the course web site is: ...trueman/elec273files/elec273_10...Β Β· trueman ... numbers. final exam:...

76
The course web site is: http ://users.encs.concordia.ca/~trueman/web_page_273.htm ELEC273 Lecture Notes Set 10 Phasors and Impedance Homework on complex numbers. Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Upload: hoangnga

Post on 22-May-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm

ELEC273 Lecture Notes Set 10 Phasors and Impedance

Homework on complex numbers.

Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Page 2: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

What is AC Circuit Analysis?

β€’ AC circuit analysis uses complex numbers to find the forced response to a sinusoidal generator.

β€’ AC circuit analysis is very similar to DC circuit analysis that we studied earlier in the course. DC Circuit Analysis AC Circuit Analysis

Constant voltage V and current I Sinusoidal voltage 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒSinusoidal current 𝑖𝑖(𝑑𝑑) = 𝐡𝐡 cos πœ”πœ”π‘‘π‘‘ + πœ™πœ™

Real numbers for V and I Complex numbers called phasors𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ and 𝐼𝐼 = π΅π΅π‘’π‘’π‘—π‘—πœ™πœ™

Real number resistances R Complex number impedances𝑍𝑍𝑅𝑅 = 𝑅𝑅, 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ”, and 𝑍𝑍𝐢𝐢 = 1

π‘—π‘—πœ”πœ”πΆπΆ

Real number node matrix or mesh matrix Complex number node matrix or mesh matrix

Given: β€’ the frequency 𝑓𝑓 Hz, hence πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ rad/secβ€’ The amplitude of the source, 10 voltsFind:β€’ The amplitude 𝐴𝐴 and the phase πœƒπœƒ of the output

voltage 𝑣𝑣 𝑑𝑑 at β€œsteady state” after the transients have died out.

From Alexander and Sadiku.

10 cosπœ”πœ”π‘‘π‘‘+𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ)βˆ’

𝑅𝑅1𝑅𝑅2𝐢𝐢

πœ”πœ”

Page 3: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

PhasorGiven an AC voltage 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ , define the phasor representing voltage 𝑣𝑣(𝑑𝑑) as the complex number𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

where 𝑗𝑗 = βˆ’1and πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ is the frequency in radians per second. The magnitude of the phasor π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ is the amplitude of the cosine 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ .The angle of the phasor, πœƒπœƒ, is the phase angle of the cosine 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ .

It is sometimes convenient to visualize the phasor by drawing it on the complex plane.

The phasor 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ is an arrow of length A making an angle of πœƒπœƒto the real axis.

It can be quite useful to draw phasors on the complex plane!

We can use angle notation:𝑉𝑉 = π΄π΄βˆ πœƒπœƒOr exponential notation𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

Imaginary

Real

𝑉𝑉𝐴𝐴

πœƒπœƒ

𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

Page 4: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Rotating PhasorThe phasor representing AC voltage 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ is the complex number 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ .

It is sometimes convenient to visualize the relationship between two phasors by defining a rotating phasor as

𝑣𝑣𝑐𝑐 𝑑𝑑 = π‘‰π‘‰π‘’π‘’π‘—π‘—πœ”πœ”πœ”πœ”

Hence𝑣𝑣𝑐𝑐 𝑑𝑑 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒπ‘’π‘’π‘—π‘—πœ”πœ”πœ”πœ” = 𝐴𝐴𝑒𝑒𝑗𝑗(πœ”πœ”πœ”πœ”+πœƒπœƒ)

The AC voltage we started with is the real part of the rotating phasor.𝑣𝑣 𝑑𝑑 = Re 𝑣𝑣𝑐𝑐 𝑑𝑑 = Re 𝐴𝐴𝑒𝑒𝑗𝑗 πœ”πœ”πœ”πœ”+πœƒπœƒ = Re 𝐴𝐴cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ + j𝐴𝐴sin πœ”πœ”π‘‘π‘‘ + πœƒπœƒ = 𝐴𝐴cos(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ)

Draw the rotating phasor on the complex plane at t=0.

At 𝑑𝑑 = 0, 𝑣𝑣𝑐𝑐 0 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒπ‘’π‘’π‘—π‘—πœ”πœ”π‘₯π‘₯π‘₯ = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

where the β€œc” subscript on 𝑣𝑣𝑐𝑐 𝑑𝑑 denotes a complex version of voltage 𝑣𝑣 𝑑𝑑 .

Imaginary

Real

𝐴𝐴

πœƒπœƒ

π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒAt 𝑑𝑑 = 0𝑣𝑣𝑐𝑐 0 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

Page 5: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Draw the rotating phasor on the complex plane as time advances:

𝐴𝐴𝑒𝑒𝑗𝑗(πœ”πœ”πœ”πœ”+πœƒπœƒ)

Draw the rotating phasor at time 𝑑𝑑 > 0

𝑣𝑣𝑐𝑐 𝑑𝑑 = 𝐴𝐴𝑒𝑒𝑗𝑗(πœ”πœ”πœ”πœ”+πœƒπœƒ)

This amounts to adding angle πœ”πœ”π‘‘π‘‘ to the angle of phasor π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ.

As time increases, πœ”πœ”π‘‘π‘‘ increases. We add a full 2πœ‹πœ‹radians of angle in one AC period 𝑇𝑇 = 1

𝑓𝑓.

The phasor rotates by one full rotation for each T seconds of time.

Imaginary

Real

𝐴𝐴

πœƒπœƒ

For 𝑑𝑑 > 0𝑣𝑣𝑐𝑐 𝑑𝑑 = 𝐴𝐴𝑒𝑒𝑗𝑗(πœ”πœ”πœ”πœ”+πœƒπœƒ)

πœ”πœ”π‘‘π‘‘

πœ”πœ”π‘‘π‘‘ + πœƒπœƒ

Page 6: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Phasorβ€’ The phasor representing sinusoidal voltage 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ is the complex number 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

β€’ The amplitude A of the cosine is the magnitude of the phasor: 𝐴𝐴 = 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

β€’ The phase angle πœƒπœƒ of the cosine is the angle of the complex number β€œphasor”.

β€’ We can β€œrecover” the cosine from the phasor by multiplying the phasor by π‘’π‘’π‘—π‘—πœ”πœ”πœ”πœ” and then using Euler’s Identity: π‘’π‘’π‘—π‘—πœ™πœ™ = cosπœ™πœ™ + 𝑗𝑗 sinπœ™πœ™

𝑣𝑣 𝑑𝑑 = Re π‘‰π‘‰π‘’π‘’π‘—π‘—πœ”πœ”πœ”πœ” = Re π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒπ‘’π‘’π‘—π‘—πœ”πœ”πœ”πœ” = Re 𝐴𝐴𝑒𝑒𝑗𝑗(πœ”πœ”πœ”πœ”+πœƒπœƒ)

𝑣𝑣 𝑑𝑑 = Re 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ + 𝑗𝑗 sin πœ”πœ”π‘‘π‘‘ + πœƒπœƒπ‘£π‘£ 𝑑𝑑 = Re 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ + 𝑗𝑗 𝐴𝐴sin πœ”πœ”π‘‘π‘‘ + πœƒπœƒπ‘£π‘£ 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ

β€’ To recover the cosine from the phasor:β€’ The amplitude A of the cosine is the magnitude of the phasor V β€’ The phase angle πœƒπœƒ of the cosine is the angle of the complex number

Page 7: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Examples of Phasors1.Find the phasor for 𝑣𝑣1 𝑑𝑑 = 10 cos πœ”πœ”π‘‘π‘‘ + πœ‹πœ‹

4Answer: 𝑉𝑉1 = 10𝑒𝑒𝑗𝑗

πœ‹πœ‹4

2.Find the cosine represented by phasor 𝑉𝑉2 = 5π‘’π‘’βˆ’π‘—π‘—πœ‹πœ‹6

Answer: 𝑣𝑣2 𝑑𝑑 = 5 cos πœ”πœ”π‘‘π‘‘ βˆ’ πœ‹πœ‹6

3.Find the sum: 𝑣𝑣3 𝑑𝑑 = 𝑣𝑣1 𝑑𝑑 + 𝑣𝑣2 𝑑𝑑Using trig identities is the hard way: 𝑣𝑣3 𝑑𝑑 = 10 cos πœ”πœ”π‘‘π‘‘ +

πœ‹πœ‹4

+ 5 cos πœ”πœ”π‘‘π‘‘ βˆ’πœ‹πœ‹6

Try it!The easy way: 𝑉𝑉3 = 𝑉𝑉1 + 𝑉𝑉2 = 10𝑒𝑒𝑗𝑗

πœ‹πœ‹4 + 5π‘’π‘’βˆ’π‘—π‘—

πœ‹πœ‹6 (see the next slide)

Page 8: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Evaluate the sum 𝑉𝑉3 = 𝑉𝑉1 + 𝑉𝑉2𝑉𝑉3 = 10𝑒𝑒𝑗𝑗

πœ‹πœ‹4 + 5π‘’π‘’βˆ’π‘—π‘—

πœ‹πœ‹6

Showing ALL the steps:𝑉𝑉3 = 10 cos

πœ‹πœ‹4

+ 𝑗𝑗𝑗𝑗 sinπœ‹πœ‹4

+ 5 cosβˆ’πœ‹πœ‹6

+ 𝑗𝑗𝑗 sinβˆ’πœ‹πœ‹6

𝑉𝑉3 = 7.071 + 𝑗𝑗𝑗.071 + 4.330 βˆ’ 𝑗𝑗2.5𝑉𝑉3 = 11.401 + 𝑗𝑗4.571Magnitude 11.4012 + 4.5712 = 12.283Angle tanπœƒπœƒ = 4.571

11.4π‘₯1= 0.4049 so πœƒπœƒ = 21.85 deg or 0.3814 rad

The phasor is𝑉𝑉3 = 12.283𝑒𝑒𝑗𝑗π‘₯.3814

so the time function is𝑣𝑣3 𝑑𝑑 = 12.283 cos πœ”πœ”π‘‘π‘‘ + 0.3814

Page 9: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Check the result by sketching the phasors on the complex plane:

𝑉𝑉1 = 10π‘’π‘’π‘—π‘—πœ‹πœ‹4 = 10 angle 45 degrees = 7.071+j7.071

𝑉𝑉2 = 5π‘’π‘’βˆ’π‘—π‘—πœ‹πœ‹6= 5 angle -30 degrees=4.330-j2.500

𝑉𝑉3 = 𝑉𝑉1 + 𝑉𝑉2

𝑉𝑉3 = 12.283𝑒𝑒𝑗𝑗21.85Β°= 12.283 angle 21.85 degrees

Drawing the phasors tip to tail in the complex plane shows that 12.283 angle 21.85 degrees is a reasonable answer.

ImIm

Re

Re

𝑉𝑉1 = 10π‘’π‘’π‘—π‘—πœ‹πœ‹4

𝑉𝑉2 = 5π‘’π‘’βˆ’π‘—π‘—πœ‹πœ‹6

45Β°

30Β°

10

5

𝑉𝑉1 = 10π‘’π‘’π‘—π‘—πœ‹πœ‹4

𝑉𝑉2 = 5π‘’π‘’βˆ’π‘—π‘—πœ‹πœ‹6

𝑉𝑉3 = 𝑉𝑉1 + 𝑉𝑉2

Page 10: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Impedance: the ratio of voltage phasor to current phasor.

β€’ Consider a component in a circuit driven by a sinusoidal generator cosπœ”πœ”π‘‘π‘‘

β€’ The voltage 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ is represented by phasor 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

β€’ The current 𝑖𝑖 𝑑𝑑 = 𝐡𝐡 cos πœ”πœ”π‘‘π‘‘ + πœ™πœ™ is represented by phasor 𝐼𝐼 = π΅π΅π‘’π‘’π‘—π‘—πœ™πœ™

β€’ The impedance is defined as

𝑍𝑍 = 𝑉𝑉𝐼𝐼

ohms

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)+π‘‰π‘‰βˆ’

𝐼𝐼

Page 11: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

The Impedance is a Complex Number

β€’ 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

β€’ 𝐼𝐼 = π΅π΅π‘’π‘’π‘—π‘—πœ™πœ™

β€’ The impedance is a complex number:

𝑍𝑍 =𝑉𝑉𝐼𝐼 =

π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

π΅π΅π‘’π‘’π‘—π‘—πœ™πœ™=𝐴𝐴𝐡𝐡 𝑒𝑒

𝑗𝑗(πœƒπœƒβˆ’πœ™πœ™) =𝐴𝐴𝐡𝐡 cos πœƒπœƒ βˆ’ πœ™πœ™ + 𝑗𝑗

𝐴𝐴𝐡𝐡 sin πœƒπœƒ βˆ’ πœ™πœ™ = 𝑅𝑅 + 𝑗𝑗𝑗𝑗

𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑗𝑗

R=the resistance is the real part of the impedanceX=the reactance is the imaginary part of the impedance.

