the harmonic mind paul smolensky cognitive science department johns hopkins university a mystery...

79

Click here to load reader

Upload: colleen-farmer

Post on 05-Jan-2016

251 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

The Harmonic Mind

Paul SmolenskyCognitive Science Department

Johns Hopkins University

A Mystery ‘Co’-laborator

Géraldine LegendreAlan Prince

Peter Jusczyk Donald Mathis

Melanie Soderstrom

with:

Page 2: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Personal Firsts thanks to SPP

First invited talk! (& first visit to JHU, 1986) First public confessional: midnight thoughts

of a worried connectionist (UNC, 1988) First generative syntax talk (Memphis, 1994) First attempt at stand-up comedy (Columbia,

2000) First rendition of a 900-page book as a

graphical synopsis in Powerpoint (1 minute from now)

Page 3: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Advertisement

Blackwell 2002 (??) Develop the Integrated Connectionist/Symbolic

(ICS) Cognitive Architecture Case study in formalist multidisciplinary

cognitive science

The Harmonic Mind:

From neural computation to optimality-theoretic grammar

 

Paul Smolensky   & Géraldine Legendre

Page 4: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Talk Plan

‘Sketch’ the ICS cognitive architecture, pointing to contributions from/to traditional disciplines

Topics of direct philosophical relevance• Explanation of the productivity of cognition• Nativism

Theoretical work– Symbolic– Connectionist

Experimental work

Page 5: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Mystery Quote #1

“Smolensky has recently been spending a lot of his time trying to show that, vivid first impressions to the contrary notwithstanding, some sort of connectionist cognitive architecture can indeed account for compositionality, productivity, systematicity, and the like. It turns out to be rather a long story … 185 pages … are devoted to Smolensky’s telling of it, and there appears to be no end in sight. It seems it takes a lot of squeezing to get this stone to bleed.”

Page 6: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Computational neuroscience ICS Key sources

• Hopfield 1982, 1984• Cohen and Grossberg 1983• Hinton and Sejnowski 1983, 1986• Smolensky 1983, 1986• Geman and Geman 1984 • Golden 1986, 1988

11 1 2

daa i a

dt a1

i1(0.6

)

a2

i2(0.5

)

–λ(–0.9)

1 1 2 2 1 22 2

1 2

( )

)

H a i a i a a

a a

a

½(

Competitive Net

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

a1 (i 1 = 0.6)

a2

(i2

= 0

.5)

Competitive Net

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Time

a1

a2

Processing I: Activation

Competitive Net

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Time

a1

a2

H

-0.5

-0.2

0.1

0.4

0.7 1

-0.500.51

-1.2

-1-0.8

-0.6

-0.4

-0.2

0

0.2

Harmony

a2

a1

Competitive Net

Processing — spreading activation — is

optimization: Harmony maximization

Page 7: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

–λ(–0.9)

a1

i1(0.6

)

a2

i2(0.5

)

Processing II: Optimization

-0.5

-0.2

0.1

0.4

0.7 1

-0.500.51

-1.2

-1-0.8

-0.6

-0.4

-0.2

0

0.2

Harmony

a2

a1

Competitive Net

a1 must be active (strength: 0.6)

0.79

–0.21Optimal

compromise:

Key sources:• Hinton & Anderson

1981• Rumelhart,

McClelland, & the PDP Group 1986

Cognitive psychology ICS

a2 must be active (strength: 0.5)

Harmony maximization is satisfaction of parallel,

violable constraints

a1 and a2 must not be

simultaneously active (strength:

λ)

Page 8: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Representation

Symbolic theory ICS• Complex symbol structures• Generative linguistics ICS

Particular linguistic representations

PDP connectionism ICS• Distributed activation patterns

ICS: • realization of (higher-level) complex

symbolic structures in distributed patterns of activation over (lower-level) units (‘tensor product representations’ etc.)

Page 9: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Representation

Activation patterns: cat and its constituents

-1 4 9 14

Unit (Area = activation level)

k/r0

æ/r01

t/r11

σ/rε

[σ k [æ t]]

σ

ktæ

Page 10: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Linguistics (markedness theory) ICS ICS Generative linguistics:

Optimality Theory Key sources:

• Prince & Smolensky 1993 [ms.; Rutgers report]

• McCarthy & Prince 1993 [ms.]• Texts: Archangeli & Langendoen 1997,

Kager 1999, McCarthy 2001• Electronic archive: rutgers/ruccs/roa.html

Constraints

Met in SPP Debate, 1988!

