB!

Page 6: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

6The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The Cosmic Microwave Background

• Discovered 1965 (Penzias & Wilson)– 2.7 K blackbody– Isotropic– Relic of hot “big bang”– 3 mK dipole (Doppler)

• COBE 1992– Blackbody 2.725 K– Anisotropies ≤10-5

Page 7: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

7The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Matter History of the Universe

• we see “structure” in Universe now– density fluctuations ~1 on 10 Mpc scales– clusters of galaxies!

• must have been smaller in past (fluctuations grow)– in expanding Universe growth is approximately linear– CMB @ a = 0.001 density fluctuations ~ 0.001

• NOTE: density higher in past, but density fluctuations smaller!

Courtesy A. Kravtsov – http://cosmicweb.uchicago.edu

Page 8: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

8The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Angular Power Spectrum

• brightness fluctuations on surface of last scattering– due to the small (~0.1%) density variations– gravity causes flows (velocities)– radiation pressure resists compression bounces– acoustic waves!

• Fourier analysis– break angular ripple pattern into spherical harmonics (waves)– look for power on particular angular frequencies– like a cosmic Spectrum Analyzer!– acoustic waves + expansion fundamental + overtones

• fundamental = scale of first compression since horizon crossing• scale set by sound crossing time at last scattering

Page 9: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

9The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CMB Acoustic Peaks

• Compression driven by gravity, resisted by radiation≈ “j ladder” series of harmonics + projection corrections

peaks: ~ peaks: ~ llss jjtroughs: ~ troughs: ~ llss ( (jj + ½+ ½))

Page 10: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

10The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CMB Primary Anisotropies

• Low l (<100)– primordial power spectrum (+ S-W, tensors, etc.)

• Intermediate l (100-2000)– dominated by acoustic peak structure– position of peak related to sound crossing angular scale angular diameter distance to last scattering

– peak heights controlled by baryons & dark matter, etc.– damping tail roll-off with

• Large l (2000-5000+)– realm of the secondaries (e.g. SZE)

Courtesy Wayne Hu – http://background.uchicago.edu

Page 11: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

11The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

only transverse only transverse polarization can be polarization can be transmitted on scattering!transmitted on scattering!

CMB Polarization

• Due to quadrupolar intensity field at scattering

Courtesy Wayne Hu – http://background.uchicago.edu

NOTE: polarization maximum NOTE: polarization maximum when velocity is maximum when velocity is maximum (out of phase with compression (out of phase with compression maxima)maxima)

Page 12: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

12The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CMB Polarization• E & B modes: translation invariance

– E (even parity, “gradient”, aligned 0° or 90° to k-vector) • from scalar density fluctuations predominant!

– B (odd parity, “curl”, at ±45° to k-vector) • from gravity wave tensor modes, or secondaries

Courtesy Wayne Hu – http://background.uchicago.edu

Page 13: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

13The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Polarization Power Spectrum

Hu & Dodelson ARAA 2002

Planck “error boxes”Planck “error boxes”

Note: polarization peaks Note: polarization peaks out of phase w.r.t. out of phase w.r.t. intensity peaksintensity peaks

Page 14: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

14The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The Gold Standard: WMAP + “ext”WMAP

ACBAR

Page 15: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

15The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The Cosmic Background Imager

Page 16: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

16The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The Instrument

• 13 90-cm Cassegrain antennas– 78 baselines

• 6-meter platform– Baselines 1m – 5.51m

• 10 1 GHz channels 26-36 GHz– HEMT amplifiers (NRAO)

– Cryogenic 6K, Tsys 20 K

• Single polarization (R or L)– Polarizers from U. Chicago

• Analog correlators– 780 complex correlators

• Field-of-view 44 arcmin– Image noise 4 mJy/bm 900s

• Resolution 4.5 – 10 arcmin

Page 17: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

17The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Traditional Inteferometer – The VLA• The Very Large Array (VLA)

– 27 elements, 25m antennas, 74 MHz – 50 GHz (in bands)– independent elements Earth rotation synthesis

Page 18: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

18The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CMB Interferometer – The CBI• The Cosmic Background Imager (CBI)

– 13 elements, 90 cm antennas, 26-36 GHz (10 channels)– fixed to 3-axis platform telescope rotation synthesis!

