the disk of ab aurigae

45
The disk of AB Aurigae ry Semenov (MPIA, Heidelberg, Germa oslav Pavluchenko (INASAN, Moscow, Russia na Schreyer (AIU, Jena, Ge as Henning (MPIA, Heidelberg, Germa Dullemond (MPA, Garching, Germ rore Bacmann (Observatoire de Bordeaux, France Ringberg April 15

Upload: osma

Post on 01-Feb-2016

25 views

Category:

Documents


0 download

DESCRIPTION

The disk of AB Aurigae. Dmitry Semenov (MPIA, Heidelberg, Germany). Yaroslav Pavluchenko (INASAN, Moscow, Russia). Katharina Schreyer (AIU, Jena, Germany). Thomas Henning (MPIA, Heidelberg, Germany). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The disk of AB Aurigae

The disk of AB Aurigae

Dmitry Semenov (MPIA, Heidelberg, Germany)

Yaroslav Pavluchenko (INASAN, Moscow, Russia)

Katharina Schreyer (AIU, Jena, Germany)

Thomas Henning (MPIA, Heidelberg, Germany)

Kees Dullemond (MPA, Garching, Germany)

Aurore Bacmann (Observatoire de Bordeaux, France)

Ringberg April 15

Page 2: The disk of AB Aurigae

Ringberg April 15

The disk of AB Aurigae

Chemical modeling

Dmitry Semenov

Observations

Aurore Bacmann(Observatoire de Bordeaux, France)

Katharina Schreyer (AIU Jena)

(MPIA Heidelberg)

Radiative transfer Lines:

Yaroslav Pavluchenko(INASAN, Moscow, Russia)

Continuum: Kees Dullemond

(MPA, Garching, Germany)

Page 3: The disk of AB Aurigae

Outline• Motivation• General Properties• Observations & Results• a) IRAM 30m & b) PdBI• The Model of the AB Aurigae system• Chemical modeling • Line radiative transfer simulations • Modeling results • Conclusions

3/18

Page 4: The disk of AB Aurigae

MotivationWhy AB Aurigae ?

One of the best-studied Herbig Ae(/Be) stars: A0 Ve+sh D = 144 +23 pc, M = 2.4 ± 0.2 M, age = 2−5 Myr

(e.g. van den Ancker et al. 1997, Manning & Sargent 1997, Grady et al. 1999, deWarf et al. 2003, Fukagawa et al. 2004)

circumstellar structure:

compact disk (Rdisk ≈ 450 pc, Mdisk ≈ 0.02 M,

i, poorly defined) (Mannings & Sargent 1997, Henning et al. 1998)

+ extended, low-density envelope (R > 1000 pc, optically thin, AV = 0.5m

internal structure + extent not well determined)

-17

well suitable object to study the chemistry of the disk

Page 5: The disk of AB Aurigae

R-band image, University of Hawaii2.2m telescope(Grady et al. 1999)

10″

8

AB Aur: General PropertiesThe envelope

IRAS 60μm

IRAS 60 μm map

Renvelope = 4’ ≈ 35 000 AU

SED Modeling (Miroshnichenko

et al. 1999) Renvelope ≈ 5000 AU

extended asymmetrical nebulosity, inhomogeneous spherical envelope,

Renvelope ≈ 1300 AU ( = 10″) i < 45o

HST visual image (Grady et al. 1999)

N

E

Page 6: The disk of AB Aurigae

AB Aurigae: General Properties - The disk

Subaru H-band image(Fukagawa et al. 2004):mass supply from the envelope contributesto the spiral instability

8″

8″

Main velocities13CO (10) OVRO

5″ 5 0 -5arcsec 4

.5

5

5.5

6

6

.5

v

LS

R

(km

s-1)

(Mannings & Sargent, 1997, OVRO) Keplerian rotation, a/b 110 AU / 450 AU i 76o

HST image (Grady et al. 1999)

Page 7: The disk of AB Aurigae

non-detections N2H+, CH3CN, HDCO, C2H, SO, SO2

AB Aur - Our observational results:IRAM 30m

CO 21 C18O 21

DCO+ 21

HCN 10

CS 54

HCO+ 10 HCO+ 32

CS 21

SiO 21 H2CO 31,221,1

Tm

b [

K]

vLSR [km/s]