Page 11: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraints

NOCODA: A syllable has no codaσ

ktæ

* violation

W

* H(a[σ k [æ t]) =

–sNOCODA < 0

a[σ k [æ t ]] *

* violation

Page 12: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint Interaction I

ICS Grammatical theory• Harmonic Grammar

Legendre, Miyata, Smolensky 1990 et seq.

Page 13: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

= H=

a aW

Constraint Interaction I

σ

ktæ

H

=( , )i ij jc cH

H(k/, σ) H(σ,\

t)ONSET

Onset/k

The grammar generates the representation that maximizes H: this best-satisfies the constraints, given their differential strengths

NOCODA

Coda/t

Any formal language can be so generated.

Page 14: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Harmonic Grammar Parser

Simple, comprehensible network Simple grammar G

• X → A B Y → B A Language

Parsing

A B B A

X Y

A B B A

X Y

Top-down

A B B A Bottom-up

X Y

Page 15: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Harmonic Grammar Parser

Representations:

Filler vectors: A, B, X,

Y

Role vectors: rε = 1 r0 = (1 1) r1

= (1 –1)

①②

③④

⑤⑥

⑦⑧

⑨⑩

⑪⑫

i, j, k ∊ {A, B, X, Y}

j k

i

Depth 0 Depth 1

Page 16: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Harmonic Grammar Parser

Representations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Units

[Y B A]

[X A B]

[B A]

[A B]

B —

— A

B —

A —

B

A

Y

X

Page 17: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

W (Y — A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

W (Y B —)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

W (Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

Harmonic Grammar Parser Weight matrix for Y → B A

H(Y, B—) > 0H(Y, —A) > 0

Page 18: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Harmonic Grammar Parser Weight matrix for X → A B

W (X A —)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

De

pth

-0 U

nit

s

W (X — B)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Uni

ts

W (X A B)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

Page 19: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

W (X A B)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

W (Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

De

pth

-0 U

nit

s

Harmonic Grammar Parser Weight matrix for entire grammar

G W (X A B, Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

Page 20: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Bottom-up Parsing

A B → X = (1 1 1 1)/2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

Depth-0 Units

Tim

e

A B → X

0

1

2

Time

a H

Page 21: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Top-down ParsingX → A B = (1 0 -1 0 0 1 0 -1)/4

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Tim

e

X A B

0

0.25

0.5

Time

a H

Page 22: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Explaining Productivity

Full-scale parsing of formal languages by neural-network Harmony maximization: productive competence

How to explain?

Page 23: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

1. Structured representations

Representations

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Uni ts

YBA

XAB

BA

AB

B —

— A

B —

A —

B

A

Y

X

Page 24: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

+ 2. Structured connectionsW (X A B, Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Uni ts

W (X — B)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

W (Y B —)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

W (X A —)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

W (Y — A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

W (X A B)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

W (Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Uni ts

Page 25: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

= Proof of Productivity

Productive behavior follows mathematically from combining • the combinatorial structure of the

vectorial representations encoding inputs & outputs

and • the combinatorial structure of the

weight matrices encoding knowledge

Page 26: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Mystery Quote #2

“Paul Smolensky has recently announced that the problem of explaining the compositionality of concepts within a connectionist framework is solved in principle. … This sounds suspiciously like the offer of a free lunch, and it turns out, upon examination, that there is nothing to it.”

Page 27: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Explaining Productivity I

Representations

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Units

[X A B]

[A B]

— B

A —

X

+

+ Intra-level decompositio

n: [A B] {A, B}

Inter-level decomposition: [A B] {1,0,1,…

1}

Semantics

Processes

Processes

GOFAI

ICS

ICS & GOFAI

Page 28: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Explaining Productivity II

Intra-level decomposition: G {XAB, YBA}

Inter-level decomposition: [A B] {1,0,1,…

1}

Semantics

Processes

Processes

GOFAI

ICS

ICS & GOFAIW (X A B, Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

Dep

th-0

Un

its

+

W (Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

De

pth

-0 U

nit

s

W (Y B A)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Depth-1 Units

De

pth

-0 U

nit

s

Page 29: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Mystery Quote #3

“ … even after all those pages, Smolensky hasn’t so much as made a start on constructing an alternative to the Classical account of the compositionality phenomena.”