+π‘‰π‘‰βˆ’

𝐼𝐼

Page 12: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Admittance: the reciprocal of the impedanceThe admittance is the ratio of the current phasor to the voltage phasor:π‘Œπ‘Œ = 𝐼𝐼

𝑉𝑉Siemens

Note thatπ‘Œπ‘Œ = 1

𝑍𝑍

The admittance is a complex number:π‘Œπ‘Œ = 𝐺𝐺 + 𝑗𝑗𝐡𝐡

G=the conductance is the real part of the admittanceB=the susceptance is the imaginary part of the admittance.

Page 13: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

What is the impedance of a resistor?

𝑣𝑣 𝑑𝑑 = 𝑅𝑅𝑖𝑖 𝑑𝑑𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ volts then the current is

𝑖𝑖 𝑑𝑑 =𝑣𝑣(𝑑𝑑)𝑅𝑅 =

𝐴𝐴𝑅𝑅 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ

with amplitude 𝐴𝐴𝑅𝑅

and phase πœƒπœƒThe voltage phasor is 𝑉𝑉 = π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

The current phasor is 𝐼𝐼 = π΄π΄π‘…π‘…π‘’π‘’π‘—π‘—πœƒπœƒ; magnitude 𝐴𝐴

𝑅𝑅and angle πœƒπœƒ

The impedance is 𝑍𝑍 = 𝑉𝑉𝐼𝐼

= π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒπ΄π΄π‘…π‘…π‘’π‘’

π‘—π‘—πœƒπœƒ= 𝑅𝑅 ohms.

The admittance is π‘Œπ‘Œ = 1𝑍𝑍

= 1𝑅𝑅

= 𝐺𝐺 Siemens

Time domain Frequency Domain also called the β€œphasor domain”

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑) +π‘‰π‘‰βˆ’

𝐼𝐼

𝑍𝑍 = 𝑅𝑅𝑅𝑅

Page 14: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

What is the impedance of an inductor?𝑣𝑣 𝑑𝑑 = πœ”πœ”

𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 𝑑𝑑

If 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ volts then we can find the current usingπ‘‘π‘‘π‘–π‘–π‘‘π‘‘πœ”πœ”

= 1𝐿𝐿𝑣𝑣 𝑑𝑑 so 𝑑𝑑𝑖𝑖 = 1

𝐿𝐿𝑣𝑣 𝑑𝑑 𝑑𝑑𝑑𝑑 and by integrating both sides

𝑖𝑖 =1πœ”πœ”οΏ½π‘£π‘£ 𝑑𝑑 𝑑𝑑𝑑𝑑 =

1πœ”πœ”οΏ½π΄π΄ cos(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ)𝑑𝑑𝑑𝑑 =

π΄π΄πœ”πœ”πœ”πœ”

sin(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ)

To write the phasor we need to change sine to cosine.Use the trig identity:sin𝛼𝛼 = co𝑠𝑠 𝛼𝛼 βˆ’

πœ‹πœ‹2

With Ξ± = πœ”πœ”π‘‘π‘‘ + πœƒπœƒ, we have

𝑖𝑖 =π΄π΄πœ”πœ”πœ”πœ” sin(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ) =

π΄π΄πœ”πœ”πœ”πœ” cos(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ βˆ’

πœ‹πœ‹2)

Which has amplitude π΄π΄πœ”πœ”πΏπΏ

and phase πœƒπœƒ βˆ’ πœ‹πœ‹2

, so the current phasor is

𝐼𝐼 =π΄π΄πœ”πœ”πœ”πœ” 𝑒𝑒

𝑗𝑗 πœƒπœƒβˆ’πœ‹πœ‹2

The impedance is

𝑍𝑍 =𝑉𝑉𝐼𝐼 =

π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

π΄π΄πœ”πœ”πœ”πœ” 𝑒𝑒

𝑗𝑗(πœƒπœƒβˆ’πœ‹πœ‹2)= πœ”πœ”πœ”πœ”π‘’π‘’π‘—π‘—

πœ‹πœ‹2

Time domain

Frequency domain

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)

+π‘‰π‘‰βˆ’

𝐼𝐼

𝑍𝑍 = π‘—π‘—πœ”πœ”πœ”πœ”

πœ”πœ”

Page 15: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Impedance of an inductor, continued;𝑍𝑍 = πœ”πœ”πœ”πœ”π‘’π‘’π‘—π‘—

πœ‹πœ‹2

We can see from the Argand diagram that π‘’π‘’π‘—π‘—πœ‹πœ‹2 = 𝑗𝑗.

Another way to prove this is with Euler’s Identity:𝑒𝑒𝑗𝑗

πœ‹πœ‹2 = cos

πœ‹πœ‹2

+ 𝑗𝑗 sinπœ‹πœ‹2

= 0 + 𝑗𝑗𝑗 = 𝑗𝑗

Hence the impedance of an inductor is

𝑍𝑍 = π‘—π‘—πœ”πœ”πœ”πœ” ohms

The admittance of an inductor is

π‘Œπ‘Œ = 1𝑍𝑍

= 1π‘—π‘—πœ”πœ”πΏπΏ

SiemensArgand diagram

Re

Im

1 πœ‹πœ‹2

𝑗𝑗 = 1π‘’π‘’π‘—π‘—πœ‹πœ‹2

Time domain

Frequency domain

+π‘‰π‘‰βˆ’

𝐼𝐼

𝑍𝑍 = π‘—π‘—πœ”πœ”πœ”πœ”

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)

πœ”πœ”

Page 16: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

What is the impedance of a capacitor?𝑖𝑖(𝑑𝑑) = 𝐢𝐢

𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣 𝑑𝑑

If 𝑣𝑣 𝑑𝑑 = 𝐴𝐴 cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ volts then we can calculate the current as

𝑖𝑖 = 𝐢𝐢𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴 cos(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ) = βˆ’Ο‰πΆπΆπ΄π΄ sin(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ)

To write the phasor we need to change sine to cosine using the trig identity:sin𝛼𝛼 = βˆ’co𝑠𝑠 𝛼𝛼 + πœ‹πœ‹

2With Ξ± = πœ”πœ”π‘‘π‘‘ + πœƒπœƒ, we have𝑖𝑖 = βˆ’Ο‰πΆπΆπ΄π΄ sin(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ) = ω𝐢𝐢Acos(πœ”πœ”π‘‘π‘‘ + πœƒπœƒ +

πœ‹πœ‹2)

which has amplitude ω𝐢𝐢𝐴𝐴 and phase πœƒπœƒ + πœ‹πœ‹2

, so the current phasor is

𝐼𝐼 = ω𝐢𝐢𝐴𝐴𝑒𝑒𝑗𝑗 πœƒπœƒ+πœ‹πœ‹2

The impedance is

𝑍𝑍 =𝑉𝑉𝐼𝐼 =

π΄π΄π‘’π‘’π‘—π‘—πœƒπœƒ

ω𝐢𝐢𝐴𝐴𝑒𝑒𝑗𝑗 πœƒπœƒ+πœ‹πœ‹2=

1

Ο‰πΆπΆπ‘’π‘’π‘—π‘—πœ‹πœ‹2

Since π‘’π‘’π‘—π‘—πœ‹πœ‹2 = 𝑗𝑗 we can write the impedance of a capacitor as

𝑍𝑍 = 1π‘—π‘—πœ”πœ”πΆπΆ

ohms.

The admittance of a capacitor is π‘Œπ‘Œ = 1𝑍𝑍

= π‘—π‘—πœ”πœ”πΆπΆ Siemens

Frequency domain

+π‘‰π‘‰βˆ’

𝐼𝐼

𝑍𝑍 =1

π‘—π‘—πœ”πœ”πΆπΆ

Time domain

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)

𝐢𝐢

Page 17: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Component Time Domain Frequency Domain

Resistor

Inductor

Capacitor

Impedance

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)

𝑅𝑅

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)

𝐢𝐢

+𝑣𝑣(𝑑𝑑)βˆ’

𝑖𝑖(𝑑𝑑)

πœ”πœ”

𝑣𝑣 = 𝑅𝑅𝑖𝑖

𝑣𝑣 = πœ”πœ”π‘‘π‘‘π‘–π‘–π‘‘π‘‘π‘‘π‘‘

𝑖𝑖 = 𝐢𝐢𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑

𝑉𝑉 = 𝑅𝑅𝐼𝐼

𝑉𝑉 = π‘—π‘—πœ”πœ”πœ”πœ”πΌπΌ

𝑉𝑉 =1π‘—π‘—πœ”πœ”πΆπΆ

𝐼𝐼

Page 18: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Combining ImpedancesImpedances in series:

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 = 𝑍𝑍1𝐼𝐼 + 𝑍𝑍2𝐼𝐼=(𝑍𝑍1+𝑍𝑍2)𝐼𝐼So the equivalent impedance is

𝑍𝑍 =𝑉𝑉𝐼𝐼

=(𝑍𝑍1+𝑍𝑍2)𝐼𝐼

𝐼𝐼= 𝑍𝑍1 + 𝑍𝑍2

Series impedances add.

Impedances in parallel:

𝐼𝐼 = 𝐼𝐼1 + 𝐼𝐼2 =𝑉𝑉𝑍𝑍1

+𝑉𝑉𝑍𝑍2

=1𝑍𝑍1

+1𝑍𝑍2

𝑉𝑉

The equivalent impedance is

𝑍𝑍 =𝑉𝑉𝐼𝐼 =

𝑉𝑉1𝑍𝑍1

+ 1𝑍𝑍2

𝑉𝑉=

𝑍𝑍1𝑍𝑍2𝑍𝑍1 + 𝑍𝑍2

Parallel impedances combine using product over sum.

+

𝑉𝑉

βˆ’

+𝑉𝑉2βˆ’

𝐼𝐼

+𝑉𝑉1βˆ’

𝐼𝐼2𝐼𝐼1

+

𝑉𝑉

βˆ’

𝐼𝐼

𝑍𝑍2𝑍𝑍1

𝑍𝑍2

𝑍𝑍1

Page 19: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Combining Admittances: 𝐼𝐼 = π‘Œπ‘Œπ‘‰π‘‰ so 𝑉𝑉 = πΌπΌπ‘Œπ‘Œ

Admittances in series:

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 =πΌπΌπ‘Œπ‘Œ1

+πΌπΌπ‘Œπ‘Œ2

=1π‘Œπ‘Œ1

+1π‘Œπ‘Œ2

𝐼𝐼

So the equivalent admittance is

π‘Œπ‘Œ =𝐼𝐼𝑉𝑉

=I

πΌπΌπ‘Œπ‘Œ1

+ πΌπΌπ‘Œπ‘Œ2

𝐼𝐼=

π‘Œπ‘Œ1π‘Œπ‘Œ2π‘Œπ‘Œ1 + π‘Œπ‘Œ2

Series admittances combine like parallel resistors: product over sum.

Admittances in parallel:𝐼𝐼 = 𝐼𝐼1 + 𝐼𝐼2 = π‘Œπ‘Œ1𝑉𝑉 + π‘Œπ‘Œ2𝑉𝑉 = (π‘Œπ‘Œ1 + π‘Œπ‘Œ2)𝑉𝑉The equivalent admittance is

π‘Œπ‘Œ =𝐼𝐼𝑉𝑉

=(π‘Œπ‘Œ1 + π‘Œπ‘Œ2)𝑉𝑉

𝑉𝑉= π‘Œπ‘Œ1 + π‘Œπ‘Œ2

Parallel admittances add.