0 5 100 5 10

HNC 10

0 10 20

CN 10

0 5 100 5 10

-10 0 10 20 0 5 10 -5 0 5 10 15

0 5 10 0 5 10 0 5 100 5 10

7/18

2000-2001 beamsizes: 10″ − 30″

Results: detected species: HCO+, CS, CO, C18O, HCN, HNC, ~3: SiO, H2CO, CN, DCO+

Observations:

Page 8: The disk of AB Aurigae

sum

HST image: Grady et al. 1999

HCO+ J=1-0Beam6.5″ x 5″

34SO 3221

HCN 10

SO2 73,582,6

S[

Jy

]

AB Aur - Our observational results: PdB Interferometer

4.5

5.5

6

.5

v

LS

R

(km

s-1)

Main velocities Results:

HCO+ map, ~3: 34SO, SO2, HCN, C2H, …

Observations:2002, beams ~ 5″ x 7″

C2H 10 3/2-1/2 F=2-1

velocity [km/s]

Page 9: The disk of AB Aurigae

9/18

SED

AB Aurigae

The model of the AB Aur system(Dullemond & Dominik, 2004)

2D continuum radiative transfer code

passive flared disk model

low-density cones have the open angle shadowed part of the envelope is denser and cooler

R

Page 10: The disk of AB Aurigae

Disk: 2D passive disk with vertical temperature gradient,

(r) = o·(r / Ro)p, p = −1.5, Mdisk = 3 (± 0.5) 10-2 M,

Rin = Ro = 0.7 AU, Rout = 400 AU, vertical hight = 0.3 … 350 AU

i = 17˚±3˚, = 80˚ +10˚, Tdisk = 35 ... 1500 K

ndisk = 10-24 ... 10-9 g cm-3,

Keplerian rotation, Vturb = 0.2 km/s

Envelope: Rin = 0 / 400 AU, Rout = 2100 AU,

(r) = o·(r / Rin )p, p = −1.0,

low-density cones: = 25˚, olobe = 9.4 10-20 g cm-3, Tenv = 100 K

shadowed torus: olobe = 5.5 10-19 g cm-3, Tenv = 35 K

Menv 4 · 10-3 M, ad = 0.1 μm, AV ≈ 0.5m, Vturb = 0.2 km/s,

stationary accretion, V(r) 1 / r (0.2 km/s at r = Rin),

dynamical timescale is ~ 107 yrs

−30˚

ad = 0.3 μm

10/18

The model of the AB Aur system

T = 35 K

T = 100 K

400 AU

Page 11: The disk of AB Aurigae

a gas-phase chemistry (UMIST95) with a surface reaction set

(Hasegawa et al. 1992)

a deuterated chemical network from Bergin et al. 1999

self- & mutual-shielding of H2 (Draine & Bertoldi 1996) and

CO (Lee et al. 1996)

the 1D slab model to compute UV- and CR-dissociation and

ionization rates depending on vertical height

ionization by the decay of radionuclides (disk)

thermal, photo-, and CR-desorption of surface species back

in the gas-phase

initial abundances: chemical evolution of a molecular cloud (low-metal

set, T = 10 K, n = 2·104 cm-3, time span = 1Myr, Wiebe et al. 2003)

(Semenov et al., 2004)

11/18

AB Aur – Chemical Modeling

Page 12: The disk of AB Aurigae

Results : 2D-distribution of column densities and molecular abundances for 3 Myr evolutionary time span

Modeling of the chemistry with reduced chemical network (in total 560 species made of 13 elements, involved in 5335 reactions)

On the basis of the fractional ionisation, disk divided into three layers:

(i) dark dense mid-plane (chemical network of ~ ten species & reactions)

(ii) intermediate layer (chemistry of the fractional ionization driven by the stellar X-rays)

(iii) unshielded low-density surface layer (photoionisation-recombination processes)

12/18

AB Aur – Chemical Modeling

Page 13: The disk of AB Aurigae

AB Aur - Line radiative transfer(Pavluchenkov & Shustov, 2004)

2D URAN NLTE code: further development of the public 1D code by Hogerheijde & van der Tak (2000)

solution of the system of radiative transfer equations using the Accelerated –Iteration (ALI) method

the mean intensities are calculated with the Accelerated Monte Carlo algorithm

the same model as obtained by the continuum radiative transfer

synthetic line profiles, beam-convolved13/18

Results:

