the gravitational wave radiation from galactic double …...observations vs. simulations: white...

44
The gravitaonal wave radiaon from Galacc double compact binaries Shenghua Yu Binary Star Conference In University of Cambridge 28.07.2016 1 Collaborator: C. Simon Jeffery, Zhanwen Han, …

Upload: others

Post on 19-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • The gravitational wave radiation from Galactic double compact binaries

    Shenghua YuBinary Star Conference In University of Cambridge

    28.07.2016

    1

    Collaborator: C. Simon Jeffery, Zhanwen Han, …

  • Outline• Chapter 1 – Why Gravitational Wave (GW) radiation from binaries

    • Chapter 2 – Methodology and a sample of double compact binaries : theory vs observation

    • Chapter 3 – GW strain amplitude, energy flux– frequency relations • Chapter 4 – Conclusions

    2

  • • Chapter 1 – Why Gravitational Wave (GW) radiation from binaries

    3

  • Gravitational waves & Electromagnetic waves

    Gravitational waves Electromagnetic waves

    Generation mechanism

    Acceleration of mass (wave equations)

    Acceleration of charged particles(wave equations)

    Meaning Oscillations of space (time)

    Oscillations of Electromagnetic field

    Frequency (Hz) ~10^-18 --- ~10^6 ~10^3 --- ~10^21

    Background emission

    Binaries motion, Cosmic

    Thermal, Nonthermal

    … … …

    4

  • Existence of GW Hulse-Taylor binary pulsar :

    PSR 1913-16 orbital decay Taylor+1982, ApJ

    5

    aLIGO bianry black holes: GW150914, GW151226 Abbott+2016, PRL, 116, 241103 Abbott+2016, PRL, 116, 061102

  • Existence of GW background ?

    • Background: – induced by a number of binaries – & their harmonics

    • Theory indicate that the background may exist

    • Aim to investigate the background & related events

    6

    Evans+1987; Hils+1990,2000; Webbink&Han1998; Hiscock2000; Nelemans+2001; Farmer+2003; Liu+2009;Yu&Jeffery 2010,2013; Ruiter+2009,2010; Nissanke+2012Belczynski+2008, 2010; Rosado 2012; Zhu+2013; Yu&Jeffery 2015; … …

  • 7

    • Chapter 2 – Methodology & a sample of double compact binaries: theory vs observation

  • 8

    Method: Binary Population Synthesis

    Initial parameters Stellar evolution

    Parametric CE ejection

    Galactic structure

    GW from single binary

    A sample of DCOs

    GW strain - frequency relation

    Compare with observationsNot fit well Fit well

    Energy flux - frequency relation

    superposition

    CE: Common EnvelopeDCOs:Double Compact Objects

  • Galactic structure

    9

    e.g. Klypin+2002, Robin+2003 Nelemans+2001,Yu&Jeffery2010,…

  • • Total mass of the Galaxy: ~6x10^11 Msun• Mass of stars: ~ 1.25x10^11 Msun

    • Bulge: ~2x10^10 Msun (size: ~3.5 kpc)• Disc, thin+thick : ~5.5x10^10 Msun(size: ~25 kpc)• Halo: 5x10^10 Msun +dark matter (size: ~50 kpc) (consistent with e.g. Klypin+2002; Robin+2003)

    • Mass of dark matter: ~85% of the total mass • Mass of gas (H & He …): ~2x10^10 Msun• Mass of interstellar dust: ~10^8-9 Msun

  • Initial Parameters and stellar evolution

    • Initial conditions – 1. Star formation history– 2. metallicity – 3. Initial mass function – 4. Mass ratio – 5. orbital period – 6. eccentricity

    • Stellar evolution model (e.g. Han1998; Hurley+2002,2003)

    11

    (constant, exponential, instantaneous)

    Z=0.001, 0.02 for the halo, disc & bulge

    -1.5

  • Parametric CE ejection (initial-final orbit separation)

    • Energy model (alpha-mechanism)

    12

    • Angular moment model (gamma-mechanism)

  • GW radiation from one binary system (Landau 1975)

    =• Wave equations :

    Associated with energy-momentum tensor

    Presence of matter

  • GW radiation from point mass binary system in general (Peters&Mathews1963, Yu&Jeffery2015)

    • G: gravity constant• c: speed of light• Rb : distance • e: eccentricity• a: semi-major axis• M:total mass, reduced

    mass • : orbit phase

    14

  • GW radiation from one binary system (e.g. Peters+1963, Landau+1975,Nelemans+2001,Yu+2015)

    After Fourier analysis of Kepler motion

    15

    Normalized Energy flux:

    Critical density

  • GW radiation from one binary system strain amplitude vs time

    16

  • GW radiation from one binary system strain amplitude vs frequency

    17

    m1=2Msunm2=2MsunPorb=1000s

  • Observations vs. simulations: white dwarf binaries

    • ~ 22 observed detached double white dwarfs (including sdB), and ~12 AM CVn

    Nelemans+2001a,2001b,2013,Amaro-Seoane2012 & references therein

    18

  • Observations vs. simulations: NS-WD binaries

    • 64 NS-WD in the disc (Lorimer2008)• 39 NS-WD in globular clusters (camilo+2005)

    19

    NS: neutron starWD: white dwarf

  • Observations of NS-NS (Lorimer2008)

  • Observations vs. simulations: black holes

    • X-ray (gamma-ray) emission (4,20Msun), Centered at 8 Msun

    • 4 Microlensing events: (3,45Msun)

    • aLIGO observations: 36, 29 & 14.2, 7.5 Msun

    21

    Ziolkowski2010, Postnov&Yungelson2014, references therein

    • Simulations: (2,41Msun)

  • 22

  • 23

  • Birth, merger rates & numbers

    24

    NS-NS

    NS-WD

  • 25

    BH-WD

  • 26

    BH-BH

  • 27

    • Chapter 3 – GW strain amplitude, energy flux– frequency relations

  • Strain – frequency

    • Strain: h = dL/L

    • f=n/P

    28

  • WD-WD

    29

  • NS-WD

    30

  • NS-NS

    31

  • 32

    BH-WD

  • 33

    BH-NS

  • 34

    BH-BH

  • Energy flux – frequency

    • ~1 10^-27 kg m^-3

    35

    • 0.027 erg s^-1 m^-2

    • How many 0.027 erg s^-1 m^-2 per Hz

  • NS-WD

    36

  • 37

    NS-NS (Yu&Jeffery2015)

  • 38

    BH-WD

  • 39

    BH-NS

  • 40

    BH-BH

  • 41

    Energy flux – frequency relation

  • Conclusions

    • WD-WDs and NS-WDs significantly contributes to the eLISA signal.

    • BH-WDs may have some contribution.

    • WD-WDs & NS-WDs: the disc and bulge population may be important

    • BH-BHs: the halo population becomes important.

    42

    • Energy flux – frequency relation may obey

    NOT t

    he en

    d

  • How to observe?

    eLISA, pulsar timing (BH-BH?), sitellite signal … …

    43

  • •Thank you!

    44

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29Slide 30Slide 31Slide 32Slide 33Slide 34Slide 35Slide 36Slide 37Slide 38Slide 39Slide 40Slide 41Slide 42Slide 43Slide 44