Page 30: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint Interaction II: OT

ICS Grammatical theory• Optimality Theory

Prince & Smolensky 1993

Page 31: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint Interaction II: OT

Differential strength encoded in strict domination hierarchies:• Every constraint has complete priority

over all lower-ranked constraints (combined)

• = ‘Take-the-best’ heuristic (Hertwig, today) constraint cue ranking cue validity

• Decision-theoretic justification for OT?• Approximate numerical encoding employs

special (exponentially growing) weights

Page 32: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint Interaction II: OT

Candidates STRESSHEAVY MAINSTRESSRIGHT Harmony

a. σHσ…σσ

n

**…*

n

n(wMAINSTRESSRIGHT)

b. σHσ…σσ n

* wSTRESSHEAVY

“Grammars can’t count”

Stress is on the initial heavy syllable iff the number of light syllables n obeys TRESS EAVY

AIN TRESS IGHT

S H

M S R

wn

w No way, man

Page 33: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint Interaction II: OT

Constraints are universal Human grammars differ only in

how these constraints are ranked• ‘factorial typology’

First true contender for a formal theory of cross-linguistic typology

Page 34: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

The Faithfulness / Markedness Dialectic

‘cat’: /kat/ kæt *NOCODA — why?• FAITHFULNESS requires identity• MARKEDNESS often opposes it

Markedness-Faithfulness dialectic diversity• English: NOCODA ≫ FAITH • Polynesian: FAITH ≫ NOCODA (~French)

Another markedness constraint M: • Nasal Place Agreement [‘Assimilation’] (NPA):

mb ≻ nb, ŋb nd ≻ md, ŋd ŋg ≻ ŋb, ŋd labial coronal velar

Page 35: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Nativism I: Learnability

Learning algorithm • Provably correct and efficient (under

strong assumptions)

• Sources:Tesar 1995 et seq. Tesar & Smolensky 1993, …, 2000

• If you hear A when you expected to hear E, minimally demote each constraint violated by A below a constraint violated by E

Page 36: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

in +possible

Candidates

FaithMark (NPA)

☹ ☞ Einpossibl

e *

A impossibl

e *

Faith

*☺ ☞

• If you hear A when you expected to hear E, minimally demote each constraint violated by A below a constraint violated by E

Constraint Demotion Learning

Correctly handles difficult case: multiple violations in E

Page 37: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Nativism I: Learnability

M ≫ F is learnable with /in+possible/→impossible• ‘not’ = in- except when followed by …• “exception that proves the rule”: M = NPA

M ≫ F is not learnable from data if there are no ‘exceptions’ (alternations) of this sort, e.g., if no affixes and all underlying morphemes have mp: √M and √F, no M vs. F conflict, no evidence for their ranking

Thus must have M ≫ F in the initial state, ℌ0

Page 38: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Nativism II: Experimental Test

Linking hypothesis: More harmonic phonological stimuli

⇒ Longer listening time More harmonic:

• √M ≻ *M, when equal on F• √F ≻ *F, when equal on M• When must chose one or the other,

more harmonic to satisfy M: M ≫ F M = Nasal Place Assimilation (NPA)

Collaborators Peter Jusczyk Theresa Allocco (Elliott Moreton, Karen Arnold)

Page 39: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

15.36

12.31

0

2

4

6

8

10

12

14

16

18

20

Faithfulness Markedness M ≫ F

Tim

e (s

ec)

Higher HLower H

4.5 Months (NPA)

Higher Harmony

Lower Harmony

um…ber…umber

um…ber… iŋgu

p = .006 (11/16)

Page 40: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

15.2315.36

12.7312.31

0

2

4

6

8

10

12

14

16

18

20

Faithfulness Markedness M ≫ F

Tim

e (s

ec)

Higher HLower H Higher

HarmonyLower Harmony

um…ber…umber

un…ber…unber

p = .044 (11/16)

4.5 Months (NPA)

Page 41: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

15.2315.36

12.7312.31

0

2

4

6

8

10

12

14

16

18

20

Faithfulness Markedness M ≫ F

Tim

e (s

ec)

Higher HLower H

4.5 Months (NPA) Markedness Faithfulness

un…ber…umber

un…ber…unber

???

Page 42: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

16.75

15.2315.3614.01

12.7312.31

0

2

4

6

8

10

12

14

16

18

20

Faithfulness Markedness M ≫ F

Tim

e (s

ec)

Higher HLower H

4.5 Months (NPA)Higher

HarmonyLower Harmony

un…ber…umber

un…ber…unber

p = .001 (12/16)

Page 43: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Nativism III: UGenome

Can we combine• Connectionist realization of harmonic

grammar• OT’s characterization of UG

to examine the biological plausibility of UG as innate knowledge?