+

𝑉𝑉

βˆ’

+𝑉𝑉2βˆ’

𝐼𝐼

+𝑉𝑉1βˆ’

𝐼𝐼2𝐼𝐼1

+

𝑉𝑉

βˆ’

𝐼𝐼

π‘Œπ‘Œ2π‘Œπ‘Œ1

π‘Œπ‘Œ2

π‘Œπ‘Œ1

Page 20: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Series-Parallel Combinations Find the input impedance 𝑍𝑍𝑖𝑖𝑖𝑖 at an operating frequency of 60 Hz.The radian frequency is πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 2πœ‹πœ‹πœ‹πœ‹πœ‹π‘— = 𝑗2π‘—πœ‹πœ‹ = 376.99 rad.sec

Change the components to impedances:

𝑍𝑍𝐿𝐿1 = π‘—π‘—πœ”πœ”πœ”πœ”1 = π‘—π‘—πœ‹πœ‹π‘—2π‘—πœ‹πœ‹πœ‹πœ‹2.πœ‹π‘—πœ‹πœ‹10βˆ’3 = 𝑗𝑗𝑗

𝑍𝑍𝑅𝑅1 = 𝑅𝑅1 = 2

𝑍𝑍𝑅𝑅2 = 𝑅𝑅2 = 2

𝑍𝑍𝑅𝑅3 = 𝑅𝑅3 = 3

𝑍𝑍𝐿𝐿2 = π‘—π‘—πœ”πœ”πœ”πœ”2 = π‘—π‘—πœ‹πœ‹π‘—2π‘—πœ‹πœ‹πœ‹πœ‹π‘—.3π‘—πœ‹πœ‹10βˆ’3 = 𝑗𝑗2

𝑍𝑍𝐢𝐢 =1π‘—π‘—πœ”πœ”πΆπΆ =

1π‘—π‘—πœ‹πœ‹120πœ‹πœ‹πœ‹πœ‹1326πœ‹πœ‹10βˆ’6 =

2𝑗𝑗 =

2π‘—π‘—βˆ’π‘—π‘—βˆ’π‘—π‘— = βˆ’π‘—π‘—2

Method:1.Change the components into impedances.2.Combine impedances in series and in parallel.

𝑍𝑍𝑖𝑖𝑖𝑖

𝑅𝑅1 = 2 Ξ©

𝑅𝑅2 = 2 Ξ© 𝑅𝑅3 = 3 Ξ©πœ”πœ”1 = 2.65 mH

πœ”πœ”2 = 5.30 mH

𝐢𝐢 = 1,326 ¡F

𝑅𝑅1 = 2 Ξ©

𝑅𝑅2 = 2 Ξ©

𝑅𝑅3 = 3 Ξ©πœ”πœ”1 = 2.65 mH

πœ”πœ”2 = 5.30 mH

𝐢𝐢 = 1,326 ¡F

Page 21: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Find the input impedance, continued:

𝑍𝑍1is j2 ohms in parallel with 3 ohms:

𝑍𝑍1 =𝑗𝑗2πœ‹πœ‹3𝑗𝑗2 + 3 =

π‘—π‘—πœ‹3 + 𝑗𝑗2

3 βˆ’ 2𝑗𝑗3 βˆ’ 𝑗𝑗2 =

𝑗𝑗𝑗𝑗 + 123πœ‹πœ‹3 + 2πœ‹πœ‹2 =

12 + 𝑗𝑗𝑗𝑗13

𝑍𝑍2is -j2 ohms in parallel with 2 ohms:

𝑍𝑍2 =βˆ’π‘—π‘—2πœ‹πœ‹2βˆ’π‘—π‘—2 + 2 =

βˆ’π‘—π‘—π‘—2 βˆ’ 𝑗𝑗2

2 + 2𝑗𝑗2 + 𝑗𝑗2 =

βˆ’π‘—π‘—π‘— + 82πœ‹πœ‹2 + 2πœ‹πœ‹2 =

8 βˆ’ 𝑗𝑗𝑗8 = 1 βˆ’ 𝑗𝑗

𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

2 Ξ© 3 Ω𝑗𝑗2 Ξ©j1 Ξ©

βˆ’π‘—π‘—2 Ξ©

𝑍𝑍1 𝑗𝑗2 Ξ© 3 Ξ©

𝑍𝑍2

2 Ξ©

βˆ’π‘—π‘—2 Ξ©

𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

j1 Ξ© 𝑍𝑍1𝑍𝑍2

Page 22: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Combine 𝑍𝑍1 and 𝑍𝑍2 in series:

𝑍𝑍3 = 𝑍𝑍1 + 𝑍𝑍2𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

j1 Ξ© 𝑍𝑍1𝑍𝑍2 𝑍𝑍1

𝑍𝑍2

𝑍𝑍1 =12 + 𝑗𝑗𝑗𝑗

13𝑍𝑍2 = 1 βˆ’ 𝑗𝑗

𝑍𝑍3 = 𝑍𝑍1 + 𝑍𝑍2 =12 + 𝑗𝑗𝑗𝑗

13 + (1 βˆ’ 𝑗𝑗) =12 + 𝑗𝑗𝑗𝑗

13 +13 βˆ’ 𝑗𝑗𝑗3

13𝑍𝑍3 =

25 + 𝑗𝑗513

Page 23: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Find the input impedance, continued:Define 𝑍𝑍4as j1 ohms in parallel with 𝑍𝑍3:

𝑍𝑍4 =π‘—π‘—πœ‹πœ‹ 25 + 𝑗𝑗𝑗

13𝑗𝑗 + 25 + 𝑗𝑗𝑗

13

=βˆ’5 + 𝑗𝑗2𝑗25 + 𝑗𝑗𝑗𝑗

25 βˆ’ 𝑗𝑗𝑗𝑗25 βˆ’ 𝑗𝑗𝑗𝑗

=βˆ’125 + 𝑗𝑗𝑗𝑗 + π‘—π‘—πœ‹2𝑗 + 450

2π‘—πœ‹πœ‹2𝑗 + π‘—π‘—πœ‹πœ‹π‘—π‘—=

325 βˆ’ 𝑗𝑗𝑗𝑗𝑗949

𝑍𝑍𝑖𝑖𝑖𝑖 is 2 ohms in series with 𝑍𝑍4:

𝑍𝑍𝑖𝑖𝑖𝑖 = 2 + 𝑍𝑍4 = 2 +325 βˆ’ 𝑗𝑗𝑗𝑗𝑗

949 =1989 + 325 βˆ’ 𝑗𝑗𝑗𝑗𝑗

949=

2223 βˆ’ 𝑗𝑗𝑗𝑗𝑗949

𝑍𝑍𝑖𝑖𝑖𝑖 = 2.342 βˆ’ 𝑗𝑗𝑗.7534 Ξ©

This is our final answer!

𝑍𝑍3𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

j1 Ξ©

𝑍𝑍4𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

Page 24: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Spice with a Sinusoidal Generator

To calculate the input impedance with LTSpice:β€’ Drive the circuit with a 1 volt generator at 60 Hzβ€’ Find the current in 𝑅𝑅1 flowing into the circuit 𝐼𝐼𝑖𝑖𝑖𝑖‒ Calculate the input impedance as

𝑍𝑍𝑖𝑖𝑖𝑖 = 1𝐼𝐼𝑖𝑖𝑖𝑖

Construct the circuit.

How do we specify a sinusoidal excitation?

𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

2 Ξ© 3 Ω𝑗𝑗2 Ξ©j1 Ξ©

βˆ’π‘—π‘—2 Ξ©

Page 25: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

To specify that the generator is an AC source, right-click on the generator circle to pop up a menu:

Specify AC 1, meaning that the generator is a sinusoidal or β€œAC” source of amplitude 1 volt.

Page 26: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Choose AC Analysis and give the frequency: Click on Stimulate and then Edit Stimulation Card.

Page 27: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Choose AC Analysis:

β€’ Specify the number of points per octave as 1.β€’ Specify both the starting and the stopping frequency as 60 Hz (we only want one frequency).

Page 28: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

We are ready to run the simulation:

The system adds the β€œdot command” .ac oct 1 60 60.Click on the β€œrun” button to solve the circuit.

Page 29: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Spice calculates the amplitude and phase of the voltages and currents:

The current in R1 is reported as I(R1)=0.4064 angle -17.8 degrees

Page 30: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Find the input impedance with LTSpice:

The input current is the current in 𝑅𝑅1, so𝐼𝐼𝑖𝑖𝑖𝑖 =I(R1)=0.4064 angle -17.8 degrees

𝑍𝑍𝑖𝑖𝑖𝑖 =1𝐼𝐼𝑖𝑖𝑖𝑖

=1

0.4064∠ βˆ’ 17.8Β° = 2.342 + 𝑗𝑗𝑗.7522

which agrees with our calculation.

We calculated𝑍𝑍𝑖𝑖𝑖𝑖 = 2.342 βˆ’ 𝑗𝑗𝑗.7534

To calculate the input impedance with LTSpice:β€’ Drive the circuit with a 1 volt generator at 60 Hzβ€’ Find the current in 𝑅𝑅1 flowing into the circuit 𝐼𝐼𝑖𝑖𝑖𝑖‒ Calculate the input impedance as

𝑍𝑍𝑖𝑖𝑖𝑖 = 1𝐼𝐼𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖2 Ξ©

2 Ξ© 3 Ω𝑗𝑗2 Ξ©j1 Ξ©

βˆ’π‘—π‘—2 Ξ©

Page 31: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm

ELEC273 Lecture Notes Set 10 Phasors and Impedance

Homework on complex numbers.

Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Page 32: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Input Impedance Example (from a final exam)

Find the value of capacitance C such that the input impedance 𝑍𝑍𝑖𝑖𝑖𝑖 is real. The frequency is πœ”πœ” = 4 rad/sec.Solution

Convert the circuit elements to impedances at πœ”πœ” = 4 rad/sec : 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” and 𝑍𝑍𝐢𝐢 = 1π‘—π‘—πœ”πœ”πΆπΆ

.

𝑍𝑍𝑖𝑖𝑖𝑖 is 1 ohm in parallel with 𝑍𝑍2𝑍𝑍𝑖𝑖𝑖𝑖=1||𝑍𝑍2 = 𝑍𝑍2

1+𝑍𝑍2If 𝑍𝑍2 is real then 𝑍𝑍𝑖𝑖𝑖𝑖 is real.So choose C to make 𝑍𝑍2 real.

Define 𝑍𝑍2 by omitting the 1-ohm resistor:

1 Ξ©1 Ξ©

C1 H

1 H

𝑍𝑍𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖 1 Ω𝑗𝑗𝑗 Ξ©

𝑗𝑗𝑗 Ξ©1 Ξ©

1𝑗𝑗𝑗𝐢𝐢

𝑍𝑍2𝑗𝑗𝑗 Ξ©

1𝑗𝑗𝑗𝐢𝐢

1 Ω𝑗𝑗𝑗 Ξ©

Page 33: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

4114

141441

12

jCj

jY

jZjZ

++

+=+=+=

Choose the value of C to make 𝑍𝑍2 real.

1)41(44142 ++

++=

jCjjjZ

CjCjjZ

4)161(4142 +βˆ’

++=

CjCjCjCjZ

4)161(41)4)161((4

2 +βˆ’+++βˆ’

=

Define 𝑍𝑍1 to be 1𝑗𝑗4𝐢𝐢

in parallel with 1 + 𝑗𝑗𝑗 .

Since parallel admittances add,

π‘Œπ‘Œ1 = 𝑗𝑗𝑗𝐢𝐢 +1

1 + 𝑗𝑗𝑗The input impedance 𝑍𝑍2 is j4 in series with 𝑍𝑍1

𝑍𝑍2𝑗𝑗𝑗 Ξ©

1𝑗𝑗𝑗𝐢𝐢

1 Ω𝑗𝑗𝑗 Ξ©

𝑍𝑍2𝑗𝑗𝑗 Ξ©

𝑍𝑍1

Page 34: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

CjCCjCZ

4)161()4644()161(

2 +βˆ’+βˆ’+βˆ’

=

βˆ’βˆ’βˆ’βˆ’

+βˆ’βˆ’+βˆ’

=CjCCjC

CjCCjCZ

4)161(4)161(

4)161()648()161(

2

22

2

2 16)161())161(4)161)(648((4)648()161(

CCCCCCjCCCZ

+βˆ’βˆ’βˆ’βˆ’βˆ’+βˆ’+βˆ’

=

To make 𝑍𝑍2 real, set the imaginary part to zero:

0))161(4)161)(648(( =βˆ’βˆ’βˆ’βˆ’ CCCC

0)4648)(161( =βˆ’βˆ’βˆ’ CCCThere is a common factor of (1 βˆ’ 16C) so factor it out:

0)688)(161( =βˆ’βˆ’ CC

0)161( =βˆ’ C 0)688( =βˆ’ C1176.0

172

688

===C0625.0161==C F

and

F, and

Page 35: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Solution of AC Circuits Using Phasors

Change to phasors and impedance.

