the dirichlet divisor problem, bessel series expansions …stant001/askeyabs/bruce_berndt.pdf ·...

53
Title and Place THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK, AND RIESZ SUMS Bruce Berndt University of Illinois at Urbana-Champaign IN CELEBRATION OF THE 80TH BIRTHDAY OF RICHARD ASKEY December 6, 2013 1 / 29

Upload: others

Post on 10-Apr-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Title and Place

THE DIRICHLET DIVISOR PROBLEM,BESSEL SERIES EXPANSIONS IN

RAMANUJAN’S LOST NOTEBOOK,AND RIESZ SUMS

Bruce Berndt

University of Illinoisat Urbana-Champaign

IN CELEBRATION OF THE 80TH BIRTHDAY OFRICHARD ASKEY

December 6, 2013

1 / 29

Page 2: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Thanks

Research Conducted by the Speaker with

Sun KimOhio State University

and

Alexandru ZaharescuUniversity of Illinois at Urbana-Champaign

2 / 29

Page 3: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Once Again – Mystery in the Lost Notebook

I have shown you today the highest secret ofmy own realization. It is supreme and mostmysterious indeed.

Verse 575, Vivekachudamani of Adi Shankaracharya

Sixth Century, A.D.

3 / 29

Page 4: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Ramanujan’s Passport Photo

4 / 29

Page 5: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

d(n) denotes the number of positive divisors of n.

Theorem (Dirichlet, 1849)

For x > 0, set

D(x) :=∑n≤x

′d(n) = x(log x + 2γ − 1) +

1

4+ ∆(x), (1)

where the prime on the summation sign on the left-hand sideindicates that if x is an integer then only 1

2d(x) is counted, γ isEuler’s constant, and ∆(x) is the “error term.” Then, as x →∞,

∆(x) = O(√

x). (2)

5 / 29

Page 6: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

d(n) denotes the number of positive divisors of n.

Theorem (Dirichlet, 1849)

For x > 0, set

D(x) :=∑n≤x

′d(n) = x(log x + 2γ − 1) +

1

4+ ∆(x), (1)

where the prime on the summation sign on the left-hand sideindicates that if x is an integer then only 1

2d(x) is counted, γ isEuler’s constant, and ∆(x) is the “error term.” Then, as x →∞,

∆(x) = O(√

x). (2)

5 / 29

Page 7: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

Figure: The Dirichlet Divisor Problem6 / 29

Page 8: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

Conjecture For each ε > 0, as x →∞,

∆(x) = O(x1/4+ε).

Theorem (Hardy, 1916)

∆(x) = Ω+(x log x1/4 log log x).

Theorem (Voronoı, 1904; Huxley, 2003)

As x →∞,

∆(x) = O(x1/3 log x),

= O(x131/416+ε)

131

416= 0.3149 . . .

7 / 29

Page 9: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

Conjecture For each ε > 0, as x →∞,

∆(x) = O(x1/4+ε).

Theorem (Hardy, 1916)

∆(x) = Ω+(x log x1/4 log log x).

Theorem (Voronoı, 1904; Huxley, 2003)

As x →∞,

∆(x) = O(x1/3 log x),

= O(x131/416+ε)

131

416= 0.3149 . . .

7 / 29

Page 10: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

Conjecture For each ε > 0, as x →∞,

∆(x) = O(x1/4+ε).

Theorem (Hardy, 1916)

∆(x) = Ω+(x log x1/4 log log x).

Theorem (Voronoı, 1904; Huxley, 2003)

As x →∞,

∆(x) = O(x1/3 log x),

= O(x131/416+ε)

131

416= 0.3149 . . .

7 / 29

Page 11: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

Conjecture For each ε > 0, as x →∞,

∆(x) = O(x1/4+ε).

Theorem (Hardy, 1916)

∆(x) = Ω+(x log x1/4 log log x).

Theorem (Voronoı, 1904; Huxley, 2003)

As x →∞,

∆(x) = O(x1/3 log x),

= O(x131/416+ε)

131

416= 0.3149 . . .

7 / 29

Page 12: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Dirichlet Divisor Problem

Theorem (Voronoı, 1904)

If x > 0,

∑n≤x

′d(n) = x (log x + 2γ − 1) +

1

4+∞∑n=1

d(n)(x

n

)1/2I1(4π

√nx),

where I1(z) is defined by

Iν(z) := −Yν(z)− 2

πKν(z). (3)

8 / 29

Page 13: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

A Page From Ramanujan’s Lost Notebook

9 / 29

Page 14: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Second Bessel Function Series Claim

Define

F (x) =

[x ], if x is not an integer,

x − 12 , if x is an integer,

(4)

where, as customary, [x ] is the greatest integer less than or equalto x .