Collaborators• Melanie Soderstrom• Donald Mathis

Page 44: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Nativism III: UGenome

The game: take a first shot at a concrete example of a genetic encoding of UG in a Language Acquisition Device

Introduce an ‘abstract genome’ notion parallel to (and encoding) ‘abstract neural network’

Is connectionist empiricism clearly more biologically plausible than symbolic nativism? No!

Page 45: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

The Problem

No concrete examples of such a LAD exist

Even highly simplified cases pose a hard problem:

How can genes — which regulate production of proteins — encode symbolic principles of grammar?

Test preparation: Syllable Theory

Page 46: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Basic syllabification: Function

ƒ: /underlying form/ [surface form] Plural form of dish:

• /dš+s/ [.d.š z.] /CVCC/ [.CV.C V C.]

Page 47: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Basic syllabification: Function

ƒ: /underlying form/ [surface form] Plural form of dish:

• /dš+s/ [.d.š z.] /CVCC/ [.CV.C V C.] Basic CV Syllable Structure Theory

• Prince & Smolensky 1993: Chapter 6• ‘Basic’ — No more than one segment

per syllable position: .(C)V(C).

Page 48: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Basic syllabification: Function

ƒ: /underlying form/ [surface form] Plural form of dish:

• /dš+s/ [.d.š z.] /CVCC/ [.CV.C V C.] Basic CV Syllable Structure Theory Correspondence Theory

• McCarthy & Prince 1995 (‘M&P’) /C1V2C3C4/ [.C1V2.C3 V C4]

Page 49: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

PARSE: Every element in the input corresponds to an element in the output — “no deletion” [M&P: ‘MAX’]

Syllabification: Constraints (Con)

Page 50: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

PARSE: Every element in the input corresponds to an element in the output

FILLV/C: Every output V/C segment corresponds to an input V/C segment [every syllable position in the output is filled by an input segment] — “no insertion/epenthesis” [M&P: ‘DEP’]

Syllabification: Constraints (Con)

Page 51: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

PARSE: Every element in the input corresponds to an element in the output

FILLV/C: Every output V/C segment corresponds to an input V/C segment

ONSET: No V without a preceding C

Syllabification: Constraints (Con)

Page 52: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

PARSE: Every element in the input corresponds to an element in the output

FILLV/C: Every output V/C segment corresponds to an input V/C segment

ONSET: No V without a preceding C

NOCODA: No C without a following V

Syllabification: Constraints (Con)

Page 53: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

SAnet architecture

/C1 C2/ [C1 V C2]

CV

/C1 C2 /

[

C1

V

C2

]

Page 54: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Connection substructure

Local: fixed, gene-tically determinedContent of constraint 1

Global: variable during learningStrength of constraint 1

1

s1

1c

2

is2

2c

W iic Network weight:

Network input: ι = WΨ a

Page 55: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

PARSE

C

V

3 3

3

3

33

1

11

1

1

1

3 3

3

3

33

3 3

3

3

33

All connection coefficients are +2

Page 56: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

ONSET All connection coefficients are 1

C

V

Page 57: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Activation dynamics

W a

φ

logφ φι /

1(a 1) ƒ (ι / )

1 Tpr Te

φψ ΦΨ

1

WconN

ii

i

sc

Boltzmann Machine/Harmony Theory dynamics (temperature T 0)

( )/( ) H Tp e aa

Page 58: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Boltzmann-type learning dynamics

Clamped: P += input & output; P = input

Δsi = ε[E{Hi |P +} E{Hi |P

}]

εE{Hi|P } =

During the processing of training data in phase P , whenever unit φ (of type Φ) and unit ψ (of type Ψ) are simultaneously active, modify si by ε . [ε = ε/Np ]

( ) ( )ΦΨ φ ψφψ

ε a api ppc

( | )( ) ( | )ln

( | )I Op O I

p I p O Ip O I

õ

Gradient descent in

ic

Page 59: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Crucial Open Question(Truth in Advertising)

Relation between strict domination and neural networks?

Apparently not a problem in the case of the CV Theory

Page 60: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

To be encoded How many different kinds of units are

there? What information is necessary (from

the source unit’s point of view) to identify the location of a target unit, and the strength of the connection with it?

How are constraints initially specified? How are they maintained through the

learning process?