To solve an AC circuit:1.Find the impedance of each component in the circuit.2.Draw the circuit with phasors and impedances.3.Use mesh analysis or node analysis to solve the circuit, using complex arithmetic.4.The amplitude of the voltage is the magnitude of the phasor and the phase angle of the voltage is the angle of the phasor.

Find the amplitude and phase of the voltage across the resistor, 𝑣𝑣𝑅𝑅. The frequency is 400 Hz.

Find the impedances:πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 2πœ‹πœ‹πœ‹πœ‹π‘—π‘—π‘— = 2,513 radians/sec𝑍𝑍𝑅𝑅 = 𝑅𝑅 = 5 ohms𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—πœ‹πœ‹2𝑗𝑗3πœ‹πœ‹π‘—.π‘—π‘—π‘—π‘—πœ‹πœ‹10βˆ’3 = 𝑗𝑗2 ohms

+π‘£π‘£π‘…π‘…βˆ’

𝑅𝑅 = 5 Ξ©

πœ”πœ” = 07958 mH

10 cosπœ”πœ”π‘‘π‘‘+π‘‰π‘‰π‘…π‘…βˆ’

5 Ξ©

𝑗𝑗2 Ξ©

10

Page 36: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Solve the circuit using complex arithmetic:

Node analysis: 10 βˆ’ 𝑉𝑉𝑅𝑅𝑗𝑗2 βˆ’

𝑉𝑉𝑅𝑅5 = 0

Multiply by j10:50 βˆ’ 5𝑉𝑉𝑅𝑅 βˆ’ 𝑗𝑗2𝑉𝑉𝑅𝑅 = 05 + 𝑗𝑗2 𝑉𝑉𝑅𝑅 = 50

𝑉𝑉𝑅𝑅 =50

5 + 𝑗𝑗25 βˆ’ 𝑗𝑗25 βˆ’ 𝑗𝑗2 =

450 βˆ’ 𝑗𝑗𝑗𝑗𝑗29 = 8.621 βˆ’ 𝑗𝑗3.448

Magnitude 8.6212 + (βˆ’3.448)2=9.284Angle tanβˆ’1 βˆ’3.448

8.621=-21.8 degrees

Hence𝑉𝑉𝑅𝑅 = 9.284∠ βˆ’ 21.8Β°

Mesh analysis: 10 βˆ’ 𝑗𝑗2𝐼𝐼 βˆ’ 𝑗𝐼𝐼 = 0𝐼𝐼 = 1π‘₯

5+𝑗𝑗25βˆ’π‘—π‘—25βˆ’π‘—π‘—2

= 5π‘₯βˆ’π‘—π‘—2π‘₯29

= 1.724 βˆ’ 𝑗𝑗𝑗.6896 amps

𝑉𝑉𝑅𝑅 = 𝑗𝐼𝐼 = 5 1.724 βˆ’ j0.6896 = 8.621 βˆ’ j3.448Same as by node analysis!𝑉𝑉𝑅𝑅 = 9.284∠ βˆ’ 21.8Β° volts

Amplitude = 𝑉𝑉𝑅𝑅 =9.284 volts

Phase = the angle of 𝑉𝑉𝑅𝑅 which is -21.8 degrees.

𝑣𝑣𝑅𝑅 𝑑𝑑 = 9.284 cos πœ”πœ”π‘‘π‘‘ βˆ’ 21.8Β°

+π‘‰π‘‰π‘…π‘…βˆ’

5 Ξ©

𝑗𝑗2 Ξ©

10+π‘‰π‘‰π‘…π‘…βˆ’

5 Ξ©

𝑗𝑗2 Ξ©

10

10 𝑉𝑉𝑅𝑅

𝐼𝐼

Page 37: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Example: Solve a Circuit Using Phasors

β€’ Solve this circuit to find the amplitude and phase of the load voltage 𝑉𝑉 at 𝑓𝑓 =2 GHz.β€’ The generator in this circuit is 10 cosπœ”πœ”π‘‘π‘‘ volts at frequency 𝑓𝑓 =2 GHz so the radian frequency is πœ”πœ” =

2πœ‹πœ‹π‘“π‘“ = 1.2π‘—πœ‹πœ‹πœ‹πœ‹101π‘₯ radians/second.

To solve an AC circuit:1.Find the impedance of each component in the circuit.2.Draw the circuit with phasors and impedances.3.Use mesh analysis or node analysis to solve the circuit, using complex arithmetic.4.The amplitude of the voltage is the magnitude of the phasor and the phase angle of the voltage is the angle of the phasor.

73 Ξ©

2.1 nH

11.8 pF

50 Ξ©

10 cosπœ”πœ”π‘‘π‘‘+π‘‰π‘‰βˆ’

Page 38: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

73 Ξ©

2.1 nH

11.8 pF

50 Ξ©

10 cosπœ”πœ”π‘‘π‘‘+π‘‰π‘‰βˆ’ 73 Ξ©

𝑗𝑗2πœ‹.39 Ξ©

βˆ’π‘—π‘—πœ‹.744 Ξ©

50 Ξ©

10βˆ π‘—Β°+π‘‰π‘‰βˆ’

10βˆ π‘—Β°+π‘‰π‘‰βˆ’

50 + 𝑗𝑗2πœ‹.39 Ξ©

0.6178 βˆ’ π‘—π‘—πœ‹.687 Ξ©

Page 39: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Homework: solve this circuit yourself without looking at the lecture notes.

10βˆ π‘—Β°+π‘‰π‘‰βˆ’

50 + 𝑗𝑗2πœ‹.39 Ξ©

0.6178 βˆ’ π‘—π‘—πœ‹.687 Ξ©

𝐼𝐼 𝐼𝐼

Page 40: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Power into a Resistor in AC Circuits

If a circuit is driven by an A.C. voltage, then how much power flows?𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒπ‘–π‘– 𝑑𝑑 = πΌπΌπ‘šπ‘š cos πœ”πœ”π‘‘π‘‘ + πœ™πœ™

Instantaneous power: 𝑝𝑝 𝑑𝑑 = 𝑣𝑣 𝑑𝑑 𝑖𝑖(𝑑𝑑)

Average power: π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž = 1𝑇𝑇 ∫π‘₯

𝑇𝑇 𝑝𝑝 𝑑𝑑 𝑑𝑑𝑑𝑑

Is there a convenient way to calculate the power directly from the phasors V and I?

𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ + πœƒπœƒ

𝑖𝑖(𝑑𝑑) = πΌπΌπ‘šπ‘š cos πœ”πœ”π‘‘π‘‘ + πœ™πœ™

𝑖𝑖(𝑑𝑑)+𝑣𝑣(𝑑𝑑)βˆ’

Phasor 𝑉𝑉 = π‘‰π‘‰π‘šπ‘šβˆ πœƒπœƒ

Phasor 𝐼𝐼 = πΌπΌπ‘šπ‘šβˆ πœ™πœ™

𝐼𝐼+π‘‰π‘‰βˆ’

Page 41: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Instantaneous and Average Power Delivered to a Resistor

The AC voltage 𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ is connected across a resistor R.Find the instantaneous power and the average power delivered to the resistor.

The instantaneous power is defined as𝑝𝑝 𝑑𝑑 = 𝑣𝑣 𝑑𝑑 𝑖𝑖 𝑑𝑑

𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘

𝑖𝑖 𝑑𝑑 =π‘‰π‘‰π‘šπ‘šπ‘…π‘… cos πœ”πœ”π‘‘π‘‘

The instantaneous power is:

𝑝𝑝 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘π‘‰π‘‰π‘šπ‘šπ‘…π‘… cos πœ”πœ”π‘‘π‘‘ =

π‘‰π‘‰π‘šπ‘š2

𝑅𝑅 cos2 πœ”πœ”π‘‘π‘‘

Trig identity: cos2πœƒπœƒ = 12

1 + cos(2πœƒπœƒ)

𝑝𝑝(𝑑𝑑) =π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅 1 + cos2πœ”πœ”π‘‘π‘‘

𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ 𝑖𝑖(𝑑𝑑) = πΌπΌπ‘šπ‘š cos πœ”πœ”π‘‘π‘‘π‘…π‘…

Time t

Instantaneous Power 𝑝𝑝(𝑑𝑑)π‘‰π‘‰π‘šπ‘š2

𝑅𝑅

π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅

𝑇𝑇2

𝑇𝑇2

Page 42: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Average Power Delivered to a Resistor

The instantaneous power is: 𝑝𝑝 𝑑𝑑 = 𝑣𝑣 𝑑𝑑 𝑖𝑖 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ π‘‰π‘‰π‘šπ‘šπ‘…π‘…

cos πœ”πœ”π‘‘π‘‘ = π‘‰π‘‰π‘šπ‘š2

𝑅𝑅cos2 πœ”πœ”π‘‘π‘‘ = 1

2π‘‰π‘‰π‘šπ‘š2

𝑅𝑅1 + cos2πœ”πœ”π‘‘π‘‘

The average power delivered to the resistor is defined as the average of p(t) over one AC cycle of length T:

π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž =1𝑇𝑇�π‘₯

𝑇𝑇𝑝𝑝 𝑑𝑑 𝑑𝑑𝑑𝑑

so

π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž =1𝑇𝑇�π‘₯

𝑇𝑇 π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅 1 + cos2πœ”πœ”π‘‘π‘‘ 𝑑𝑑𝑑𝑑 =1𝑇𝑇�π‘₯

𝑇𝑇 π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅 𝑑𝑑𝑑𝑑 +1𝑇𝑇�π‘₯

𝑇𝑇 π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅 cos2πœ”πœ”π‘‘π‘‘ 𝑑𝑑𝑑𝑑 =π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅 + 0 =π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅

π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž = π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅where π‘‰π‘‰π‘šπ‘š is the amplitude of the AC voltage.

This is often written as

π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž =π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅

=π‘‰π‘‰π‘šπ‘š2

2

𝑅𝑅= 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

2

𝑅𝑅where 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 = π‘‰π‘‰π‘šπ‘š

2is the β€œRMS value” of the AC voltage.

𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘

𝑖𝑖 𝑑𝑑 =π‘‰π‘‰π‘šπ‘šπ‘…π‘…

cos πœ”πœ”π‘‘π‘‘

What is meant by β€œRMS value”?

𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ 𝑖𝑖(𝑑𝑑) = πΌπΌπ‘šπ‘š cos πœ”πœ”π‘‘π‘‘π‘…π‘…

Page 43: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Amplitude and RMS ValueSuppose an AC voltage is given by𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘Then the amplitude of the voltage is π‘‰π‘‰π‘šπ‘š.

The β€œroot mean square” value or β€œRMS” value of a periodic function 𝑣𝑣(𝑑𝑑) with period 𝑇𝑇 is defined as

π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ =1𝑇𝑇�π‘₯

𝑇𝑇𝑣𝑣2 𝑑𝑑 𝑑𝑑𝑑𝑑

This is the average value or β€œmean value” of the square of the voltage function.