Iν(z) := −Yν(z)− 2

πKν(z). (5)

10 / 29

Page 15: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Second Bessel Function Series Claim

Define

F (x) =

[x ], if x is not an integer,

x − 12 , if x is an integer,

(4)

where, as customary, [x ] is the greatest integer less than or equalto x .

Iν(z) := −Yν(z)− 2

πKν(z). (5)

10 / 29

Page 16: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Second Bessel Function Series Claim

Entry

Let F (x) be defined by (4), and let I1(x) be defined by (5). Forx > 0 and 0 < θ < 1,

∞∑n=1

F(x

n

)cos(2πnθ) =

1

4− x log(2 sin(πθ))

+1

2

√x∞∑

m=1

∞∑n=0

I1(

4π√

m(n + θ)x)

√m(n + θ)

+I1(

4π√

m(n + 1− θ)x)

√m(n + 1− θ)

.

11 / 29

Page 17: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Second Bessel Function Series Claim

As x →∞,

Yν(x) =

√2

πxsin(

x − πν

2− π

4

)+ O

(1

x3/2

),

Kν(x) =

√π

2xe−x + O

(e−x

1

x3/2

).

1

π√

2x1/4m3/4sin(

4π√

m(n + θ)x − 34π)

(n + θ)3/4+

sin(

4π√

m(n + 1− θ)x − 34π)

(n + 1− θ)3/4

.

12 / 29

Page 18: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Second Bessel Function Series Claim

As x →∞,

Yν(x) =

√2

πxsin(

x − πν

2− π

4

)+ O

(1

x3/2

),

Kν(x) =

√π

2xe−x + O

(e−x

1

x3/2

).

1

π√

2x1/4m3/4sin(

4π√

m(n + θ)x − 34π)

(n + θ)3/4+

sin(

4π√

m(n + 1− θ)x − 34π)

(n + 1− θ)3/4

.

12 / 29

Page 19: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Equivalent Theorem with the Order of SummationReversed

Theorem

Fix x > 0 and set θ = u + 12 , where −1

2 < u < 12 . Recall that F (x)

is defined in (4). If the identity below is valid for at least one valueof θ, then it exists for all values of θ, and∑

1≤n≤x(−1)nF

(x

n

)cos(2πnu)− 1

4+ x log(2 cos(πu))

=1

∞∑n=0

1

n + 12 + u

limM→∞

M∑

m=1

sin

(2π(n + 1

2 + u)x

m

)

−∫ M

0sin

(2π(n + 1

2 + u)x

t

)dt

13 / 29

Page 20: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Equivalent Theorem with the Order of SummationReversed

Theorem (Continued)

+1

∞∑n=0

1

n + 12 − u

limM→∞

M∑

m=1

sin

(2π(n + 1

2 − u)x

m

)

−∫ M

0sin

(2π(n + 1

2 − u)x

t

)dt

. (6)

Moreover, the series on the right-hand side of (6) convergesuniformly on compact subintervals of (−1

2 ,12).

14 / 29

Page 21: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Another Interpretation of Ramanujan’s Claim

Entry

Let F (x) be defined by (4), and let I1(x) be defined by (5). Forx > 0 and 0 < θ < 1,

∞∑n=1

F(x

n

)cos(2πnθ) =

1

4− x log(2 sin(πθ))

+1

2

√x

∑m≥1,n≥0

I1(

4π√

m(n + θ)x)

√m(n + θ)

+I1(

4π√

m(n + 1− θ)x)

√m(n + 1− θ)

.

15 / 29

Page 22: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Weighted Divisor Sums

If χ denotes any character modulo q, we define

dχ(n) :=∑d |n

χ(d),

ζ(s)L(s, χ) =∞∑n=1

dχ(n)n−s ,

τ(χ) :=

q−1∑h=1

χ(h)e2πih/q.

16 / 29

Page 23: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Weighted Divisor Sums

If χ denotes any character modulo q, we define

dχ(n) :=∑d |n

χ(d),

ζ(s)L(s, χ) =∞∑n=1

dχ(n)n−s ,

τ(χ) :=

q−1∑h=1

χ(h)e2πih/q.

16 / 29

Page 24: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Weighted Divisor Sums

If χ denotes any character modulo q, we define

dχ(n) :=∑d |n

χ(d),

ζ(s)L(s, χ) =∞∑n=1

dχ(n)n−s ,

τ(χ) :=

q−1∑h=1

χ(h)e2πih/q.

16 / 29

Page 25: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Functional Equation for Nonprincipal Even PrimitiveCharacters

(π√

q

)−2sΓ2(s)ζ(2s)L(2s, χ)

=τ(χ)√

q

(π√

q

)−2(12−s)Γ2(12 − s

)ζ(1− 2s)L(1− 2s, χ).