Page 19: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

19The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Other CMB Interferometers: DASI, VSA

• DASI @ South Pole

• VSA @ Tenerife

Page 20: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

20The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI milestones• 1980’s

– 1984 OVRO 40m single-dish work (20 GHz maser Rx!)– 1987 genesis of idea for CMB interferometer

• 1990’s– 1992 OVRO systems converted to HEMTs– 1994 NSF proposal (funded 1995)– 1998 assembled and tested at Caltech– 1999 August shipped to Chile– 1999 November Chile first “light”

• 2000+– 2000 January routine observing begins– 2001 first paper; 2002 first year results; 2003 2yrs; 2004 pol– 2002 continued NSF funding to end of 2004– exploring funding prospects to operate until end of 2006

Page 21: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

21The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Site – Northern Chilean Andes

• Elevation 16500 ft.!

Page 22: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

22The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Instrumentation

Page 23: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

23The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI in Chile

Page 24: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

24The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The CBI Adventure…

• Steve Padin wearing the cannular oxygen system– because you never know when you

need to dig the truck out!

Page 25: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

25The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The CBI Adventure…

• the snow in Chile falls mainly on the road! 2 winters/yr

Page 26: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

26The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The CBI Adventure…• Volcan Lascar (~30 km away) erupts in 2001

Page 27: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

27The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CMB Interferometry

Page 28: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

28The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The CMB and Interferometry

• The sky can be uniquely described by spherical harmonics– CMB power spectra are described by multipole l

• For small (sub-radian) scales the spherical harmonics can be approximated by Fourier modes– The conjugate variables are (u,v) as in radio interferometry

– The uv radius is given by |u| = l / 2• An interferometer naturally measures the transform of

the sky intensity in l space convolved with aperture

e)(~

)(~

e)()()(

22

)(22

p

p

i

ip

eIAd

eIAdV

xv

xxu

vvuv

xxxxu

Fourier transform relationshipFourier transform relationship

Page 29: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

29The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The uv plane

• The projected baseline length gives the angular scale

multipole:multipole:

ll = 2 = 2B/B/λ λ = 2= 2uuijij||

shortest CBI baseline:shortest CBI baseline:

central hole 10cmcentral hole 10cm

Page 30: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

30The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Beam and uv coverage

• Over-sampled uv-plane– excellent PSF– allows fast gridded method (Myers et al. 2000)

primary beam transform:primary beam transform:

θθpripri= 45= 45' ' ΔΔll ≈ 4D/ ≈ 4D/λλ ≈ 360 ≈ 360

mosaic beam transform:mosaic beam transform:

θθmosmos= = nn××4545' ' ΔΔll ≈ 4D/ ≈ 4D/nnλλ

Page 31: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

31The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Polarization of radiation

• Electromagnetic Waves– Maxwell: 2 independent linearly polarized waves

– 3 parameters (E1,E2,) polarization ellipse

Rohlfs & Wilson

Page 32: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

32The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Polarization of radiation

• Stokes parameters (Poincare Sphere):– intensity I (Poynting flux) I2 = E1

2 + E22

– linear polarization Q,U (m I)2 = Q2 + U2

– circular polarization V (v I)2 = V2

Rohlfs & Wilson

The Poincare SphereThe Poincare Sphere

Page 33: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

33The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Polarization of radiation

• Coordinate system dependence:– I independent– V depends on choice of “handedness”

• V > 0 for RCP

– Q,U depend on choice of “North” (plus handedness)• Q “points” North, U 45 toward East

• EVPA = ½ tan-1 (U/Q) (North through East)

• Statistical Quantities for CMB– T ( I in temperature units )– E & B polarization modes

• even and odd parity

• independent of coordinate system choice

• well-defined in Fourier plane

Page 34: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

34The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Polarization – Stokes parameters• CBI receivers can observe either RCP or LCP

– cross-correlate RR, RL, LR, or LL from antenna pair

• CMB intensity I plus linear polarization Q,U important– CMB not circularly polarized, ignore V (RR = LL = I)

– parallel hands RR, LL measure intensity I

– cross-hands RL, LR measure complex polarization P=Q+iU• R-L phase gives electric vector position angle = ½ tan-1 (U/Q)

• rotates with parallactic angle of detector on sky

V

U

Q

I

eie

eie

VI

eUiQ

eUiQ

VI

ee

ee

ee

ee

ii

ii

i

i

LL

RL

LR

RR

1001

00

00

1001

22

22

2

2

*

*

*

*

Page 35: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

35The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Polarization Interferometry

