the future of metals thomas e. graedel yale university center for industrial ecology yale school of...

26
The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Upload: samuel-gutierrez

Post on 27-Mar-2015

228 views

Category:

Documents


14 download

TRANSCRIPT

Page 1: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

The Future of Metals

Thomas E. Graedel

Yale University

Center for Industrial EcologyYale School of Forestry & Environmental Studies

Page 2: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

History of Metals Production

0

160

320

480

640

800

960

1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010

An

nu

al P

rod

uct

ion

: C

u,

Au

, P

b, N

i, F

e O

re, D

iam

on

ds,

Ba

uxi

te

0

840

1,680

2,520

3,360

4,200

5,040

An

nu

al P

rod

uct

ion

: M

n O

re,

Ag

, Zn

Copper (kt Cu)

Gold (t Au)

Lead (kt Pb)

Nickel (kt Ni)

Iron Ore (Mt)

Diamonds (Mcarats)

Bauxite (Mt)

Manganese (kt Mn ore)

Silver (t Ag)

Zinc (kt Zn)

????

Mudd, 2009, Sustainability of Mining ...

Page 3: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Trends in Ore Grades … ↓ ↓ ↓ ↓

0

5

10

15

20

25

30

1840 1860 1880 1900 1920 1940 1960 1980 2000

Ore

Gra

de

s (

Cu

, A

u,

Pb

, Z

n,

Ni,

Dia

mo

nd

s)

0

600

1,200

1,800

2,400

3,000

3,600

Ore

Gra

de

(A

g)

Copper (%Cu)

Gold (g/t Au)

Lead (%Pb)

Zinc (%Zn)

Nickel (%Ni)

Diamonds (carats/t)

Uranium (kg/t U3O8)

Silver (g/t Ag)

Gold: 1857 - 50.05; 1858 - 41.23; 1859 - 37.27

Mudd, 2009, Sustainability of Mining ...

Page 4: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

The Host-Companion Flower Garden of Metals

© Yale University, 2009,after Meskers and Hagelüken

Page 5: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

11 Elements11 Elements

+4 Elements+4 Elements

Computer Chip Elemental Contents

+45 Elements+45 Elements (Potential)(Potential)

Source: T. McManus, Intel Corp., 2006

Page 6: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

The Yale Criticality Project

Funding: US National Science Foundation and several corporations and organizations

Page 7: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

High

Low

Low High Supply Risk

Imp

act

of

Su

pp

ly R

estr

icti

on

The NRC Criticality Matrix and the “Region of Danger”

Regionof Danger

Page 8: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Goals of the Yale Criticality Project

• Goal 1: Developing a defendable and workable methodology for evaluating the degree to which a metal is “critical”

Page 9: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

100

- E

PI

100-

τD

-

τ D10 0

Components

World Governance

Indicator

Global Deposit Concentration

Expanded Time to Depletion

Human Development

Index

Weight

100

- P

PI

PolicyPotential Index

½

½

Weight

Social & Regulatory Considerations

Social & Regulatory Considerations⅓

Geological, Technological,

Economic Considerations

Geological, Technological,

Economic Considerations

Geopolitical Considerations

Geopolitical Considerations

100-

WG

I

½

½

½

Norm.

Supply Risk

Percentageas Companion

HH

I

National and Corporate

Page 10: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Politically unstable nations pose a higher risk of supply restriction

I. Underlying vulnerability1. Inequality2. State history3. Corruption4. Ethnic fragmentation5. Trust in institutions6. Status of minorities7. History of political instability8. Proclivity to labor unrest9. Level of social provision10. A country’s neighborhood11. Regime type12. Regime type and factionalism

II. Economic distress1. Growth in incomes2. Unemployment3. Level of income per head

Economic Intelligence Unit : Political Instability Index (PII)Components

20 40 5030 60 80 90 10070100

Transformed Score Scale

2009/10 Political Instability Index

Page 11: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Vulnerability- Corporate Level