17 / 29

Page 26: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark Back to My Ph.D. Thesis

Theorem

If χ is a nonprincipal even primitive character modulo q, then

∑n≤x

′dχ(n) =

√q

τ(χ)

∞∑n=1

dχ(n)

√x

nI1(4π√

nx/q)

− x

τ(χ)

q−1∑h=1

χ(h) log(2 sin(πh/q)

). (7)

18 / 29

Page 27: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.

• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.• We have proved Ramanujan’s First Identity under all threeinterpretations.• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.• The proofs under different interpretations are completelydifferent.• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 28: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.

• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.• We have proved Ramanujan’s First Identity under all threeinterpretations.• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.• The proofs under different interpretations are completelydifferent.• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 29: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.

• We have proved Ramanujan’s First Identity under all threeinterpretations.• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.• The proofs under different interpretations are completelydifferent.• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 30: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.• We have proved Ramanujan’s First Identity under all threeinterpretations.

• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.• The proofs under different interpretations are completelydifferent.• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 31: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.• We have proved Ramanujan’s First Identity under all threeinterpretations.• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.

• The proofs under different interpretations are completelydifferent.• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 32: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.• We have proved Ramanujan’s First Identity under all threeinterpretations.• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.• The proofs under different interpretations are completelydifferent.

• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 33: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Summary

• We have proved Ramanujan’s Second Identity with the order ofsummation reversed.• We have proved Ramanujan’s Second Identity with the productof the summation indices tending to infinity.• We have not proved Ramanujan’s Second Identity with the orderof summation as written by Ramanujan.• We have proved Ramanujan’s First Identity under all threeinterpretations.• Road Blocks: The plus sign between the two Bessel functions;singularities at 0.• The proofs under different interpretations are completelydifferent.• New methods of estimating trigonometric sums are introduced.

19 / 29

Page 34: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Riesz Sums

∑n≤x

a(n)(x − n)a

20 / 29

Page 35: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Analogue of a Theorem of Dixon and Ferrar

Theorem

Let a denote a positive integer, and let χ be an even primitivenonprincipal character of modulus q. Set for x > 0,

Dχ(a; x) :=1

Γ(a + 1)

∑n≤x

dχ(n)(x − n)a.

Then, for a ≥ 2,

Dχ(a− 1; x) =L(1, χ)xa

Γ(1 + a)+τ(χ)qa−1

(2π)a−1

∞∑n=1

dχ(n)

(x

nq

)a/2

×−Ya

(4π

√nx

q

)+

2

πcos(πa)Ka

(4π

√nx

q

)+ Sa,

21 / 29

Page 36: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Analogue of a Theorem of Dixon and Ferrar

Theorem (Continued)

where Sa is the sum of the residues at the poles −2m − 1,0 ≤ m ≤ [12a]− 1, of

Γ(s)ζ(s)L(s, χ)

Γ(s + a)x s+a−1.

22 / 29

Page 37: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

The Riesz Sum Generalization of Ramanujan’s Entry 5

Theorem

Let x > 0, 0 < θ < 1, and a be a positive integer. Then,

1

(a− 1)!

∑n≤x

′(x − n)a−1

∑r |n

cos(2πrθ) =xa−1

4(a− 1)!− xa

a!log(2 sin(πθ)

)

+xα/2

2(2π)a−1

∞∑m=1

∞∑n=0

Ia(

4π√

m(n + θ)x)

(m(n + θ)

)a/2 +Ia(

4π√

m(n + 1− θ)x)

(m(n + 1− θ)

)a/2

−[a/2]∑k=1

(−1)kζ(1− 2k)(ζ(2k , θ) + ζ(2k, 1− θ)

)xa−2k

(a− 2k)!(2π)2k, (8)

where Iν(x) is defined in (3), and ζ(s, α) denotes the Hurwitz zetafunction.

23 / 29

Page 38: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

An Analogue of Ramanujan’s Entry 5

Theorem

Let I1(x) be defined by (5). If 0 < θ, σ < 1 and x > 0, then

∑nm≤x

′cos(2πnθ) cos(2πmσ) =

1

4+

√x

4

∑n,m≥0

×

I1(4π

√(n + θ)(m + σ)x)√

(n + θ)(m + σ)+

I1(4π√

(n + 1− θ)(m + σ)x)√(n + 1− θ)(m + σ)

+I1(4π

√(n + θ)(m + 1− σ)x)√

(n + θ)(m + 1− σ)+

I1(4π√

(n + 1− θ)(m + 1− σ)x)√(n + 1− θ)(m + 1− σ)

.

24 / 29

Page 39: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters χ1 modulo p and χ2 modulo q,

dχ1,χ2(n) =∑d |n

χ1(d)χ2(n/d).

