the heintze-karcher inequality for metric measure spaces · with \=" i m = sn and s has...

73
The Heintze-Karcher inequality for metric measure spaces Christian Ketterer University of Toronto June 12, 2020 Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 1 / 13

Upload: others

Post on 25-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

The Heintze-Karcher inequality for metric measurespaces

Christian Ketterer

University of Toronto

June 12, 2020

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 1 / 13

Page 2: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

The Heintze-Karcher inequality for Riemannian manifolds

Mn compact Riemannian manifold, ricM ≥ K , assume K > 0, n ≥ 2.

Sn−1 ⊂ M submanifold, compact, embedded, two-sided.

Theorem (Heintze-Karcher, 1978)

volM(S+ε ) ≤

∫S

∫ ε

0JH(p),K ,n(t)dtd volS(p)

where S+ε := expx(tN+(x)) : t ∈ (0, ε), x ∈ S, N+ is one of two unit

normal fields on S, H is the mean curvature of S and the Jacobian

JH,K ,n(t) =(

cos(t√

K/(n − 1)) + Hn−1 sin(t

√K/(n − 1))

)n+.

Also

volM(M) ≤∫ ∫

JH(p),K ,n(t)dtd volS(p)

with “=” iff M = Sn and S has constant mean curvature.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 2 / 13

Page 3: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

The Heintze-Karcher inequality for Riemannian manifoldsMn compact Riemannian manifold, ricM ≥ K , assume K > 0, n ≥ 2.

Sn−1 ⊂ M submanifold, compact, embedded, two-sided.

Theorem (Heintze-Karcher, 1978)

volM(S+ε ) ≤

∫S

∫ ε

0JH(p),K ,n(t)dtd volS(p)

where S+ε := expx(tN+(x)) : t ∈ (0, ε), x ∈ S, N+ is one of two unit

normal fields on S, H is the mean curvature of S and the Jacobian

JH,K ,n(t) =(

cos(t√

K/(n − 1)) + Hn−1 sin(t

√K/(n − 1))

)n+.

Also

volM(M) ≤∫ ∫

JH(p),K ,n(t)dtd volS(p)

with “=” iff M = Sn and S has constant mean curvature.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 2 / 13

Page 4: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

The Heintze-Karcher inequality for Riemannian manifoldsMn compact Riemannian manifold, ricM ≥ K , assume K > 0, n ≥ 2.

Sn−1 ⊂ M submanifold, compact, embedded, two-sided.

Theorem (Heintze-Karcher, 1978)

volM(S+ε ) ≤

∫S

∫ ε

0JH(p),K ,n(t)dtd volS(p)

where S+ε := expx(tN+(x)) : t ∈ (0, ε), x ∈ S, N+ is one of two unit

normal fields on S, H is the mean curvature of S and the Jacobian

JH,K ,n(t) =(

cos(t√

K/(n − 1)) + Hn−1 sin(t

√K/(n − 1))

)n+.

Also

volM(M) ≤∫ ∫

JH(p),K ,n(t)dtd volS(p)

with “=” iff M = Sn and S has constant mean curvature.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 2 / 13

Page 5: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

The Heintze-Karcher inequality for Riemannian manifoldsMn compact Riemannian manifold, ricM ≥ K , assume K > 0, n ≥ 2.

Sn−1 ⊂ M submanifold, compact, embedded, two-sided.

Theorem (Heintze-Karcher, 1978)

volM(S+ε ) ≤

∫S

∫ ε

0JH(p),K ,n(t)dtd volS(p)

where S+ε := expx(tN+(x)) : t ∈ (0, ε), x ∈ S, N+ is one of two unit

normal fields on S, H is the mean curvature of S and the Jacobian

JH,K ,n(t) =(

cos(t√

K/(n − 1)) + Hn−1 sin(t

√K/(n − 1))

)n+.

Also

volM(M) ≤∫ ∫

JH(p),K ,n(t)dtd volS(p)

with “=” iff M = Sn and S has constant mean curvature.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 2 / 13

Page 6: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

The Heintze-Karcher inequality for Riemannian manifoldsMn compact Riemannian manifold, ricM ≥ K , assume K > 0, n ≥ 2.

Sn−1 ⊂ M submanifold, compact, embedded, two-sided.

Theorem (Heintze-Karcher, 1978)

volM(S+ε ) ≤

∫S

∫ ε

0JH(p),K ,n(t)dtd volS(p)

where S+ε := expx(tN+(x)) : t ∈ (0, ε), x ∈ S, N+ is one of two unit

normal fields on S, H is the mean curvature of S and the Jacobian

JH,K ,n(t) =(

cos(t√

K/(n − 1)) + Hn−1 sin(t

√K/(n − 1))

)n+.