For a sinusoid 𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ we can evaluate the RMS value of 𝑣𝑣(𝑑𝑑) as

π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ2 = 1

𝑇𝑇 ∫π‘₯𝑇𝑇 π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘ 2𝑑𝑑𝑑𝑑 = π‘‰π‘‰π‘šπ‘š2

𝑇𝑇 ∫π‘₯𝑇𝑇 12

1 + cos 2πœ”πœ”π‘‘π‘‘ 𝑑𝑑𝑑𝑑=π‘‰π‘‰π‘šπ‘š2

𝑇𝑇 ∫π‘₯𝑇𝑇 12𝑑𝑑𝑑𝑑 + π‘‰π‘‰π‘šπ‘š2

𝑇𝑇 ∫π‘₯𝑇𝑇 12

cos 2πœ”πœ”π‘‘π‘‘ 𝑑𝑑𝑑𝑑 = π‘‰π‘‰π‘šπ‘š2

𝑇𝑇𝑇𝑇2

= π‘‰π‘‰π‘šπ‘š2

2

π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ =π‘‰π‘‰π‘šπ‘š

2

Thus the average power delivered to a resistor is

π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž = π‘‰π‘‰π‘šπ‘š2

2𝑅𝑅=

π‘‰π‘‰π‘šπ‘š2

2

𝑅𝑅= 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

2

𝑅𝑅

Page 44: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Phasors Relative to RMS ValueWe can write phasors β€œrelative to amplitude” or we can write phasors β€œrelative to RMS value”.𝑣𝑣 𝑑𝑑 = π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘

Phasors relative to amplitude: 𝑉𝑉 = π‘‰π‘‰π‘šπ‘šπ‘’π‘’π‘—π‘—πœƒπœƒThe magnitude of the phasor 𝑉𝑉 = π‘‰π‘‰π‘šπ‘š is the amplitude of the cosine voltage π‘‰π‘‰π‘šπ‘š cos πœ”πœ”π‘‘π‘‘

Phasors relative to RMS value:𝑉𝑉 = π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿπ‘’π‘’π‘—π‘—πœƒπœƒ

The magnitude of the phasor 𝑉𝑉 = π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ is the RMS value of the cosine voltage, so π‘‰π‘‰π‘šπ‘š = 2π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ and the cosine is 𝑣𝑣 𝑑𝑑 = 2π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ cos πœ”πœ”π‘‘π‘‘

Which should you use?

In the lecture notes I use phasors relative to amplitude.

However, sometimes phasors relative to RMS value is preferred.

Page 45: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Everybody knows that the AC line voltage is 110 volts.

Is this amplitude or RMS value?

Answer: in the power industry the custom is to use phasors relative to RMS value so 110 volts is the RMS value.

The amplitude is π‘‰π‘‰π‘šπ‘š = 2π‘‰π‘‰π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ = 1.π‘—π‘—π‘—πœ‹πœ‹π‘—π‘—π‘— = 155.5 volts.

Most β€œDVMs” or β€œdigital voltmeters” read RMS values on the AC voltage setting.

Page 46: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Power to an Impedance?

We will return to the topic of power in AC circuits later in the course.

Page 47: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm

ELEC273 Lecture Notes Set 10 Phasors and Impedance

Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Page 48: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Mesh Equations in the β€œPhasor Domain”1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign mesh currents 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, …3. Write a KVL equation for each mesh path and an equation for each current source.

Example #1: really easy!!!!!

The operating frequency is 60 Hz.The sources are𝑣𝑣1 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘π‘£π‘£2 𝑑𝑑 = 16 sinπœ”πœ”π‘‘π‘‘Write mesh equations for this circuit.Solve the equations to find the values of the mesh currents.

+𝑣𝑣1(𝑑𝑑)βˆ’

+𝑣𝑣2(𝑑𝑑)βˆ’

2 Ξ©5 Ξ©

1 Ξ©

663.1 Β΅F

5.3 mH 10.6 mH

Page 49: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Step 1: Convert all the components to impedances at the operating frequency. Convert the sources to phasors.

The operating frequency is 𝑓𝑓 =60 Hz. The radian frequency is πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 2πœ‹πœ‹πœ‹πœ‹πœ‹π‘— = 𝑗2π‘—πœ‹πœ‹ = 376.99 β‰ˆ 377 radians/second. For the 5.3 mH inductance, 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—πœ‹πœ‹3π‘—π‘—πœ‹πœ‹π‘—.3πœ‹πœ‹10βˆ’3 = 𝑗𝑗𝑗.9981 β‰ˆ 𝑗𝑗2 ohmsThe 10.6 mH inductance has an impedance of 𝑗𝑗𝑗 ohms.The 663.1 microfarad capacitance has an impedance of 𝑍𝑍𝐢𝐢 = 1

π‘—π‘—πœ”πœ”πΆπΆ= 1

π‘—π‘—πœ”πœ”πΆπΆβˆ’π‘—π‘—βˆ’π‘—π‘—

= βˆ’π‘—π‘—πœ”πœ”πΆπΆ

= βˆ’π‘—π‘—377π‘₯π‘₯663.1π‘₯π‘₯1π‘₯βˆ’6

= βˆ’π‘—π‘—π‘— ohms.

Write the sources as phasors:𝑣𝑣1 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘ becomes phasor 𝑉𝑉1 = 10βˆ π‘—Β°π‘£π‘£2 𝑑𝑑 = 16 sinπœ”πœ”π‘‘π‘‘Change sine to cosine using the trig identity sinπœ”πœ”π‘‘π‘‘ = cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) so 𝑣𝑣2 𝑑𝑑 = 16 sinπœ”πœ”π‘‘π‘‘ = 16cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) which becomes phasor 𝑉𝑉2 = 16∠ βˆ’ 90Β°Since 1∠ βˆ’ 90Β° = βˆ’π‘—π‘— we can write 𝑉𝑉2 = 16∠ βˆ’ 90Β° = βˆ’π‘—πœ‹π‘—π‘—

+𝑣𝑣1(𝑑𝑑)βˆ’

+𝑣𝑣2(𝑑𝑑)βˆ’

2 Ξ©5 Ξ©

1 Ξ©

663.1 Β΅F

5.3 mH 10.6 mH 𝑉𝑉1 =10

𝑉𝑉2 =16∠ βˆ’ 90Β°= βˆ’π‘—π‘—π‘—πœ‹

2 Ξ©5 Ξ©

1 Ξ©

βˆ’j4 Ξ©

𝑗𝑗2 Ξ© 𝑗𝑗𝑗 Ξ©

𝑉𝑉2=βˆ’π‘—π‘—π‘—πœ‹

𝑉𝑉1 = 10

2 + j2 Ξ© 1 + j4 Ξ©

5 βˆ’ j4 Ξ©

𝐼𝐼1 𝐼𝐼2

Page 50: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Mesh path FABEF:+10 βˆ’ 2 + 𝑗𝑗2 𝐼𝐼1 βˆ’ 5 βˆ’ 𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝐼𝐼2 = 0

Mesh path EBCDE:+ 5 βˆ’ 𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝐼𝐼2 βˆ’ 1 + 𝑗𝑗𝑗 𝐼𝐼2 βˆ’ βˆ’π‘—π‘—π‘—πœ‹ = 0

Collect terms:βˆ’2 βˆ’ 𝑗𝑗2 βˆ’ 5 + 𝑗𝑗𝑗 𝐼𝐼1 + 5 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = βˆ’10βˆ’7 + 𝑗𝑗2 𝐼𝐼1 + 5 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = βˆ’10

5 βˆ’ 𝑗𝑗𝑗 𝐼𝐼1 + βˆ’5 + 𝑗𝑗𝑗 βˆ’ 1 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = βˆ’π‘—π‘—π‘—65 βˆ’ 𝑗𝑗𝑗 𝐼𝐼1 + βˆ’6 𝐼𝐼2 = βˆ’π‘—π‘—π‘—6

Step 2: Assign mesh currents 𝐼𝐼1 and 𝐼𝐼2:

Step 3:Write a KVL equation for each mesh path and an equation for each current source.

Label the circuit diagram with the voltage across each impedance. Then it is easy to get the signs correct in the mesh equations:

𝑉𝑉2= βˆ’π‘—π‘—π‘—πœ‹π‘‰π‘‰1 = 10

2 + j2 Ξ© 1 + j4 Ξ©

5 βˆ’ j4 Ξ©

𝐼𝐼1 𝐼𝐼2

10 βˆ’π‘—π‘—π‘—πœ‹

𝐼𝐼1 𝐼𝐼2

+ 2 + j2 𝐼𝐼1 βˆ’ + 1 + j4 𝐼𝐼2 βˆ’

+5 βˆ’ j4 (𝐼𝐼1 βˆ’ 𝐼𝐼2)βˆ’

A B C

DEF

Page 51: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Solve the equations: Solve the equations by hand:βˆ’7 + 𝑗𝑗2 𝐼𝐼1 + 5 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = βˆ’105 βˆ’ 𝑗𝑗𝑗 𝐼𝐼1 + βˆ’6 𝐼𝐼2 = βˆ’π‘—π‘—π‘—6

Eliminate 𝐼𝐼2:βˆ’7 + 𝑗𝑗25 βˆ’ 𝑗𝑗𝑗

𝐼𝐼1 + 𝐼𝐼2 =βˆ’10

5 βˆ’ 𝑗𝑗𝑗5 βˆ’ π‘—π‘—π‘—βˆ’6 𝐼𝐼1 + 𝐼𝐼2 =

βˆ’π‘—π‘—π‘—πœ‹βˆ’6

Evaluate the coefficients:(βˆ’1.049 βˆ’ 𝑗𝑗𝑗.4390)𝐼𝐼1 + 𝐼𝐼2 = (βˆ’1.220 βˆ’ 𝑗𝑗𝑗.9756)(βˆ’0.8333 + 𝑗𝑗𝑗.6667)𝐼𝐼1 + 𝐼𝐼2 = 𝑗𝑗2.667Subtract:(βˆ’0.2157 βˆ’ 𝑗𝑗1.106)𝐼𝐼1 = (βˆ’1.220 βˆ’ 𝑗𝑗3.643)𝐼𝐼1 = 3.380 βˆ’ 𝑗𝑗𝑗.4438 = 3.π‘—π‘—π‘—βˆ  βˆ’ 7.5Β°

Evaluate 𝐼𝐼2: 𝐼𝐼2 = 𝑗𝑗2.667 βˆ’ (βˆ’0.8333 + 𝑗𝑗𝑗.6667)𝐼𝐼1𝐼𝐼2 = 2.521+j0.0435=2.521 βˆ π‘—.0Β°

Homework: solve the equations by hand yourself!Use determinants and show that you get the same answer.

Page 52: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Example 2: Mesh Equations with a current source. 1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign mesh currents 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, …3. Write a KVL equation for each mesh path and an equation for each current source.

The operating frequency is 60 Hz.The sources are𝑣𝑣1 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘π‘£π‘£2 𝑑𝑑 = 2 sinπœ”πœ”π‘‘π‘‘Write mesh equations for this circuit.

Step 1: Convert the sources.π‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘ becomes phasor 𝑉𝑉1 = 10βˆ π‘—Β°π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2 sinπœ”πœ”π‘‘π‘‘ = 2 cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) becomes 𝑉𝑉2 = 2∠ βˆ’ 90Β° = βˆ’π‘—π‘—2

10 cosπœ”πœ”π‘‘π‘‘

2 Ξ© 1 Ξ©

331.6 Β΅F

5.3 mH 10.6 mH

2 sinπœ”πœ”π‘‘π‘‘

Page 53: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Step 1, continued: Convert the components to impedances.

The operating frequency is 𝑓𝑓 =60 Hz. The radian frequency is πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 2πœ‹πœ‹πœ‹πœ‹πœ‹π‘— = 𝑗2π‘—πœ‹πœ‹ = 376.99 β‰ˆ 377radians/second. For the 5.3 mH inductance, 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—πœ‹πœ‹3π‘—π‘—πœ‹πœ‹π‘—.3πœ‹πœ‹10βˆ’3 = 𝑗𝑗𝑗.9981 β‰ˆ 𝑗𝑗2 ohms

The 10.6 mH inductance has an impedance of 𝑗𝑗𝑗 ohms.

The 331.6 microfarad capacitance has an impedance of 𝑍𝑍𝐢𝐢 = 1

π‘—π‘—πœ”πœ”πΆπΆ= 1

π‘—π‘—πœ”πœ”πΆπΆβˆ’π‘—π‘—βˆ’π‘—π‘—

= βˆ’π‘—π‘—πœ”πœ”πΆπΆ

= βˆ’π‘—π‘—377π‘₯π‘₯331.6π‘₯π‘₯1π‘₯βˆ’6

= βˆ’π‘—π‘—π‘— ohms.

Step 2: Assign mesh currents 𝐼𝐼1 and 𝐼𝐼2.

10 cosπœ”πœ”π‘‘π‘‘

2 Ξ© 1 Ξ©

331.6 Β΅F

5.3 mH 10.6 mH

2 sinπœ”πœ”π‘‘π‘‘ 10

2 Ξ© 1 Ξ© j4 Ξ©

-j8 Ξ©βˆ’π‘—π‘—2j2 Ξ©

2+j2 Ξ©

10 βˆ’π‘—π‘—2

1-j4 Ξ©

𝐼𝐼1 𝐼𝐼2

Page 54: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Step 3: Write a KVL equation for each mesh.Write a β€œconstraint equation” for each current source.