Page 61: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Unit types

Input units C V Output units C V x Correspondence units C V 7 distinct unit types Each represented in a distinct sub-

region of the abstract genome ‘Help ourselves’ to implicit

machinery to spell out these sub-regions as distinct cell types, located in grid as illustrated

Page 62: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Connectivity geometry Assume 3-d grid geometry

V

C

‘E’

‘N’

‘back’

Page 63: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint: PARSE

CV

3 33

3

33

111

11

1

3 33

3

33

3 33

3

33

Input units grow south and connect Output units grow east and connect Correspondence units grow north & west

and connect with input & output units.

Page 64: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Constraint: ONSET Short connections grow north-south

between adjacent V output units, and between the first V node and the

first x node.

C

V

Page 65: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Direction of projection growth

Topographic organizations widely attested throughout neural structures• Activity-dependent growth a possible

alternative Orientation information (axes)

• Chemical gradients during development• Cell age a possible alternative

Page 66: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Projection parameters

Direction Extent

• Local• Non-local

Target unit type Strength of connections encoded

separately

Page 67: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Connectivity Genome

Contributions from ONSET and PARSE:

Source:

CI VI CO VO CC VC xo

Projec-tions:

S LCC S L VC E L CC E L VC

N&S S VO

N S x0

N L CI

W L CO

N L VI

W L VO

S S VO

Key: Direction Extent Target

N(orth) S(outh)E(ast) W(est)F(ront) B(ack)

L(ong) S(hort)

Input: CI VI

Output: CO VO x(0)

Corr: VC CC

Page 68: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

C

V

ONSETx0 segment: | S S VO| N S x0

VO segment: N&S S VO

Page 69: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Encoding connection strength

For each constraint i , need to ‘embody’

• Constraint strength si

• Connection coefficients (Φ Ψ cell types)

Product of these is contribution of i to the Φ Ψ connection weight

φψ ΦΨ

1

WconN

ii

i

sc

ic

Network-level specification

Page 70: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Φ

Ψ

Processing

11 0R c

[P1] ∝ s1

1 1 11 1w [ ]P R s c

W = wii

22 0R c

Page 71: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Φ

Ψ

Development1 1

1R G c

1 1 0G c 1 1

1L G c

2 22R G c

2 2 0G c

2 22L G c

Page 72: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Φ

Ψ

Learning

2 22 2 2[ ]P K L G c

1 11 1 1

When and are simultaneously active,

[ ] is P K L G c

1 11L G c

11 1K L c

1 1[ ]P K

(during phase P+; reverse during P )

Page 73: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Learning Behavior

Simplified system can be solved analytically

Learning algorithm turns out to ≈ si

() = [# violations of constrainti

P ]

Page 74: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

C-C:

CORRESPOND:

Abstract Gene Map

General Developmental Machinery Connectivity Constraint Coefficients

S L CC S L VC F S VC N/E L CC&VC S/W L CC&VC

direction extent target

C-I: V-I:

G

CO&V&x B 1 CC&VC B 2 CC CI&CO 1 VC VI&VO 1

RESPOND:

G

Page 75: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Summary

Described an attempt to integrate• Connectionist theory of mental processes

(computational neuroscience, cognitive psychology)

• Symbolic theory of Mental functions (philosophy, linguistics) Representations

– General structure (philosophy, AI)– Specific structure (linguistics)

Informs theory of UG• Form, content• Genetic encoding

Page 76: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Mystery Quote #4

“Smolensky, it would appear, would like a special dispensation for connectionist cognitive science to get the goodness out of Classical constituents without actually admitting that there are any.”

Page 77: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Mystery Quote #5

“ The view that the goal of connectionist research should be to replace other methodologies may represent a naive form of eliminative reductionism. … The goal … should not be to replace symbolic cognitive science, but rather …to explain the strengths and weaknesses of existing symbolic theory; to explain how symbolic computation can emerge out of non‑symbolic computation ...” conceptual‑level research with new computational concepts and techniques that reflect an understanding of how conceptual‑level theoretical constructs emerge from subconceptual computation …

Page 78: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Mystery Quote #5

“ The view that the goal of connectionist research should be to replace other methodologies may represent a naive form of eliminative reductionism. … The goal … should not be to replace symbolic cognitive science, but rather to explain the strengths and weaknesses of existing symbolic theory; to explain how symbolic computation can emerge out of non‑symbolic computation; to enrich conceptual‑level research with new computational concepts and techniques that reflect an understanding of how conceptual‑level theoretical constructs emerge from subconceptual computation…”

Page 79: The Harmonic Mind Paul Smolensky Cognitive Science Department Johns Hopkins University A Mystery ‘Co’-laborator Géraldine Legendre Alan Prince Peter Jusczyk

Thanks for your attention