Ability to Innovate

Weight

1

Weight

SubstitutabilitySubstitutability⅓

ImportanceImportance⅓

Ability to InnovateAbility to Innovate⅓

% of impacted revenue⅓

Ability to Pass-through Costs⅓

Importance to Corporate Strategy⅓

Substitute Performance¼

Substitute Availability¼

Environmental Impact Ratio¼

Price Ratio¼

Components

Page 12: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

The Three-Axis Criticality Evaluation Concept

ISR

I S

IR PT PS AS EIRCS

CI

PR

EI

SR

GTE S&R GP

PRB SRB PPI EPI PSI HHI

Page 13: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Goals of the Yale Criticality Project

• Year 1: Developing a defendable and workable methodology for evaluating the degree to which a metal is “critical”

• Year 2: Using the methodology, evaluate the criticality of a number of different metals (example – copper group [Cu, As, Ag, Au, Se, Te])

Page 14: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Random Results in Criticality AssessmentEC IDA IW NEDO NRC Oakd.

HollinsSouthKorea

Cu No No Maybe -- No No --

As -- -- -- -- -- No --

Se -- -- Yes No -- No

Ag No No Maybe -- -- No --

Te No No -- No -- Yes No

Au -- -- Maybe -- -- No --

Page 15: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Copper Group Criticality (Global)

Cu

Te

Se

Au

As

Ag

Mean

EI

Page 16: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Copper Group Criticality forSolar Power, Inc. (Fictional)

Cu

Te

Se

Mean

EI

Page 17: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Goals of the Yale Criticality Project

• Year 1: Developing a defendable and workable methodology for evaluating the degree to which a metal is “critical”

• Year 2: Using the methodology, evaluate the criticality of a number of different metals

• Year 3: Create a family of scenarios to study the possible evolution of metal criticality

Page 18: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

2008

EI

ISR

SR

2030 2050

Page 19: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Summary

• The long-run availability of the metals of modern technology is uncertain, and not well-studied

• Existing attempts to rank the criticality of metals use diverse approaches, and reach diverse conclusions

• The Yale project, aimed at generating detailed, defendable evaluations, will begin publishing results in early in 2012

Page 20: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies
Page 21: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Substitution in Optoelectronics

© C. Meskers, Umicore

Page 22: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

The European UnionCritical Raw Materials Project

April, 2009 – April, 2010

Page 23: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies
Page 24: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

RE

PGM

GeNb

W

Page 25: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

End-of-life recycling rates for sixty-two metals

103Lr

102No

101Md

100Fm

99Es

98Cf

97Bk

96Cm

95Am

94Pu

93Np

92U

91Pa

90Th

89Ac

** Actinides

71Lu

70Yb

69Tm

68Er

67Ho

66Dy

65Tb

64Gd

63Eu

62Sm

61Pm

60Nd

59Pr

58Ce

57La

* Lanthanides

118Uuo

(117)(Uus)

116Uuh

115Uup

114Uuq

113Uut

112Uub

111Rg

110Ds

109Mt

108Hs

107Bh

106Sg

105Db

104Rf

**88Ra

87Fr

7

86Rn

85At

84Po

83Bi

82Pb

81Tl

80Hg

79Au

78Pt

77Ir

76Os

75Re

74W

73Ta

72Hf

*56Ba

55Cs

6

54Xe

53I

52Te

51Sb

50Sn

49In

48Cd

47Ag

46Pd

45Rh

44Ru

43Tc

42Mo

41Nb

40Zr

39Y

38Sr

37Rb

5

36Kr

35Br

34Se

33As

32Ge

31Ga

30Zn

29Cu

28Ni

27Co

26Fe

25Mn

24Cr

23V

22Ti

21Sc

20Ca

19K

4

18Ar

17Cl

16S

15P

14Si

13Al

12Mg

11Na

3

10Ne

9F

8O

7N

6C

5B

4Be

3Li

2

2He

1H

1

Period

181716151413121110987654321Group#

103Lr

102No

101Md

100Fm

99Es

98Cf

97Bk

96Cm

95Am

94Pu

93Np

92U

91Pa

90Th

89Ac

** Actinides

71Lu

70Yb

69Tm

68Er

67Ho

66Dy

65Tb

64Gd

63Eu

62Sm

61Pm

60Nd

59Pr

58Ce

57La

* Lanthanides

118Uuo

(117)(Uus)