Constraint equation for the current source: 𝐼𝐼2 βˆ’ 𝐼𝐼1 = βˆ’2𝑗𝑗

Supermesh Path ABCDEFA: +10 βˆ’ 2 + 𝑗𝑗2 𝐼𝐼1 βˆ’ 1 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = 0

2 + 𝑗𝑗2 𝐼𝐼1 + 1 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = 10

Hence the equations are:βˆ’πΌπΌ1 + 𝐼𝐼2 = βˆ’2𝑗𝑗2 + 𝑗𝑗2 𝐼𝐼1 + 1 βˆ’ 𝑗𝑗𝑗 𝐼𝐼2 = 10

Homework:1.Solve the equations for 𝐼𝐼1 and 𝐼𝐼2𝐼𝐼1 =5.02 amps, angle 40.0 degrees𝐼𝐼2 =4.04 amps, angle 17.7 degrees

2.Verify the solution with LTSpice.

2+j2 Ξ©

10 βˆ’π‘—π‘—2

1-j4 Ξ©

𝐼𝐼1 𝐼𝐼2

A

B C D

EF

Page 55: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Mesh Equations in the β€œPhasor Domain”1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign mesh currents 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, …3. Write a KVL equation for each mesh path. Write an equation for each current source.

Write mesh equations at frequency πœ”πœ” = 100 rad/sec

The sources areπ‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 14.14cos(πœ”πœ”π‘‘π‘‘ + 45Β°)π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2sin(πœ”πœ”π‘‘π‘‘)

Solve the mesh equations.

Verify your solution with LTSpice.

Example

Page 56: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

SolutionConvert the components to impedances: πœ”πœ” = 100 rad/sec.

πœ”πœ” = 20 mH 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—π‘—π‘—π‘—πœ‹πœ‹2π‘—πœ‹πœ‹10βˆ’3 = 𝑗𝑗2𝐢𝐢 = 0.5 mF 𝑍𝑍𝐢𝐢 = 1

π‘—π‘—πœ”πœ”πΆπΆ= βˆ’π‘—π‘—

1π‘₯π‘₯π‘₯π‘₯π‘₯.5π‘₯π‘₯1π‘₯βˆ’3= βˆ’π‘—π‘—2𝑗

8 Ξ© 20 mH 0.5 mF 8 j2 -j20 8-j18

30 mH

8 Ξ©

j3

33+j3

9 Ξ©50 mH

9j5

9+j5

Page 57: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Draw the circuit with phasors and impedances:8 Ξ© 20 mH 0.5 mF 8 j2 -j20 8-j18

30 mH

8 Ξ©

j3

33+j3

9 Ξ©50 mH

9j5

9+j5 Convert the sources to phasors: π‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 14.14cos(πœ”πœ”π‘‘π‘‘ + 45Β°) becomes phasor π‘‰π‘‰π‘Ÿπ‘Ÿ = 14.14βˆ π‘—π‘—Β°π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2 sin πœ”πœ”π‘‘π‘‘ = 2cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) becomes phasor πΌπΌπ‘Ÿπ‘Ÿ = 2∠ βˆ’ 90Β° = βˆ’π‘—π‘—2

𝐼𝐼𝑅𝑅= βˆ’π‘—π‘—2

π‘‰π‘‰π‘Ÿπ‘Ÿ =10 + 𝑗𝑗10

𝐼𝐼3

9+j5

8-j18 -j9

3+j312

𝐼𝐼1 𝐼𝐼2

Page 58: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

𝐼𝐼𝑅𝑅= βˆ’π‘—π‘—2

π‘‰π‘‰π‘Ÿπ‘Ÿ =10 + 𝑗𝑗10

𝐼𝐼3

9+j5

8-j18 -j9

3+j312

𝐼𝐼1 𝐼𝐼2

Write the mesh equations:

Constraint equation: 𝐼𝐼2 βˆ’ 𝐼𝐼1 = βˆ’π‘—π‘—2

Mesh path ABCDEA: βˆ’12𝐼𝐼1 βˆ’ 8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝐼𝐼3 βˆ’ βˆ’π‘—π‘—π‘— 𝐼𝐼2 βˆ’ 𝐼𝐼3 βˆ’ 3 + 𝑗𝑗3 𝐼𝐼2 βˆ’ 10 + 𝑗𝑗𝑗𝑗 = 0

Mesh path BFGDCB: βˆ’ 9 + 𝑗𝑗𝑗 𝐼𝐼3 + βˆ’π‘—π‘—π‘— 𝐼𝐼2 βˆ’ 𝐼𝐼3 + 8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝐼𝐼3 = 0

A

B DC

E

FG

= 10 + 𝑗𝑗10

Page 59: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Collect terms:Mesh path ABCDEA: βˆ’12𝐼𝐼1 βˆ’ 8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝐼𝐼3 βˆ’ βˆ’π‘—π‘—π‘— 𝐼𝐼2 βˆ’ 𝐼𝐼3 βˆ’ 3 + 𝑗𝑗3 𝐼𝐼2 βˆ’ (10 + 𝑗𝑗𝑗𝑗) = 0

βˆ’12 βˆ’ 8 + 𝑗𝑗𝑗𝑗 𝐼𝐼1 + 𝑗𝑗𝑗 βˆ’ 3 βˆ’ 𝑗𝑗3 𝐼𝐼2 + 8 βˆ’ 𝑗𝑗𝑗𝑗 βˆ’ 𝑗𝑗𝑗 𝐼𝐼3 = 10 + 𝑗𝑗𝑗𝑗

βˆ’20 + 𝑗𝑗𝑗𝑗 𝐼𝐼1 + βˆ’3 + 𝑗𝑗6 𝐼𝐼2 + 8 βˆ’ 𝑗𝑗27 𝐼𝐼3 = 10 + 𝑗𝑗𝑗𝑗

Mesh path BFGDCB: βˆ’ 9 + 𝑗𝑗𝑗 𝐼𝐼3 βˆ’ βˆ’π‘—π‘—π‘— 𝐼𝐼3 βˆ’ 𝐼𝐼2 βˆ’ 8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼3 βˆ’ 𝐼𝐼1 = 0

8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝑗𝑗𝑗𝐼𝐼2 + βˆ’9 βˆ’ 𝑗𝑗𝑗 + 𝑗𝑗𝑗 βˆ’ 8 + 𝑗𝑗𝑗𝑗 𝐼𝐼3 = 0

8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝑗𝑗𝑗𝐼𝐼2 + βˆ’17 + 𝑗𝑗22 𝐼𝐼3 = 0

Current generator: 𝐼𝐼2 βˆ’ 𝐼𝐼1 = βˆ’π‘—π‘—2

The mesh equations:

βˆ’20 + 𝑗𝑗𝑗𝑗 𝐼𝐼1 + βˆ’3 + π‘—π‘—πœ‹ 𝐼𝐼2 + 8 βˆ’ 𝑗𝑗2𝑗 𝐼𝐼3 = 10 + 𝑗𝑗𝑗𝑗8 βˆ’ 𝑗𝑗𝑗𝑗 𝐼𝐼1 βˆ’ 𝑗𝑗𝑗𝐼𝐼2 + βˆ’17 + 𝑗𝑗22 𝐼𝐼3 = 0𝐼𝐼2 βˆ’ 𝐼𝐼1 = βˆ’π‘—π‘—2

Solve the mesh equations:

𝐼𝐼1 = 0.5919βˆ π‘—πœ‹π‘—.2°𝐼𝐼2 = 1.884∠ βˆ’ 107.2°𝐼𝐼3 = 0.8574∠ βˆ’ 172.0Β°

Page 60: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Node Equations in the β€œPhasor Domain”1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign a datum node and node voltages 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3, …3. Write a KCL equation for each node.

Example - really easy!

The operating frequency is 60 Hz.

𝑣𝑣1 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘π‘£π‘£2 𝑑𝑑 = 16 sinπœ”πœ”π‘‘π‘‘

Write node equations for this circuit. Find the voltage across 5 ohms in series with 663.1 microfarads.

+𝑣𝑣1(𝑑𝑑)βˆ’

+𝑣𝑣2(𝑑𝑑)βˆ’

2 Ξ©5 Ξ©

1 Ξ©

663.1 Β΅F

5.3 mH 10.6 mH

Page 61: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Convert the circuit into the β€œphasor domain”:

We converted this circuit to the phasor domain on a previous slide!β€’ Sources:𝑣𝑣1 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘ becomes phasor 𝑉𝑉1 = 10βˆ π‘—Β°π‘£π‘£2 𝑑𝑑 = 16 sinπœ”πœ”π‘‘π‘‘ = 16cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) becomes phasor 𝑉𝑉2 = 16∠ βˆ’ 90Β° = βˆ’π‘—π‘—π‘—πœ‹β€’ The operating frequency is 𝑓𝑓 =60 Hz. The radian frequency is

πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 2πœ‹πœ‹πœ‹πœ‹πœ‹π‘— = 𝑗2π‘—πœ‹πœ‹ = 376.99 β‰ˆ 377 radians/second. β€’ For the 5.3 mH inductance, 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—πœ‹πœ‹3π‘—π‘—πœ‹πœ‹π‘—.3πœ‹πœ‹10βˆ’3 =

𝑗𝑗𝑗.9981 β‰ˆ 𝑗𝑗2 ohmsβ€’ The 10.6 mH inductance has an impedance of 𝑗𝑗𝑗 ohms.β€’ The 663.1 microfarad capacitance has an impedance of 𝑍𝑍𝐢𝐢 =

1π‘—π‘—πœ”πœ”πΆπΆ

= 1π‘—π‘—πœ”πœ”πΆπΆ

βˆ’π‘—π‘—βˆ’π‘—π‘—

= βˆ’π‘—π‘—πœ”πœ”πΆπΆ

= βˆ’π‘—π‘—377π‘₯π‘₯663.1π‘₯π‘₯1π‘₯βˆ’6

= βˆ’π‘—π‘—π‘— ohms.

+𝑣𝑣1(𝑑𝑑)βˆ’

+𝑣𝑣2(𝑑𝑑)βˆ’

2 Ξ©5 Ξ©

1 Ξ©

663.1 Β΅F

5.3 mH 10.6 mHπ‘—π‘—π‘—πœ‹

2 Ξ©5 Ξ©

1 Ξ©

βˆ’j4 Ξ©

𝑗𝑗2 Ξ© 𝑗𝑗𝑗 Ξ©10

π‘—π‘—π‘—πœ‹10

2 + j2 Ξ© 1 + j4 Ξ©

5 βˆ’ j4 Ξ©

Page 62: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Choose a datum and a node voltage:

Write a KCL equation at the node:

10 βˆ’ 𝑉𝑉12 + 𝑗𝑗2 βˆ’

𝑉𝑉15 βˆ’ 𝑗𝑗𝑗 βˆ’

𝑉𝑉1 βˆ’ βˆ’π‘—π‘—π‘—πœ‹1 + 𝑗𝑗𝑗 = 0

Collect terms:βˆ’π‘‰π‘‰1

2 + 𝑗𝑗2 βˆ’π‘‰π‘‰1

5 βˆ’ 𝑗𝑗𝑗 βˆ’π‘‰π‘‰1

1 + 𝑗𝑗𝑗 =βˆ’10

2 + 𝑗𝑗2 +π‘—π‘—π‘—πœ‹

1 + π‘—π‘—π‘—βˆ’1

2 + 𝑗𝑗2 βˆ’1

5 βˆ’ 𝑗𝑗𝑗 βˆ’1

1 + 𝑗𝑗𝑗 𝑉𝑉1 =βˆ’10

2 + 𝑗𝑗2 +π‘—π‘—π‘—πœ‹

1 + 𝑗𝑗𝑗

One way to solve this quation is to use a common denominator for all the terms:βˆ’ 5 βˆ’ 𝑗𝑗𝑗 1 + 𝑗𝑗𝑗 βˆ’ 2 + 𝑗𝑗2 1 + 𝑗𝑗𝑗 βˆ’ (2 + 𝑗𝑗2)(5 βˆ’ 𝑗𝑗𝑗)

2 + 𝑗𝑗2 (5 βˆ’ 𝑗𝑗𝑗)(1 + 𝑗𝑗𝑗) 𝑉𝑉1

=βˆ’10 1 + 𝑗𝑗𝑗 + π‘—π‘—π‘—πœ‹(2 + 𝑗𝑗2)

(2 + 𝑗𝑗2)(1 + 𝑗𝑗𝑗)A better way is to do the division term by term; see next page.