L(2s, χ1)L(2s, χ2) =∞∑n=1

χ1(n)

n2s

∞∑m=1

χ2(m)

m2s=∞∑n=1

dχ1,χ2(n)

n2s

The Functional Equation

(π2/(pq))−sΓ2(s)L(2s, χ1)L(2s, χ2)

=τ(χ1)τ(χ2)√

pq(π2/(pq))−(

12−s)Γ2(12 − s)L(1− 2s, χ1)L(1− 2s, χ2)

∑n≤x

′dχ1,χ2(n) =

τ(χ1)τ(χ2)√

pq

∞∑n=1

dχ1,χ2(n)(x

n

) 12I1(

√nx

pq

)

25 / 29

Page 40: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters χ1 modulo p and χ2 modulo q,

dχ1,χ2(n) =∑d |n

χ1(d)χ2(n/d).

L(2s, χ1)L(2s, χ2) =∞∑n=1

χ1(n)

n2s

∞∑m=1

χ2(m)

m2s=∞∑n=1

dχ1,χ2(n)

n2s

The Functional Equation

(π2/(pq))−sΓ2(s)L(2s, χ1)L(2s, χ2)

=τ(χ1)τ(χ2)√

pq(π2/(pq))−(

12−s)Γ2(12 − s)L(1− 2s, χ1)L(1− 2s, χ2)

∑n≤x

′dχ1,χ2(n) =

τ(χ1)τ(χ2)√

pq

∞∑n=1

dχ1,χ2(n)(x

n

) 12I1(

√nx

pq

)

25 / 29

Page 41: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters χ1 modulo p and χ2 modulo q,

dχ1,χ2(n) =∑d |n

χ1(d)χ2(n/d).

L(2s, χ1)L(2s, χ2) =∞∑n=1

χ1(n)

n2s

∞∑m=1

χ2(m)

m2s=∞∑n=1

dχ1,χ2(n)

n2s

The Functional Equation

(π2/(pq))−sΓ2(s)L(2s, χ1)L(2s, χ2)

=τ(χ1)τ(χ2)√

pq(π2/(pq))−(

12−s)Γ2(12 − s)L(1− 2s, χ1)L(1− 2s, χ2)

∑n≤x

′dχ1,χ2(n) =

τ(χ1)τ(χ2)√

pq

∞∑n=1

dχ1,χ2(n)(x

n

) 12I1(

√nx

pq

)

25 / 29

Page 42: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters χ1 modulo p and χ2 modulo q,

dχ1,χ2(n) =∑d |n

χ1(d)χ2(n/d).

L(2s, χ1)L(2s, χ2) =∞∑n=1

χ1(n)

n2s

∞∑m=1

χ2(m)

m2s=∞∑n=1

dχ1,χ2(n)

n2s

The Functional Equation

(π2/(pq))−sΓ2(s)L(2s, χ1)L(2s, χ2)

=τ(χ1)τ(χ2)√

pq(π2/(pq))−(

12−s)Γ2(12 − s)L(1− 2s, χ1)L(1− 2s, χ2)

∑n≤x

′dχ1,χ2(n) =

τ(χ1)τ(χ2)√

pq

∞∑n=1

dχ1,χ2(n)(x

n

) 12I1(

√nx

pq

)25 / 29

Page 43: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and soI was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions forbounded harmonic functions, Trans. Amer. Math. Soc. 137(1969), 203–209.

26 / 29

Page 44: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and soI was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions forbounded harmonic functions, Trans. Amer. Math. Soc. 137(1969), 203–209.

26 / 29

Page 45: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and soI was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions forbounded harmonic functions, Trans. Amer. Math. Soc. 137(1969), 203–209.

26 / 29

Page 46: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and soI was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions forbounded harmonic functions, Trans. Amer. Math. Soc. 137(1969), 203–209.

26 / 29

Page 47: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and soI was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions forbounded harmonic functions, Trans. Amer. Math. Soc. 137(1969), 203–209.

26 / 29

Page 48: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and soI was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions forbounded harmonic functions, Trans. Amer. Math. Soc. 137(1969), 203–209.

26 / 29

Page 49: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Photograph, Shanghai, July 31, 2013

27 / 29

Page 50: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Photograph, Shanghai, July 31, 2013

28 / 29

Page 51: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Happy Birthday

THE DIRICHLET DIVISOR PROBLEMFOR DICK ASKEY

Happy 80th Birthday, Dickand Many more

29 / 29

Page 52: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Happy Birthday

THE DIRICHLET DIVISOR PROBLEMFOR DICK ASKEY

Happy 80th Birthday, Dick

and Many more

29 / 29

Page 53: THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS …stant001/ASKEYABS/Bruce_Berndt.pdf · THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN’S LOST NOTEBOOK,

Happy Birthday

THE DIRICHLET DIVISOR PROBLEMFOR DICK ASKEY

Happy 80th Birthday, Dickand Many more

29 / 29