• Parallel-hand & Cross-hand correlations– for antenna pair i, j and frequency channel :

– where kernel P is the aperture cross-correlation function

– and the baseline parallactic angle (w.r.t. deck angle 0°)

RLij

iijij

RLij

RRijijij

RRij

ijeUiQPdV

IPdV

e)(~

)(~

)()(

e)(~

)()(

22

2

vvvvu

vvvu

ijiijijij eAP xvvuv

2)(~

)(

01tan ijijijij uv

Page 36: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

36The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

E and B modes

• Decomposition into E and B Fourier modes:

where

uv1tan v

vvvvv χieBiEUiQ 2)(~

)(~

)(~

)(~

RLij

iijij

RLij

ijeBiEPdV

e)](~

)(~

[)()( )(22 vvvvvu

E & B response smeared by phase variation over aperture A

interferometer “directly” measures (Fourier transforms of) E & B!

Page 37: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

37The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Power Spectrum of CMB

• Statistics of CMB field– Gaussian random field – Fourier modes independent– Temperature covariance described by angular power spectrum

– 4 non-zero polarization covariances: TT,EE,BB,TE – EB, TB should be zero due to parity (but check on systematics)

)'()'(~

)(~

2)'()'(*~

)(~

2

2

vvvv

vvvvv

CTT

CTT

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

22

22

22

vvvvvvvv

vvvvvvvv

vvvvvvvv

EBTB

BBTE

EETT

CBECBT

CBBCET

CEECTT

Page 38: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

38The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Power Spectrum and Likelihood• Break Cl into bandpowers qB:

• Covariance matrix C sum of individual covariance terms:

• maximize Likelihood for complex visibilities V:

BB

BCqC shape

BBEBEETBTETT

CqCqCqCqCC BB

B

,,,,,

scanscan

resres

srcsrc

N

known foregrounds (e.g

point sources)

residual (statistical) foreground

scan (ground) signal

fiducial power spectrum shape (e.g. 2/l2)

=1 if l in band B; else =0

noise projected fitted

Page 39: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

39The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Errors: leakage

• instrumental polarization– “leaks” L into R, R into L (level ~1%-2%)

– e.g. Robs = R + d L

• measure on bright source– use standard data analysis to determine d-terms

• to first order:– TT unaffected– TT leaks into TE & TB– TE & TB leak into EE, BB, EB– does average out with parallactic angle

• include in correlation analysis– just complicates covariance matrix calculation

Page 40: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

40The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Errors: leakage

• Leakage of R L (d-terms):

dldmemleidd

eded

eimlEV

dldmemledd

iedied

emlEV

mvluiχiLj

Ri

χiLj

χiRi

χi

sky

RLij

RLij

mvluiχiRj

Ri

χiRj

χiRi

χi

sky

RRij

RRij

ijijji

jiji

ji

ijijji

jiji

ji

2)(*

)(*)(

)(

2)(*

)(*)(

)(

),](U)Q(

)VI()VI(

U)Q)[(,(

),](V)-(I

U)(QU)(Q

V)I)[(,(

““true” signaltrue” signal

11stst order: order:DD••I into PI into P

22ndnd order: order:DD•P into I•P into I

22ndnd order: order:DD22•I into I•I into I

33rdrd order: order:DD22•P* into P•P* into P

Page 41: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

41The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI PolarizationResults!

Brought to you by:A. Readhead, T. Pearson, C. Dickinson (Caltech)

S. Myers, B. Mason (NRAO),J. Sievers, C. Contaldi, J.R. Bond (CITA)

P. Altamirano, R. Bustos, C. Achermann (Chile)& the CBI team!

astro-ph/0409569 (24 Sep 2004)Science 306, 836-844

Page 42: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

42The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI 2000+2001, WMAP, ACBAR, BIMA

Readhead et al. ApJ, 609, 498 (2004)Readhead et al. ApJ, 609, 498 (2004)

astro-ph/0402359astro-ph/0402359

SZE SZE SecondarySecondaryCMB CMB

PrimaryPrimary

Page 43: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

43The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Polarization Observations

• Observing since Sep 2002 (processed to May 2004)– compact configuration, maximum sensitivity

Page 44: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

44The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Upgrade: Polarization

• CBI instrumentation– Use quarter-wave devices for linear to circular conversion– Single amplifier per receiver: either R or L only per element