π‘—π‘—π‘—πœ‹10

2 + j2 Ξ© 1 + j4 Ξ©

5 βˆ’ j4 Ξ©

𝑉𝑉1

Page 63: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Solve:βˆ’1

2 + 𝑗𝑗2βˆ’

15 βˆ’ 𝑗𝑗𝑗

βˆ’1

1 + 𝑗𝑗𝑗𝑉𝑉1 =

βˆ’102 + 𝑗𝑗2

+π‘—π‘—π‘—πœ‹

1 + 𝑗𝑗𝑗

Change the coefficients from ratios to simple rectangular form using your calculator:

βˆ’0.25 + 𝑗𝑗𝑗.25 βˆ’ 0.1220 βˆ’ 𝑗𝑗𝑗.09756 βˆ’ 0.05882 + 𝑗𝑗𝑗.2353 𝑉𝑉1 = βˆ’2.5 + j2.5 + 3.765 + j0.9412

Do the addition of real parts and of imaginary parts:βˆ’0.4302 + 𝑗𝑗𝑗.3877 𝑉𝑉1 = 1.265 + 𝑗𝑗3.441

Do the division:

𝑉𝑉1 =1.265 + 𝑗𝑗3.441

βˆ’0.4302 + 𝑗𝑗𝑗.3877 = 2.355 βˆ’ 𝑗𝑗𝑗.876 = 6.33π‘—βˆ  βˆ’ 68.1Β°

As a working engineer, would I do this calculation by hand?Probably not! I could easily make a mistake, and hand calculation takes a lot of time. I’d use a short computer program to solve the equation.

Page 64: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Node Equations with a current generator

Example #2

Procedure for writing node equations in the β€œfrequency domain”:1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign a datum node and node voltages 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3, …3. Write a KCL equation for each node.

The operating frequency is 60 Hz.The sources are𝑣𝑣1 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘π‘£π‘£2 𝑑𝑑 = 2 sinπœ”πœ”π‘‘π‘‘Write a node equation for the voltage across the current generator.

10 cosπœ”πœ”π‘‘π‘‘

2 Ξ© 1 Ξ©

331.6 Β΅F

5.3 mH 10.6 mH

2 sinπœ”πœ”π‘‘π‘‘

Page 65: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Step 1: Convert to the phasor domain.

We did this conversion for mesh analysis, see above!

Convert the sources.π‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 10 cosπœ”πœ”π‘‘π‘‘ becomes phasor 𝑉𝑉1 = 10βˆ π‘—Β°π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2 sinπœ”πœ”π‘‘π‘‘ = 2 cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) becomes 𝑉𝑉2 = 2∠ βˆ’ 90Β° = βˆ’2𝑗𝑗

The operating frequency is 𝑓𝑓 =60 Hz. The radian frequency is πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ = 2πœ‹πœ‹πœ‹πœ‹πœ‹π‘— = 𝑗2π‘—πœ‹πœ‹ = 376.99 β‰ˆ 377 radians/second.

For the 5.3 mH inductance, 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—πœ‹πœ‹3π‘—π‘—πœ‹πœ‹π‘—.3πœ‹πœ‹10βˆ’3 = 𝑗𝑗𝑗.9981 β‰ˆ 𝑗𝑗2 ohms

The 10.6 mH inductance has an impedance of 𝑗𝑗𝑗 ohms.

The 331.6 microfarad capacitance has an impedance of 𝑍𝑍𝐢𝐢 = 1

π‘—π‘—πœ”πœ”πΆπΆ= 1

π‘—π‘—πœ”πœ”πΆπΆβˆ’π‘—π‘—βˆ’π‘—π‘—

= βˆ’π‘—π‘—πœ”πœ”πΆπΆ

= βˆ’π‘—π‘—377π‘₯π‘₯331.6π‘₯π‘₯1π‘₯βˆ’6

= βˆ’π‘—π‘—π‘— ohms.

10 cosπœ”πœ”π‘‘π‘‘

2 Ξ© 1 Ξ©

331.6 Β΅F

5.3 mH 10.6 mH

2 sinπœ”πœ”π‘‘π‘‘ 10

2 Ξ© 1 Ξ© j4 Ξ©

-j8 Ξ©βˆ’π‘—π‘—2j2 Ξ©

2+j2 Ξ©

10 βˆ’π‘—π‘—2

1-j4 Ω𝑉𝑉1

Page 66: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Write the node equation at 𝑉𝑉1:

10 βˆ’ 𝑉𝑉12 + 𝑗𝑗2 + βˆ’2𝑗𝑗 βˆ’

𝑉𝑉11 βˆ’ 𝑗𝑗𝑗 = 0

βˆ’π‘‰π‘‰12 + 𝑗𝑗2 βˆ’

𝑉𝑉11 βˆ’ 𝑗𝑗𝑗 = 2𝑗𝑗 βˆ’

102 + 𝑗𝑗2

βˆ’12 + 𝑗𝑗2 βˆ’

11 βˆ’ 𝑗𝑗𝑗 𝑉𝑉1 = 2𝑗𝑗 βˆ’

102 + 𝑗𝑗2

Homework: Solve the equation.Verify the solution with Spice.

Step 2: Assign a datum node and node voltages 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3, …Step 3: Write a KCL equation for each node.

2+j2 Ξ©

10 βˆ’π‘—π‘—2

1-j4 Ω𝑉𝑉1

Page 67: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Example: Node equations with a supernode.

The frequency is 1950 MHz. Write node equations for this circuit.Find the amplitude and phase of π‘‰π‘‰π‘œπ‘œ.

Remark: β€’ A voltage generator embedded inside a node is called a β€œsupernode”. β€’ Only one unknown node voltage is needed for a supernode.β€’ We write a KCL equation for the closed surface that encloses the voltage generator.

2 cos πœ”πœ”π‘‘π‘‘5 cos πœ”πœ”π‘‘π‘‘ + 45Β°

81.63 pH 2 Ξ©

5 Ξ©16.32 pF

10 Ξ©

+π‘‰π‘‰π‘œπ‘œβˆ’

Page 68: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

2 cos πœ”πœ”π‘‘π‘‘5 cos πœ”πœ”π‘‘π‘‘ + 45Β°

81.63 pH 2 Ξ©

5 Ξ© 16.32 pF10 Ξ©

Convert to phasors and impedances:

Sources:π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2 cosπœ”πœ”π‘‘π‘‘ is represented by phasor πΌπΌπ‘Ÿπ‘Ÿ = 2π‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 5 cos(πœ”πœ”π‘‘π‘‘ + 45Β°) is represented by phasor π‘‰π‘‰π‘Ÿπ‘Ÿ = 5βˆ π‘—π‘—Β°

𝑓𝑓 = 1950 MHz so πœ”πœ” = 2πœ‹πœ‹π‘“π‘“ =1.22π‘—πœ‹πœ‹101π‘₯ rad/sec

π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—πœ‹πœ‹π‘—.22π‘—πœ‹πœ‹101π‘₯πœ‹πœ‹π‘—.π‘—πœ‹3πœ‹πœ‹10βˆ’12 = 𝑗𝑗𝑗ohm1

π‘—π‘—πœ”πœ”πΆπΆ= βˆ’π‘—π‘—

1.225π‘₯π‘₯1π‘₯10π‘₯π‘₯16.32π‘₯π‘₯1π‘₯βˆ’12= βˆ’π‘—π‘—π‘— ohms

25∠45°

𝑗𝑗𝑗 Ξ© 2 Ξ©

5 Ξ©

βˆ’π‘—π‘—π‘— Ξ©10 Ξ©

+π‘‰π‘‰π‘œπ‘œβˆ’

Page 69: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Combine impedances:

25∠45°

𝑗𝑗𝑗 Ξ© 2 Ξ©

5 Ξ©βˆ’π‘—π‘—π‘— Ξ©10 Ξ©

2 10 Ω5∠45°

Series:𝑗𝑗𝑗 in series with 2 is equivalent to (2 + 𝑗𝑗𝑗) ohms

Parallel:5 in parallel with βˆ’π‘—π‘—π‘— is equivalent toπ‘—πœ‹πœ‹ βˆ’π‘—π‘—π‘—

5 βˆ’ 𝑗𝑗𝑗=βˆ’π‘—π‘—2𝑗5 βˆ’ 𝑗𝑗𝑗

= 2.5 βˆ’ 𝑗𝑗2.5

2 + 𝑗𝑗𝑗 Ξ©

2.5 βˆ’ 𝑗𝑗2.5 Ξ©+π‘‰π‘‰π‘œπ‘œβˆ’

Page 70: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Node equations:

2 10 Ξ©5∠45Β° 2 + 𝑗𝑗𝑗 Ξ©

2.5 βˆ’ 𝑗𝑗2.5 Ξ©

𝑉𝑉1 𝑉𝑉2 𝑉𝑉π‘₯

Constraint equation: 𝑉𝑉2 βˆ’ 𝑉𝑉1 = 5βˆ π‘—π‘—Β°

At the supernode:

2 βˆ’π‘‰π‘‰110 βˆ’

𝑉𝑉2 βˆ’ 𝑉𝑉π‘₯2 + 𝑗𝑗𝑗 = 0

At the 𝑉𝑉π‘₯ node: 𝑉𝑉2 βˆ’ 𝑉𝑉π‘₯2 + 𝑗𝑗𝑗 βˆ’

𝑉𝑉π‘₯2.5 βˆ’ 𝑗𝑗2.5 = 0

+π‘‰π‘‰π‘œπ‘œβˆ’

Use three nodes:

For the supernode: 𝑉𝑉1 and 𝑉𝑉2.

For the output, use 𝑉𝑉π‘₯.

There are three nodes so three equations to solve, in three unknowns.

Solve to find:π‘‰π‘‰π‘œπ‘œ = 5.772 ∠ βˆ’ 30.5Β°

Amplitude of 𝑉𝑉π‘₯ is 5.772 voltsPhase of 𝑉𝑉π‘₯ is -30.5 degrees.

Page 71: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Can we solve this circuit β€œsmarter”?

2 10 Ξ©5∠45Β° 2 + 𝑗𝑗𝑗 Ξ©

2.5 βˆ’ 𝑗𝑗2.5 Ξ©

+π‘‰π‘‰π‘œπ‘œβˆ’

𝑉𝑉1Use only one unknown node voltage, 𝑉𝑉1.

Build the constraint equation into the supernode directly.

Once the value of 𝑉𝑉1 has been found, use the voltage-divider relationship to find 𝑉𝑉π‘₯:

𝑉𝑉π‘₯ = 2.5 βˆ’ 𝑗𝑗2.5𝑉𝑉1 + 5βˆ π‘—π‘—Β°

2 + 𝑗𝑗𝑗 + 2.5 βˆ’ 𝑗𝑗2.5

We can solve the node equation to find𝑉𝑉1 = 5.884∠ βˆ’ 44.2Β°And then the voltage divider to find𝑉𝑉π‘₯ = 5.772∠ βˆ’ 44.2Β°

This agrees with the β€œdumber” solution!

𝑉𝑉1 + 5βˆ π‘—π‘—Β°

We only need one node equation to find node voltage, 𝑉𝑉1.At the supernode:

2 βˆ’π‘‰π‘‰110 βˆ’

𝑉𝑉1 + 5βˆ π‘—π‘—Β°2 + 𝑗𝑗𝑗 + 2.5 βˆ’ 𝑗𝑗2.5 = 0

So

βˆ’π‘‰π‘‰110 βˆ’

𝑉𝑉14.5 βˆ’ 𝑗𝑗𝑗.5 = βˆ’2 +

5βˆ π‘—π‘—Β°4.5 βˆ’ 𝑗𝑗𝑗.5

Page 72: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Node Equations in the β€œPhasor Domain”We did this example using mesh analysis. Let’s do it by node analysis.

Convert the components to impedances: πœ”πœ” = 100 rad/sec.