116Uuh

115Uup

114Uuq

113Uut

112Uub

111Rg

110Ds

109Mt

108Hs

107Bh

106Sg

105Db

104Rf

**88Ra

87Fr

7

86Rn

85At

84Po

83Bi

82Pb

81Tl

80Hg

79Au

78Pt

77Ir

76Os

75Re

74W

73Ta

72Hf

*56Ba

55Cs

6

54Xe

53I

52Te

51Sb

50Sn

49In

48Cd

47Ag

46Pd

45Rh

44Ru

43Tc

42Mo

41Nb

40Zr

39Y

38Sr

37Rb

5

36Kr

35Br

34Se

33As

32Ge

31Ga

30Zn

29Cu

28Ni

27Co

26Fe

25Mn

24Cr

23V

22Ti

21Sc

20Ca

19K

4

18Ar

17Cl

16S

15P

14Si

13Al

12Mg

11Na

3

10Ne

9F

8O

7N

6C

5B

4Be

3Li

2

2He

1H

1

Period

181716151413121110987654321Group#

<1% 1-10% >10-25% >25-50% >50%

103Lr

102No

101Md

100Fm

99Es

98Cf

97Bk

96Cm

95Am

94Pu

93Np

92U

91Pa

90Th

89Ac

** Actinides

71Lu

70Yb

69Tm

68Er

67Ho

66Dy

65Tb

64Gd

63Eu

62Sm

61Pm

60Nd

59Pr

58Ce

57La

* Lanthanides

118Uuo

(117)(Uus)

116Uuh

115Uup

114Uuq

113Uut

112Uub

111Rg

110Ds

109Mt

108Hs

107Bh

106Sg

105Db

104Rf

**88Ra

87Fr

7

86Rn

85At

84Po

83Bi

82Pb

81Tl

80Hg

79Au

78Pt

77Ir

76Os

75Re

74W

73Ta

72Hf

*56Ba

55Cs

6

54Xe

53I

52Te

51Sb

50Sn

49In

48Cd

47Ag

46Pd

45Rh

44Ru

43Tc

42Mo

41Nb

40Zr

39Y

38Sr

37Rb

5

36Kr

35Br

34Se

33As

32Ge

31Ga

30Zn

29Cu

28Ni

27Co

26Fe

25Mn

24Cr

23V

22Ti

21Sc

20Ca

19K

4

18Ar

17Cl

16S

15P

14Si

13Al

12Mg

11Na

3

10Ne

9F

8O

7N

6C

5B

4Be

3Li

2

2He

1H

1

Period

181716151413121110987654321Group#

103Lr

102No

101Md

100Fm

99Es

98Cf

97Bk

96Cm

95Am

94Pu

93Np

92U

91Pa

90Th

89Ac

** Actinides

71Lu

70Yb

69Tm

68Er

67Ho

66Dy

65Tb

64Gd

63Eu

62Sm

61Pm

60Nd

59Pr

58Ce

57La

* Lanthanides

118Uuo

(117)(Uus)

116Uuh

115Uup

114Uuq

113Uut

112Uub

111Rg

110Ds

109Mt

108Hs

107Bh

106Sg

105Db

104Rf

**88Ra

87Fr

7

86Rn

85At

84Po

83Bi

82Pb

81Tl

80Hg

79Au

78Pt

77Ir

76Os

75Re

74W

73Ta

72Hf

*56Ba

55Cs

6

54Xe

53I

52Te

51Sb

50Sn

49In

48Cd

47Ag

46Pd

45Rh

44Ru

43Tc

42Mo

41Nb

40Zr

39Y

38Sr

37Rb

5

36Kr

35Br

34Se

33As

32Ge

31Ga

30Zn

29Cu

28Ni

27Co

26Fe

25Mn

24Cr

23V

22Ti

21Sc

20Ca

19K

4

18Ar

17Cl

16S

15P

14Si

13Al

12Mg

11Na

3

10Ne

9F

8O

7N

6C

5B

4Be

3Li

2

2He

1H

1

Period

181716151413121110987654321Group#

T. Graedel et al., J. Industrial Ecology, in press, 2011

Page 26: The Future of Metals Thomas E. Graedel Yale University Center for Industrial Ecology Yale School of Forestry & Environmental Studies

Key Questions to be Answered

• What components should be included?

• How can the inclusion of these components be justified?

• How can these components be evaluated?

• How should the component evaluations be aggregated?