Also

volM(M) ≤∫ ∫

JH(p),K ,n(t)dtd volS(p)

with “=” iff M = Sn and S has constant mean curvature.Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 2 / 13

Page 7: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Curvature-dimension condition for metric measure spaces

(X , d ,m) a metric measure space (compact, geodesic space, m(X ) <∞).

For N > 1 the N-Renyi entropy is

µ ∈ P(X )︸ ︷︷ ︸prob. meas. on X

7→ SN(µ) =

−∫X ρ

1− 1N d m if µ = ρm,

0 otherwise.

Definition (Lott-Sturm-Villani)

(X , d ,m) satisfies the curvature-dimension condition CD(0,N) if∀µ0, µ1 ∈ P(X ) there exists a W2-geodesic (µt)t∈[0,1] such that

SN(µt) ≤ (1− t)SN(µ0) + tSN(µ1).

The curvature-dimension condition CD(K ,N) for K ∈ R is definedsimilarly using the notion of ”(K ,N)-convexity.”

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 3 / 13

Page 8: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Curvature-dimension condition for metric measure spaces

(X , d ,m) a metric measure space (compact, geodesic space, m(X ) <∞).

For N > 1 the N-Renyi entropy is

µ ∈ P(X )︸ ︷︷ ︸prob. meas. on X

7→ SN(µ) =

−∫X ρ

1− 1N d m if µ = ρm,

0 otherwise.

Definition (Lott-Sturm-Villani)

(X , d ,m) satisfies the curvature-dimension condition CD(0,N) if∀µ0, µ1 ∈ P(X ) there exists a W2-geodesic (µt)t∈[0,1] such that

SN(µt) ≤ (1− t)SN(µ0) + tSN(µ1).

The curvature-dimension condition CD(K ,N) for K ∈ R is definedsimilarly using the notion of ”(K ,N)-convexity.”

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 3 / 13

Page 9: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Curvature-dimension condition for metric measure spaces

(X , d ,m) a metric measure space (compact, geodesic space, m(X ) <∞).

For N > 1 the N-Renyi entropy is

µ ∈ P(X )︸ ︷︷ ︸prob. meas. on X

7→ SN(µ) =

−∫X ρ

1− 1N d m if µ = ρm,

0 otherwise.

Definition (Lott-Sturm-Villani)

(X , d ,m) satisfies the curvature-dimension condition CD(0,N) if∀µ0, µ1 ∈ P(X ) there exists a W2-geodesic (µt)t∈[0,1] such that

SN(µt) ≤ (1− t)SN(µ0) + tSN(µ1).

The curvature-dimension condition CD(K ,N) for K ∈ R is definedsimilarly using the notion of ”(K ,N)-convexity.”

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 3 / 13

Page 10: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Curvature-dimension condition for metric measure spaces

(X , d ,m) a metric measure space (compact, geodesic space, m(X ) <∞).

For N > 1 the N-Renyi entropy is

µ ∈ P(X )︸ ︷︷ ︸prob. meas. on X

7→ SN(µ) =

−∫X ρ

1− 1N d m if µ = ρm,

0 otherwise.

Definition (Lott-Sturm-Villani)

(X , d ,m) satisfies the curvature-dimension condition CD(0,N) if∀µ0, µ1 ∈ P(X ) there exists a W2-geodesic (µt)t∈[0,1] such that

SN(µt) ≤ (1− t)SN(µ0) + tSN(µ1).

The curvature-dimension condition CD(K ,N) for K ∈ R is definedsimilarly using the notion of ”(K ,N)-convexity.”

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 3 / 13

Page 11: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Curvature-dimension condition for metric measure spaces

(X , d ,m) a metric measure space (compact, geodesic space, m(X ) <∞).

For N > 1 the N-Renyi entropy is

µ ∈ P(X )︸ ︷︷ ︸prob. meas. on X

7→ SN(µ) =

−∫X ρ

1− 1N d m if µ = ρm,

0 otherwise.

Definition (Lott-Sturm-Villani)

(X , d ,m) satisfies the curvature-dimension condition CD(0,N) if∀µ0, µ1 ∈ P(X ) there exists a W2-geodesic (µt)t∈[0,1] such that

SN(µt) ≤ (1− t)SN(µ0) + tSN(µ1).

The curvature-dimension condition CD(K ,N) for K ∈ R is definedsimilarly using the notion of ”(K ,N)-convexity.”

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 3 / 13

Page 12: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Properties of CD spaces

Mn a Riemannian manifold s.t. M\∂M is geodesically convex ande−f volM =: m, f ∈ C∞(M). K ∈ R, N ≥ n. Then

(Mn, dM ,m) satisfies CD(K ,N)

⇔ ricf ,NM := ricM +∇2f − 1

N − ndf ⊗ df ≥ K .

[a, b] ⊂ R. K ∈ R and N > 1.