Page 14: The disk of AB Aurigae

Modeling Results: НСО+(1-0) disk map

Inverse P Cygni profile a possible evidence for the accretion at distances ~ 600 AU

-4 -3 -2 -1 0 1 2 3 4 arcsec

4

3

2

1

0

-1

-2

-3

-4

14/18

AB Aurigae

Disk model: R = 400 AU

Page 15: The disk of AB Aurigae

4

3

2

1

0

-1

-2

-3

-4

Modeling Results: НСО+(1-0) disk map

15/18

Subaru H-band image

disk model

Fukagawa et al. 2004

sub-component structures possibly stem from the spirals

AB Aurigae

-4 -3 -2 -1 0 1 2 3 4 arcsec

Page 16: The disk of AB Aurigae

inclination angle of the disk i = 17˚± 3˚

position angle = 80˚+10˚

Modeling Results: Estimate of i and

−30˚ = 40o = 80o = 120o

1 2 1 2 1 2 arcsec

i = 10o i = 15o i = 20o

16/18

AB Aurigae

Page 17: The disk of AB Aurigae

Tm

b [

K]

AB Aur -ModelingResults:Line profiles

of different species

Fit for three cases:

Left:

Middle:

Right:

only the disk

only the envelope

disk + envelope

17/18

Page 18: The disk of AB Aurigae

AB Aurigae - Conclusions

There is an evidence for the accretion at distances of

about 600 AU from the star

It is shown that the IRAM single-dish spectra can be adequately described by the «disk-in-envelope» model

The coupled dynamical, chemical, and radiative transfer

simulation is an effective tool to find a consistent model

18/18

Based on observational data a suitable model of the AB Aurigae system is acquired mass, size, geometry and dynamical structure temperature and density distribution

Page 19: The disk of AB Aurigae
Page 20: The disk of AB Aurigae
Page 21: The disk of AB Aurigae

AB Aur - Our observations

IRAMIRAM 30m:

2000-2001, beam sizes 10″ - 30″detected different transitions of HCO+, CS, CO, C18O, HCN, HNC, ~3: SiO, H2CO, CN, DCO+

non-detections: N2H+, CH3CN, HDCO, C2H, SO, SO2

Plateau de Bure Interferometer:

2002, synthezied beam sizes 5″×7″detected HCO+ (& ~ 3: 34SO, SO2, HCN, C2H, …)

PdBI

7/19

Page 22: The disk of AB Aurigae

AB Aurigae - Conclusions • About a dozen molecular spectra as well as the HCO+(1-0)

interferometric map of AB Aurigae are acquired

• There is an evidence for the accretion at distances of about 600 AU from the star

• The mass, size, geometry and dynamical structure of the disk are constrained

• The temperature and density distribution of the envelope are estimated

• It is shown that the IRAM single-dish spectra can be adequately described by the «disk-in-envelope» model

• Further investigations are needed18/18

Page 23: The disk of AB Aurigae

AB Aur - Line radiative transfer

• System of equations including the equation of radiative transfer and statistical equations for the level populations

• Mean intensity in every cell is calculated by the accelerated Monte-Carlo technique (AMC)

• Level populations are iteratively calculated using the Accelerated Lambda Iteration (ALI) scheme

• Global iterations are finished after a requested accuracy in level populations is achieved

(Pavluchenkov & Shustov, 2004)

• 2D URAN NLTE code: further development of the public 1D code by Hogerheijde & van der Tak (2000)

13/18

Page 24: The disk of AB Aurigae

rayi

ds

Icell boundaries

1 2 3 N

1. Geometry

VVVVV

RfRf

RR ,,0,0,

,

1D model 2D model

iR 1iR

i

1i

0

Grid

cell

er

e

e

N

CMBd

NNN

ddd

dd

d

II

eIeeSII

eeSII

eeSII

eSI

N

1

1

1

1

1

)(323

212

11

213

12

1

Back-up integration:First calculation Second calculation

Comparison of the level populations for each cell to estimate Monte-Carlo error

3. Estimation of the error in level populations

2. Integration of transfer

equation

Page 25: The disk of AB Aurigae

-4 -3 -2 -1 0 1 2 3 4 arcsec

4

3

2

1

0

-1

-2

-3

-4 sub-component structures possibly stem from the spirals

Modeling Results: НСО+(1-0) disk map Subaru R-band image

Fukagawa et al. 2004

15/18

AB Aurigae

Page 26: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 24

HCO+(1-0) [29’’]