• 2000 Observations– One antenna cross-polarized in 2000 (Cartwright thesis)– Only 12 cross-polarized baselines (cf. 66 parallel hand)– Original polarizers had 5%-15% leakage– Deep fields, upper limit ~8 K

• 2002 Upgrade– Upgrade in 2002 using DASI polarizers (J. Kovac)– Observing with 7R + 6L starting Sep 2002– Raster scans for mosaicing and efficiency– New TRW InP HEMTs from NRAO

Page 45: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

45The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Upgrade: New NRAO HEMTs

• 2002 Upgrade– New TRW InP HEMTs from NRAO

Ka-band Receiver

0

2

4

6

8

10

12

14

16

18

20

26 28 30 32 34 36 38 40

Frequency (GHz)

No

ise

Tem

per

atu

re (

K)

Page 46: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

46The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Calibration from WMAP Jupiter

• Old uncertainty: 5%• 2.7% high vs. WMAP Jupiter• New uncertainty: 1.3%• Ultimate goal: 0.5%

Page 47: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

47The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Polarization Mosaics

• Four mosaics = 02h, 08h, 14h, 20h at = 0° (70 °) – 02h, 08h, 14h 6 x 6 fields, 20h deep strip 6 fields [45’ centers]

Page 48: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

48The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI observational issues

• short (100) baselines– can see the Sun if it is up observe at night only– can see the Moon within 60 observe 60 from Moon

• CMB fields on equator observe SZE clusters when blocked by moon!

– far-field at 100m atmosphere imaged along with CMB• Atacama site very good, little data lost to clouds

• platform (no delay tracking)– need to reject common mode signals (which correlate)

• 120db isolation between antennas (shields + phase shifters)

– strong (>1 Jy) ground signal (polarized)• no ground (or Sun) shield• orientation dependence (see mountains around site!)• removed by differencing (or scan projection)

Page 49: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

49The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Calibration and Foreground Removal

• Ground emission removal– Strong on short baselines, depends on orientation– Differencing between lead/trail field pairs (8m in RA=2deg)

• Use scanning for 2002-2003 polarization observations

Page 50: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

50The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Before ground subtraction:

• I, Q, U dirty mosaic images (6 fields 3m spacing):

Page 51: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

51The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

After ground subtraction:

• I, Q, U dirty mosaic images (9m differences):

Page 52: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

52The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Foregrounds – Sources

• Foreground radio sources– Predominant on long baselines – Located in NVSS at 1.4 GHz, VLA 8.4 GHz– Measured at 30 GHz with OVRO 40m

• new 30 GHz GBT receiver available late 2004

• “Projected” out in power spectrum analysis– list of NVSS sources (extrapolation to 30 GHz unknown)– 3727 total for TT many modes lost, sensitivity reduced– use 557 for polarization (bright OVRO + NVSS 3 pol)– need 30 GHz GBT measurements to know brightest

Page 53: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

53The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI & DASI Fields

galactic projection – image WMAP “synchrotron” (Bennett et al. 2003)

Page 54: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

54The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Polarization Power Spectra• 7-band fits (l = 150 for 600<l<1200) matched to peaks & valleys

Page 55: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

55The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Polarization Power Spectra• narrower bins (l = 75) – increased scatter from F-1

Page 56: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

56The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Data Tests

• Test robustness to systematic effects, such as:– instrumental effects (amplitude, polarization)– foregrounds (synchrotron, free-free, dust)

• Numerous 2 and noise tests– few discrepant days found no difference to results

• Conduct series of splits and “jack-knife” tests, e.g.:– primary vs. secondary calibrators (calibration consistency)– first half vs. second half of data (time-variable instrument)– “jack-knife” on antennas (bad single antenna)– “jack-knife” on fields (bad single field)– high vs. low frequency channels (e.g. foregrounds)

• NOTE: scatter at high l is due to “bandpower noise”

NO SIGNIFICANT DEVIATIONS FOUND!