The frequency is πœ”πœ” = 100 rad/sec.π‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 14.14cos(πœ”πœ”π‘‘π‘‘ + 45Β°)π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2 sin πœ”πœ”π‘‘π‘‘ = 2cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°)

Write a set of node equations in matrix form.

πœ”πœ” = 20 mH 𝑍𝑍𝐿𝐿 = π‘—π‘—πœ”πœ”πœ”πœ” = π‘—π‘—π‘—π‘—π‘—πœ‹πœ‹2π‘—πœ‹πœ‹10βˆ’3 = 𝑗𝑗2𝐢𝐢 = 0.5 mF 𝑍𝑍𝐢𝐢 = 1

π‘—π‘—πœ”πœ”πΆπΆ= βˆ’π‘—π‘—

1π‘₯π‘₯π‘₯π‘₯π‘₯.5π‘₯π‘₯1π‘₯βˆ’3= βˆ’π‘—π‘—2𝑗

8 Ξ© 20 mH 0.5 mF 8 j2 -j20 8-j18

30 mH

8 Ξ©

j3

33+j3

9 Ξ©50 mH

9j5

9+j5

Page 73: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Draw the circuit with phasors and impedances:Convert the sources to phasors: π‘£π‘£π‘Ÿπ‘Ÿ 𝑑𝑑 = 14.14cos(πœ”πœ”π‘‘π‘‘ + 45Β°) becomes phasor π‘‰π‘‰π‘Ÿπ‘Ÿ = 14.14βˆ π‘—π‘—Β°π‘–π‘–π‘Ÿπ‘Ÿ 𝑑𝑑 = 2 sin πœ”πœ”π‘‘π‘‘ = 2cos(πœ”πœ”π‘‘π‘‘ βˆ’ 90Β°) becomes phasor πΌπΌπ‘Ÿπ‘Ÿ = 2∠ βˆ’ 90Β° = βˆ’π‘—π‘—2

Page 74: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Write Node EquationsNode 1:

βˆ’π‘‰π‘‰112

βˆ’π‘‰π‘‰1 βˆ’ 𝑉𝑉28 βˆ’ 𝑗𝑗𝑗𝑗

βˆ’π‘‰π‘‰1 βˆ’ 𝑉𝑉39 + 𝑗𝑗𝑗

= 0

Node 2:𝑉𝑉1 βˆ’ 𝑉𝑉28 βˆ’ 𝑗𝑗𝑗𝑗

+ (βˆ’π‘—π‘—2) βˆ’π‘‰π‘‰2 βˆ’ 𝑉𝑉3βˆ’π‘—π‘—9

= 0

Node 3:𝑉𝑉1 βˆ’ 𝑉𝑉39 + 𝑗𝑗𝑗 +

𝑉𝑉2 βˆ’ 𝑉𝑉3βˆ’π‘—π‘—π‘— βˆ’

𝑉𝑉3 βˆ’ 14.14∠45Β°3 + 𝑗𝑗3 = 0

Page 75: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Collect terms in the node equations:Node 1: Multiply by 12(8 βˆ’ 𝑗𝑗𝑗𝑗)(9 + 𝑗𝑗𝑗)

βˆ’π‘‰π‘‰112

βˆ’π‘‰π‘‰1 βˆ’ 𝑉𝑉28 βˆ’ 𝑗𝑗𝑗𝑗

βˆ’π‘‰π‘‰1 βˆ’ 𝑉𝑉39 + 𝑗𝑗𝑗

= 0

βˆ’(8 βˆ’ 𝑗𝑗𝑗𝑗)(9 + 𝑗𝑗𝑗)𝑉𝑉1 βˆ’ 12(9 + 𝑗𝑗𝑗)(𝑉𝑉1βˆ’π‘‰π‘‰2) βˆ’ 12(8 βˆ’ 𝑗𝑗𝑗𝑗)(𝑉𝑉1 βˆ’ 𝑉𝑉3) = 0βˆ’(72 βˆ’ π‘—π‘—π‘—πœ‹2 + 𝑗𝑗𝑗𝑗 + 90)𝑉𝑉1 βˆ’ (108 + 𝑗𝑗60)(𝑉𝑉1βˆ’π‘‰π‘‰2) βˆ’ (96 βˆ’ 𝑗𝑗216)(𝑉𝑉1 βˆ’ 𝑉𝑉3) = 0βˆ’(162 βˆ’ 𝑗𝑗𝑗22)𝑉𝑉1 βˆ’ (108 + π‘—π‘—πœ‹π‘—)(𝑉𝑉1βˆ’π‘‰π‘‰2) βˆ’ (96 βˆ’ 𝑗𝑗2π‘—πœ‹)(𝑉𝑉1 βˆ’ 𝑉𝑉3) = 0βˆ’162 + 𝑗𝑗𝑗22 βˆ’ 108 βˆ’ π‘—π‘—πœ‹π‘— βˆ’ 96 + 𝑗𝑗2π‘—πœ‹ 𝑉𝑉1 + 108 + π‘—π‘—πœ‹π‘— 𝑉𝑉2 + (96 βˆ’ 𝑗𝑗2π‘—πœ‹)𝑉𝑉3 = 0βˆ’366 + 𝑗𝑗2𝑗𝑗 𝑉𝑉1 + 108 + π‘—π‘—πœ‹π‘— 𝑉𝑉2 + (96 βˆ’ 𝑗𝑗2π‘—πœ‹)𝑉𝑉3 = 0

Node 2:𝑉𝑉1 βˆ’ 𝑉𝑉28 βˆ’ 𝑗𝑗𝑗𝑗 + (βˆ’π‘—π‘—2) βˆ’

𝑉𝑉2 βˆ’ 𝑉𝑉3βˆ’π‘—π‘—9 = 0

(βˆ’π‘—π‘—π‘—)(𝑉𝑉1 βˆ’ 𝑉𝑉2) + (8 βˆ’ 𝑗𝑗𝑗𝑗)(βˆ’π‘—π‘—π‘—)(βˆ’π‘—π‘—2) βˆ’ (8 βˆ’ 𝑗𝑗𝑗𝑗)(𝑉𝑉2 βˆ’ 𝑉𝑉3) = 0(βˆ’π‘—π‘—π‘—)(𝑉𝑉1 βˆ’ 𝑉𝑉2) + (βˆ’π‘—π‘—π‘—2 βˆ’ 162)(βˆ’π‘—π‘—2) βˆ’ (8 βˆ’ 𝑗𝑗𝑗𝑗)(𝑉𝑉2 βˆ’ 𝑉𝑉3) = 0(βˆ’π‘—π‘—π‘—)(𝑉𝑉1 βˆ’ 𝑉𝑉2) + (βˆ’144 + 𝑗𝑗32𝑗) βˆ’ (8 βˆ’ 𝑗𝑗𝑗𝑗)(𝑉𝑉2 βˆ’ 𝑉𝑉3) = 0βˆ’π‘—π‘—π‘— 𝑉𝑉1 + (𝑗𝑗𝑗 βˆ’ 8 + 𝑗𝑗𝑗𝑗)𝑉𝑉2+(8 βˆ’ 𝑗𝑗𝑗𝑗)𝑉𝑉3 = βˆ’ βˆ’144 + 𝑗𝑗32π‘—βˆ’π‘—π‘—π‘— 𝑉𝑉1 + (βˆ’8 + 𝑗𝑗27)𝑉𝑉2+(8 βˆ’ 𝑗𝑗𝑗𝑗)𝑉𝑉3 = βˆ’ βˆ’144 + 𝑗𝑗32𝑗

Page 76: The course web site is: ...trueman/elec273files/ELEC273_10...Β Β· trueman ... numbers. Final Exam: Friday ... πœ”πœ”= 2πœ‹πœ‹= 𝑓𝑓2πœ‹πœ‹πœ‹πœ‹πœ‹π‘—= 𝑗2π‘—πœ‹πœ‹=

Arrange the equations into matrix form:Node 3:𝑉𝑉1 βˆ’ 𝑉𝑉39 + 𝑗𝑗𝑗

+𝑉𝑉2 βˆ’ 𝑉𝑉3βˆ’π‘—π‘—π‘—

βˆ’π‘‰π‘‰3 βˆ’ 14.1∠45Β°

3 + 𝑗𝑗3= 0

(βˆ’π‘—π‘—π‘—)(3 + 𝑗𝑗3)(𝑉𝑉1 βˆ’ 𝑉𝑉3) + (9 + 𝑗𝑗𝑗)(3 + 𝑗𝑗3)(𝑉𝑉2 βˆ’ 𝑉𝑉3) βˆ’ (9 + 𝑗𝑗𝑗)(βˆ’π‘—π‘—π‘—)(𝑉𝑉3 βˆ’ 14.1∠45Β°) = 0(βˆ’π‘—π‘—27 + 27)(𝑉𝑉1 βˆ’ 𝑉𝑉3) + (27 + 𝑗𝑗15 + 𝑗𝑗2𝑗 βˆ’ 15)(𝑉𝑉2 βˆ’ 𝑉𝑉3) βˆ’ (βˆ’π‘—π‘—π‘—π‘— + 45)(𝑉𝑉3 βˆ’ 14.1∠45Β°) = 0(βˆ’π‘—π‘—2𝑗 + 27)(𝑉𝑉1 βˆ’ 𝑉𝑉3) + (12 + 𝑗𝑗42)(𝑉𝑉2 βˆ’ 𝑉𝑉3) βˆ’ (βˆ’π‘—π‘—π‘—π‘— + 45)𝑉𝑉3 = (βˆ’π‘—π‘—π‘—π‘— + 45)(βˆ’14.π‘—βˆ π‘—π‘—Β°)(βˆ’π‘—π‘—2𝑗 + 27)𝑉𝑉1 + (12 + 𝑗𝑗𝑗2)𝑉𝑉2 + (𝑗𝑗2𝑗 βˆ’ 27 βˆ’ 12 βˆ’ 𝑗𝑗𝑗2 + 𝑗𝑗𝑗𝑗 βˆ’ 45)𝑉𝑉3 = (βˆ’π‘—π‘—π‘—π‘— + 45)(βˆ’14.π‘—βˆ π‘—π‘—Β°)βˆ’π‘—π‘—2𝑗 + 27 𝑉𝑉1 + 12 + 𝑗𝑗𝑗2 𝑉𝑉2 + βˆ’84 + 𝑗𝑗66 𝑉𝑉3 = βˆ’1256 + 𝑗𝑗3𝑗𝑗.9

Hence the node equations are:βˆ’366 + 𝑗𝑗2𝑗𝑗 𝑉𝑉1 + 108 + π‘—π‘—πœ‹π‘— 𝑉𝑉2 + (96 βˆ’ 𝑗𝑗2π‘—πœ‹)𝑉𝑉3 = 0βˆ’π‘—π‘—π‘— 𝑉𝑉1 + (βˆ’8 + 𝑗𝑗2𝑗)𝑉𝑉2+(8 βˆ’ 𝑗𝑗𝑗𝑗)𝑉𝑉3 = βˆ’ βˆ’144 + 𝑗𝑗32π‘—βˆ’π‘—π‘—2𝑗 + 27 𝑉𝑉1 + 12 + 𝑗𝑗𝑗2 𝑉𝑉2 + βˆ’84 + π‘—π‘—πœ‹πœ‹ 𝑉𝑉3 = βˆ’1256 + 𝑗𝑗3𝑗𝑗.9

Arrange the node equations into a matrix equation:βˆ’366 + 𝑗𝑗2𝑗𝑗 108 + π‘—π‘—πœ‹π‘— (96 βˆ’ 𝑗𝑗2π‘—πœ‹)

βˆ’π‘—π‘—π‘— (βˆ’8 + 𝑗𝑗2𝑗) (8 βˆ’ 𝑗𝑗𝑗𝑗)βˆ’π‘—π‘—2𝑗 + 27 12 + 𝑗𝑗𝑗2 βˆ’84 + π‘—π‘—πœ‹πœ‹

𝑉𝑉1𝑉𝑉2𝑉𝑉3

=0

144 βˆ’ 𝑗𝑗32π‘—βˆ’1256 + 𝑗𝑗3𝑗𝑗.9

𝑉𝑉1 = 7.091∠ βˆ’ 19.8°𝑉𝑉2 = 1.448∠168.9°𝑉𝑉3 = 14.00βˆ π‘—2.0Β°