Disk Envelope Both

Line wings disk, central peak envelope

Page 27: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 25

HCO+(3-2) [9.3’’]

Disk Envelope Both

Beam is smaller contribution from the disk is larger

Page 28: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 26

CO(2-1) [11’’]

Disk Envelope Both

Line is optically thick, 12}max{ 1)-CO(2

Page 29: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 27

C18O(2-1) [11’’]

Disk Envelope Both

Line is optically thin, 2

1)-O(2C103}max{ 18

Page 30: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 28

CS(2-1) [26’’]

Disk Envelope Both

Page 31: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 21

Mass of the disk

HCO+(1-0) is optically thin

chemistry) , ,Gas

Dust(}max{ ddiskHCOmb aMNT

Page 32: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 22

Mass of the disk • Dependence on the grain size:

• Dependence on the chemical network:

• Dependence on the gas-to-dust ratio: ?• Dependence on the disk structure: ?

)μm 3.0(5.1μm) 0.1( diskdisk MM

)UMIST95(3.1)NSM( diskdisk MM

Page 33: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 3

AB Aurigae: General properties• Star:

• Disk:

• Envelope:

Myr) 52( sequence-main-pre

,50,5.2~,5.2 K, 10000

,5.0 AU), 1451( pc 145 sh,A0Ve

SunSunSun

mV

t

LLMMRRT

Ar

definedpoorly are and

rotation, Keplerian ,10~AU, 450 Sun2

i

MMR

understood not well are properties physical and dynamical

D/IR),(visual/SE AU 35000/5000/1300~ R

Page 34: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 4

The AB Aurigae system: IR

IRAS 60m map radius of the envelope ~ 35000 AU

8

Page 35: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 5

The AB Aurigae system: visual

Scattered light image extended asymmetrical nebulosity

(Grady et al. ApJ, 523, 151, 1999)

Page 36: The disk of AB Aurigae

HST K-band image (Grady et al. 1999): inhomogeneous spherical envelope, Rdisk 1300 AU i < 45o

AB Aur: General Properties - The envelope

Page 37: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 8

The AB Aurigae system: 10m

The shape of the 10m-silicate band implies that ad<1m (Bouwman et al. A&A, 375, 950, 2001)

Page 38: The disk of AB Aurigae

Keplerian rotation, positional angle 90 ?

Results: PdB Interferometer

Page 39: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 15

Chemical processes in space

Grain

Desorption

Accretion

Surface reaction

Gas-phase reaction

UV, CR, X-ray

Mantle

Grain

Page 40: The disk of AB Aurigae

30.01.2004 Friday-seminar talk at AIU Jena 20

Disk positional angle

Positional angle of the disk oo 3080 = 40o = 80o = 120o

Page 41: The disk of AB Aurigae

HCO+(1-0) [29’’]

Line wings disk, central peak envelope

Page 42: The disk of AB Aurigae

Temperature of the envelope

Envelope temperature (r 800 AU) 35Kkinmb TT

T = 15K T = 25K T = 35K

Page 43: The disk of AB Aurigae

8″

8″

HST image (Grady et al. 1999)

AB Aurigae: General Properties - The disk

Subaru H-band image(Fukagawa et al. 2004):mass supply from the envelope contributesto the spiral instability

(Mannings & Sargent, 1997) Keplerian rotation, a/b 110 AU / 450 AU i 76o

Main velocities13CO (1-0) OVRO

5″ 5 0 -5arcsec 4

.5

5

5.5

6

6

.5

v

LS

R (

km s

-1)

Page 44: The disk of AB Aurigae

sum

HST image: Grady et al. 1999

HCO+ J=1-0Beam6.5″ x 5″

34SO 3221

HCN 10

SO2 73,582,6

S[

Jy

]

Main velocities

Keplerian rotation, position angle 90 ?

4.5

5

5

.5

6

6.5

v

LS

R (

km s

-1)

AB Aur - Our observational results: PdB Interferometer

Page 45: The disk of AB Aurigae

9/18

SED

AB Aurigae

The model of the AB Aur system(Dullemond & Dominik, 2004)

R

2D continuum radiative transfer code

passive flared disk model

low-density cones have the open angle shadowed part of the envelope is denser and cooler