the factor graph approach to model-based signal processing

44
The Factor Graph Approach to Model-Based Signal Processing Hans-Andrea Loeliger

Upload: braden

Post on 14-Jan-2016

29 views

Category:

Documents


0 download

DESCRIPTION

The Factor Graph Approach to Model-Based Signal Processing. Hans-Andrea Loeliger. Outline. Introduction Factor graphs Gaussian message passing in linear models Beyond Gaussians Conclusion. Outline. Introduction Factor graphs Gaussian message passing in linear models Beyond Gaussians - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Factor Graph Approach to Model-Based Signal Processing

The Factor Graph Approach to Model-Based Signal Processing

Hans-Andrea Loeliger

Page 2: The Factor Graph Approach to Model-Based Signal Processing

2

Outline

Introduction

Factor graphs

Gaussian message passing in linear models

Beyond Gaussians

Conclusion

Page 3: The Factor Graph Approach to Model-Based Signal Processing

3

Outline

Introduction

Factor graphs

Gaussian message passing in linear models

Beyond Gaussians

Conclusion

Page 4: The Factor Graph Approach to Model-Based Signal Processing

4

Introduction

Engineers like graphical notation

It allow to compose a wealth of nontrivial algorithms from tabulated “local” computational primitive

Page 5: The Factor Graph Approach to Model-Based Signal Processing

5

Outline

Introduction

Factor graphs

Gaussian message passing in linear models

Beyond Gaussians

Conclusion

Page 6: The Factor Graph Approach to Model-Based Signal Processing

6

Factor Graphs

A factor graph represents the factorization of a function of several variables

Using Forney-style factor graphs

Page 7: The Factor Graph Approach to Model-Based Signal Processing

7

Factor Graphs cont’d

Example:

1 2 3 4( , , , , ) ( ) ( , , ) ( , , ) ( )f u w x y z f u f u w x f x y z f z

Page 8: The Factor Graph Approach to Model-Based Signal Processing

8

Factor Graphs cont’d

1 2 3 4 5( , , , , ) ( ) ( ) ( | , ) ( | ) ( | )f u w x y z f u f w f x u w f y x f z x

(a) Forney-style factor graph (FFG); (b) factor graph as in [3]; (c) Bayesian network; (d) Markov random field (MRF)

Page 9: The Factor Graph Approach to Model-Based Signal Processing

9

Factor Graphs cont’d

Advantages of FFGs:

suited for hierarchical modeling

compatible with standard block diagram

simplest formulation of the summary-product message update rule

natural setting for Forney’s result on FT and duality

Page 10: The Factor Graph Approach to Model-Based Signal Processing

10

Auxiliary Variables

Let Y1 and Y2 be two independent observations of X:

1 2 1 2( , , ) ( ) ( | ) ( | )f x y y f x f y x f y x

1 2 1 2( , ', ", , ) ( ) ( | ') ( | ") ( , ', ")f x x x y y f x f y x f y x f x x x

( , ', ") ( ') ( ")f x x x x x x x 1 2 1 2

' "

( , , ) ( , ', ", , ) ' "x x

f x y y f x x x y y dx dx

Page 11: The Factor Graph Approach to Model-Based Signal Processing

11

Modularity and Special Symbols

Let and with Z1, Z2 and X independent

The “+”-nodes represent the factors and

1 1Y X Z 2 2Y X Z

1 1( )x z y 2 2( )x z y

Page 12: The Factor Graph Approach to Model-Based Signal Processing

12

Outline

Introduction

Factor graphs

Gaussian message passing in linear models

Beyond Gaussians

Conclusion

Page 13: The Factor Graph Approach to Model-Based Signal Processing

13

Computing Marginals

Assume we wish to compute

For example, assume that can be written as

1

1,...,

( ) ( ,..., )n

k

k k nx xexcept x

f x f x x

1 7( ,..., )f x x

1 7 1 1 2 2 3 1 2 3 4 4

5 3 4 5 6 5 6 7 7 7

( ,..., ) ( ) ( ) ( , , ) ( )