Page 57: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

57The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Shaped Cl fits

• Use WMAP’03 best-fit Cl in signal covariance matrix– bandpower is then relative to fiducial power spectrum– compute for single band encompassing all ls

• Results for CBI data (sources projected from TT only)– qB = 1.22 ± 0.21 (68%)

– EE likelihood vs. zero : equivalent significance 8.9 σ

• Conservative - project subset out in polarization also– qB = 1.18 ± 0.24 (68%)

– significance 7.0 σ

Page 58: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

58The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

k b cdm ns m h

CBI Mosaic Observation

2.5o

THE PILLARS OF INFLATION

1) super-horizon (>2°) anisotropies2) acoustic peaks and harmonic pattern (~1°)3) damping tail (<10')4) Gaussianity5) secondary anisotropies6) polarization7) gravity waves

But … to do this we need to measure a signal which is 3x107 timesweaker than the typical noise!

geometry baryonic fraction cold dark matter primordial dark energy matter fraction Hubble Constant optical depthof the protons, neutrons not protons and fluctuation negative press- size & age of the to last scatt-universe neutrons spectrum ure of space universe ering of cmb

The CBI measures these fundamental constants of cosmology:

Page 59: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

59The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Cosomological Parameters• use fine bins (l = 75) +

window functions• cosmological models vs.

data using MCMC– modified COSMOMC

(Lewis & Bridle 2002)

• Include:– WMAP TT & TE

– WMAP + CBI’04 TT & EE (Readhead et al. 2004b)

– WMAP + CBI’04 TT & EE l <1000 + CBI’02 TT l >1000 (Readhead et al. 2004a)

Page 60: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

60The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Cosmology from EE Polarization

• NOTE: parameter constraints dominated by higher precision TT from CBI 2001-2002 (and to lesser extent 2002-2004) data!

• To discern what polarization data is adding, will need to be more subtle…

• Standard Cosmological Model ™– EE “predictable” from TT

– constraints dominated by more precise TT measurements

• Beyond the Standard Model– derive key parameters from EE alone – check consistency

– add new ingredients (e.g. isocurvature)

Page 61: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

61The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Breaking degeneracy

• Are temperature peaks intrinsic or dynamical?– if dynamical (standard model) then polarization shifted– if intrinsic (non-standard) then polarization aligned with TT

• however, would not expect EE only! still…

nearly degenerate TT spectranearly degenerate TT spectradashed: broken scale invariancedashed: broken scale invariance

& suppressed acoustic oscillations& suppressed acoustic oscillations

dashed: polarization aligned with TTdashed: polarization aligned with TT

solid: standard modelsolid: standard modelpolarization half-cyclepolarization half-cycle

shift w.r.t. TTshift w.r.t. TT

Page 62: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

62The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Acoustic Overtone Pattern• Sound crossing angular

size at photon decoupling– fiducial model

WMAP+ext : θ0 = 1.046

WMAPWMAP

WMAP+CBI’04WMAP+CBI’04

WMAP+CBI’04+CBI’02WMAP+CBI’04+CBI’02

1 s

grand unified:grand unified:

θθ == 1.0441.044±0.005±0.005

θθ//θθ00 = = 0.998±0.0050.998±0.005(WMAP+CBI’04+CBI’02)(WMAP+CBI’04+CBI’02)

Page 63: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

63The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI EE Polarization Phase

• Parameterization 1: envelope plus shiftable sinusoid– fit to “WMAP+ext” fiducial spectrum using rational functions

kgfa

C EE

sin

1

= 0= 0°° : EE prediction: EE prediction = 180= 180°°: aligned with TT: aligned with TT

Page 64: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

64The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI EE Polarization Phase

• Peaks in EE should be offset one-half cycle vs. TT– allow amplitude a and phase to vary

best fit: best fit: aa=0.94=0.94

== 2424°±°±3333°° ( (22=1)=1)

22(1, 0(1, 0°°)=0.56)=0.56

Page 65: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

65The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI EE Polarization Phase

• Scaling model: spectrum shifts by scaling l – same envelope functions as before

0

0

sin

1

ss

EE

AAa

kgfa

C

fiducial model:fiducial model:

θθ00== 1.0461.046(“WMAP+ext”)(“WMAP+ext”)

θθ sound crossingsound crossingangular scaleangular scale

Page 66: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

66The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI EE Polarization Phase

• Scaling model: spectrum shifts by scaling l – allow amplitude a and scale θ to vary

overtone 0.67 island: overtone 0.67 island: aa=0.69=0.69±±0.030.03

excluded by TTexcluded by TTand other priorsand other priors

other overtone islandsother overtone islands

also excludedalso excluded

Page 67: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

67The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI EE Polarization Phase

• Scaling model: spectrum shifts by scaling l – allow amplitude a and scale θ to vary

best fit: best fit: aa=0.93=0.93

slice along a=1:slice along a=1:

θθ//θθ00== 1.021.02±±0.04 (0.04 (22=1)=1)

zoom in: zoom in:

± one-half cycle± one-half cycle

Page 68: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

68The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI, DASI, Capmap

Page 69: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

69The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: DASI EE Polarization Phase

• Use DASI EE 5-bin bandpowers (Leitch et al. 2004)– bin-bin covariance matrix plus approximate window

functions

a=0.5, 0.67 overtone islands:a=0.5, 0.67 overtone islands:

suppressed by DASIsuppressed by DASI

DASI phase lock:DASI phase lock:

θθ//θθ00== 0.94±0.060.94±0.06a=0.5 (low DASI)a=0.5 (low DASI)

Page 70: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

70The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

New: CBI + DASI EE Phase

• Combined constraints on θ model:– DASI (Leitch et al. 2004) & CBI (Readhead et al. 2004)

CBI a=0.67 overtone island:CBI a=0.67 overtone island:

suppressed by DASI datasuppressed by DASI data

other overtone islandsother overtone islands

also excludedalso excluded

CBI+DASI phase lock:CBI+DASI phase lock:

θθ//θθ00== 1.00±0.031.00±0.03a=0.78a=0.78±0.15±0.15 (low DASI) (low DASI)

Page 71: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

71The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Conclusions

• CMB polarization interferometry (CBI,DASI)– straightforward analysis {RR,RL} → {TT,EE,BB,TE}– polarization systematics minimized

• CMB polarization results– EE power spectrum measured

• consistent with Standard Cosmological Model™

– EE acoustic spectrum• peaks phase one-half cycle offset from TT

• sound crossing angular scale independently consistent (3%)

– BB null, no polarized foregrounds detected– TE difficult to extract in wide bins

• more data, narrower bins

Page 72: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

72The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Projections

• Run through 2006: EE 2.7× & BB 3.5× improvement

Page 73: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

73The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Projections

• EE phase: end of 2004 vs. end of 2006

Page 74: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

74The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Projections

• The next generation: EE and BB (lensing)

Page 75: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

75The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

CBI Projections

• Will BB (lensing) be foreground limited?

Page 76: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

76The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

Future

• CBI– 6 months more data in hand finer l bins– more detailed papers: data tests, analysis, parameters– plan to run to end of 2006 (pending funding)– also: SZE clusters (e.g. Udomprasert et al. 2004)

• Beyond CBI QUIET– detectors are near quantum & bandwidth limit – need more!– but: need clean polarization (low stable instrumental effects)– large format (1000 els.) coherent (MMIC) detector array– polarization B-modes! (at least the lensing signal)

• Further Beyond– Beyond Einstein (save the Bpol mission!)

Page 77: The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005 2 CMB Polarization Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy

77The Cosmic Background Imager – Jodrell Bank, 28 Feb 2005

The CBI Collaboration

Caltech Team: Tony Readhead (Principal Investigator), John Cartwright, Clive Dickinson, Alison Farmer, Russ Keeney, Brian Mason, Steve Miller, Steve Padin (Project Scientist), Tim Pearson, Walter Schaal, Martin Shepherd, Jonathan Sievers, Pat Udomprasert, John Yamasaki.Operations in Chile: Pablo Altamirano, Ricardo Bustos, Cristobal Achermann, Tomislav Vucina, Juan Pablo Jacob, José Cortes, Wilson Araya.Collaborators: Dick Bond (CITA), Leonardo Bronfman (University of Chile), John Carlstrom (University of Chicago), Simon Casassus (University of Chile), Carlo Contaldi (CITA), Nils Halverson (University of California, Berkeley), Bill Holzapfel (University of California, Berkeley), Marshall Joy (NASA's Marshall Space Flight Center), John Kovac (University of Chicago), Erik Leitch (University of Chicago), Jorge May (University of Chile), Steven Myers (National Radio Astronomy Observatory), Angel Otarola (European Southern Observatory), Ue-Li Pen (CITA), Dmitry Pogosyan (University of Alberta), Simon Prunet (Institut d'Astrophysique de Paris), Clem Pryke (University of Chicago).

The CBI Project is a collaboration between the California Institute of Technology, the Canadian Institute for Theoretical Astrophysics, the National Radio Astronomy Observatory, the University of Chicago, and the Universidad de Chile. The project has been supported by funds from the National Science Foundation, the California Institute of Technology, Maxine and Ronald Linde, Cecil and Sally Drinkward, Barbara and Stanley Rawn Jr., the Kavli Institute,and the Canadian Institute for Advanced Research.