( , , ) ( , , ) ( )

f x x f x f x f x x x f x

f x x x f x x x f x

Page 14: The Factor Graph Approach to Model-Based Signal Processing

14

Computing Marginals cont’d

3 3 3 3( ) ( ) ( )C Df x x x

1 2

3 1 1 2 2 3 1 2 3,

( ) ( ) ( ) ( , , )Cx x

x f x f x f x x x

4 5

3 4 4 5 3 4 5 5,

( ) ( ) ( , , ) ( )D Fx x

x f x f x x x x

6 7

5 6 5 6 7 7 7,

( ) ( , , ) ( )Fx x

x f x x x f x

1 2

3 1 2 3 1 2 3,

( ) ( ) ( ) ( , , )C A Bx x

x x x f x x x

4 5

3 5 3 4 5 4 5,

( ) ( , , ) ( ) ( )D E Fx x

x f x x x x x

6 7

5 6 5 6 7 7,

( ) ( , , ) ( )F Gx x

x f x x x x

Page 15: The Factor Graph Approach to Model-Based Signal Processing

15

Message Passing View cont’d

1 2

3

4 5 6 7

5

3

3 3 1 2 3 1 2 3,

5 3 4 5 4 6 5 6 7 7, ,

( ) ( ) ( ) ( , , )

( , , ) ( ) ( , , ) ( )

X

X

X

A Bx x

E Gx x x x

f x x x f x x x

f x x x x f x x x x

��������������

Page 16: The Factor Graph Approach to Model-Based Signal Processing

16

Sum-Product Rule

The message out of some node/factor along some edge is formed as the product of and all incoming messages along all edges except , summed over all involved variables except

kX

lf

kX

kX

3 33 3 3 3( ) ( ) ( ) ����������������������������

X Xf x x x

lf

Page 17: The Factor Graph Approach to Model-Based Signal Processing

17

denotes the message in the direction of the arrow

denotes the message in the opposite direction

Arrows and Notation for Messages

��������������

X

�X

Page 18: The Factor Graph Approach to Model-Based Signal Processing

18

Marginals and Output Edges

'' "

'

( ) ( ') ( ") ( ") ( ') ' "

( ) ( )

X X Xx x

X X

x x x x x x x dx dx

x x

������������������������������������������

����������������������������

Page 19: The Factor Graph Approach to Model-Based Signal Processing

19

Max-Product Rule

The message out of some node/factor along some edge is formed as the product of and all incoming messages along all edges except , maximized over all involved variables except

kX

lf

kX

kX

11

,...,

( ) max ( ,..., )n

k

k k nx xexcept x

f x f x x

lf

Page 20: The Factor Graph Approach to Model-Based Signal Processing

20

Message of the form:

Arrow notation:

/ is parameterized by mean / and variance /

2 2( ) / 2( ) x mx e

Scalar Gaussian Message

��������������

X �X

��������������Xm

�Xm

2��������������

X2

�X

Page 21: The Factor Graph Approach to Model-Based Signal Processing

21

Scalar Gaussian Computation Rules

Page 22: The Factor Graph Approach to Model-Based Signal Processing

22

Vector Gaussian Messages

Message of the form:

Message is parameterized

either by mean vector m and covariance matrix V=W-1

or by W and Wm

( ) expH

x x m W x m

Page 23: The Factor Graph Approach to Model-Based Signal Processing

23

Vector Gaussian Messages cont’d

Arrow notation:

is parameterized by and or by and

Marginal:

is the Gaussian with mean and covariance matrix

��������������

X Xm��������������

XV��������������

XW��������������

X XW m����������������������������

( ) ( )X Xx x ����������������������������

Xm1

X XV W

k kk

k k k kk k

X XX

X X X XX X

W W W

W m W m W m

����������������������������

��������������������������������������������������������

Page 24: The Factor Graph Approach to Model-Based Signal Processing

24

Single Edge Quantities

Page 25: The Factor Graph Approach to Model-Based Signal Processing

25

Elementary Nodes

Page 26: The Factor Graph Approach to Model-Based Signal Processing

26

Matrix Multiplication Node

Page 27: The Factor Graph Approach to Model-Based Signal Processing

27

Composite Blocks

Page 28: The Factor Graph Approach to Model-Based Signal Processing

28

Reversing a Matrix Multiplication

Page 29: The Factor Graph Approach to Model-Based Signal Processing

29

Combinations

Page 30: The Factor Graph Approach to Model-Based Signal Processing

30

General Linear State Space Model

1K K K K K

K K K

X A X B U

Y C X

Page 31: The Factor Graph Approach to Model-Based Signal Processing

31

General Linear State Space Model

If is nonsingular

and - forward

and - backward

If is singular

and - forward

and - backward

Cont’d

1kX

��������������1kY

kX��������������

kY�

'kX�

1'kX

kA

kA

1kX

��������������1kY

kX��������������

kU��������������

kX�

1kX

Page 32: The Factor Graph Approach to Model-Based Signal Processing

32

General Linear State Space Model

By combining the forward version with backward version, we can get

Cont’d

k kk

k k k kk k

X XX

X X X XX X

W W W

W m W m W m

����������������������������

��������������������������������������������������������

Page 33: The Factor Graph Approach to Model-Based Signal Processing

33

Gaussian to Binary

( ) ( ) ( ) ( )X Y Y

y

x y x y dy x ������������������������������������������

2

( 1) 2ln

( 1)

YXX

X Y

mL

����������������������������

�������������� ��������������

21

Y X

Y X X

m m

m

�������������� �

��������������������������� ��

Page 34: The Factor Graph Approach to Model-Based Signal Processing

34

Outline

Introduction

Factor graphs

Gaussian message passing in linear models

Beyond Gaussians

Conclusion

Page 35: The Factor Graph Approach to Model-Based Signal Processing

35

Message Types

A key issue with all message passing algorithms is the representation of messages for continuous variables

The following message types are widely applicable

Quantization of continuous variables

Function value and gradient

List of samples

Page 36: The Factor Graph Approach to Model-Based Signal Processing

36

Message Types cont’d

All these message types, and many different message computation rules, can coexist in large system models

SD and EM are two example of message computation rules beyond the sum-product and max-product rules

Page 37: The Factor Graph Approach to Model-Based Signal Processing

37

LSSM with Unknown Vector C

Page 38: The Factor Graph Approach to Model-Based Signal Processing

38

Steep Descent as Message Passing

Suppose we wish to find

( ) ( ) ( )A Bf f f

max arg max ( )f

(ln ( )) (ln ( )) (ln ( ))A B

d d df f f

d d d

Page 39: The Factor Graph Approach to Model-Based Signal Processing

39

Steep Descent as Message Passing

Steepest descent:

where s is a positive step-size parameter

Cont’d

ln ( ) |old

new oldd

s fd

Page 40: The Factor Graph Approach to Model-Based Signal Processing

40

Steep Descent as Message Passing

Gradient messages:

Cont’d

( ) ln ( )d

d

�������������� �

Page 41: The Factor Graph Approach to Model-Based Signal Processing

41

Steep Descent as Message PassingCont’d

( ) ( ) ( ) ( )

( ) ( )

X Yx y

X Yx

x x y x dxdy

x x dx

��������������������������� ��

����������������������������

Page 42: The Factor Graph Approach to Model-Based Signal Processing

42

Outline

Introduction

Factor graphs

Gaussian message passing in linear models

Beyond Gaussians

Conclusion

Page 43: The Factor Graph Approach to Model-Based Signal Processing

43

Conclusion

The factor graph approach to signal processing involves the following steps:

1) Choose a factor graph to represent the system model

2) Choose the message types and suitable message computation rules

3) Choose a message update schedules

Page 44: The Factor Graph Approach to Model-Based Signal Processing

44

Reference

[1] H.-A. Loeliger, et al., “The factor graph approach to model-based signal processing”

[2] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Proc. Mag., Jan. 2004, pp.28-41

[3] F.R. Kschischang, B.J. Fery, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp.498-519