([a, b], | · |2,m) satisfies CD(K ,N)

⇐⇒

m = hdL1 with h continuous &d2

dtth

1N−1 +

K

N − 1h

1N−1 ≤ 0.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 4 / 13

Page 13: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Properties of CD spaces

Mn a Riemannian manifold s.t. M\∂M is geodesically convex ande−f volM =: m, f ∈ C∞(M). K ∈ R, N ≥ n. Then

(Mn, dM ,m) satisfies CD(K ,N)

⇔ ricf ,NM := ricM +∇2f − 1

N − ndf ⊗ df ≥ K .

[a, b] ⊂ R. K ∈ R and N > 1.

([a, b], | · |2,m) satisfies CD(K ,N)

⇐⇒

m = hdL1 with h continuous &d2

dtth

1N−1 +

K

N − 1h

1N−1 ≤ 0.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 4 / 13

Page 14: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Properties of CD spaces

Mn a Riemannian manifold s.t. M\∂M is geodesically convex ande−f volM =: m, f ∈ C∞(M). K ∈ R, N ≥ n. Then

(Mn, dM ,m) satisfies CD(K ,N)

⇔ ricf ,NM := ricM +∇2f − 1

N − ndf ⊗ df ≥ K .

[a, b] ⊂ R. K ∈ R and N > 1.

([a, b], | · |2,m) satisfies CD(K ,N)

⇐⇒

m = hdL1 with h continuous &d2

dtth

1N−1 +

K

N − 1h

1N−1 ≤ 0.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 4 / 13

Page 15: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballcondition

Ω ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 16: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 17: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 18: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 19: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 20: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ω

xzx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 21: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 22: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 23: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Hypersurfaces in metric measure spaces, interior ballconditionΩ ⊂ X open, and S = ∂Ω. Assume m(S) = 0

Ω satisfies an interior ball condition if ∀x ∈ S there exists zx ∈ Ω andηx > 0 such that

Bηx (zx) ⊂ Ω and x ∈ ∂Bηx (zx).

S satisfies an exterior/interior ball condition if Ω and X\Ω satisfy aninterior ball condition.

∂Ω = S

Ωx

zx

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 5 / 13

Page 24: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)

Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 25: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz.

Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 26: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 27: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 28: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 29: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu.

Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 30: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 31: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 32: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 33: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 34: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 35: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z

(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 36: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu

⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 37: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu

⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 38: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 39: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 40: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 41: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

1D localisation method (Cavalletti-Mondino)Let u be 1-Lipschitz. Define

Γu =

(x , y) ∈ X 2 : u(y)− u(x) = d(x , y)

If γ : [a, b]→ X is a (minimal) geodesic and (γ(a), γ(b)) ∈ Γu, then

(γ(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [a, b].

Γu is transitive but not symmetric.

Γ−1u = (x , y) : (y , x) ∈ Γu. Define transport relation

Ru := Γu ∪ Γ−1u , P1(Ru\(x , y) : x = y) = Tu.

Ru is symmetric but not transitive.

xy

(y , x) ∈ Γu

γ

(γ1(s), γ(t)) ∈ Γu ∀s ≤ t ∈ [0, L(γ)]

z(x , z) ∈ Γu ⇒ (y , z) ∈ Γu

w : u(w) = u(z)

(w , x) ∈ Γ−1u

(w , z) /∈ Ru

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 6 / 13

Page 42: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Forward and backward branching points:

A+ = x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γu, (y , z) /∈ RuA− =

x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γ−1

u , (y , z) /∈ Ru

Define the non-branched transport set T b

u = Tu\(A+ ∪ A−)

zγ2

w

γ3

xy

Ru restricted to T bu is an equivalence relation with quotient space Q,

Q : T bu → Q quotient map.

Each equivalence class is given by the image of a distance preserving map

γ : Iγ ⊂ R→ X .(T bu =

⋃γ∈Q Im(γ)

)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 7 / 13

Page 43: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Forward and backward branching points:

A+ = x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γu, (y , z) /∈ RuA− =

x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γ−1

u , (y , z) /∈ Ru

Define the non-branched transport set T b

u = Tu\(A+ ∪ A−)

zγ2

w

γ3

xy

Ru restricted to T bu is an equivalence relation with quotient space Q,

Q : T bu → Q quotient map.

Each equivalence class is given by the image of a distance preserving map

γ : Iγ ⊂ R→ X .(T bu =

⋃γ∈Q Im(γ)

)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 7 / 13

Page 44: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Forward and backward branching points:

A+ = x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γu, (y , z) /∈ RuA− =

x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γ−1

u , (y , z) /∈ Ru

Define the non-branched transport set T b

u = Tu\(A+ ∪ A−)

zγ2

w

γ3

xy

Ru restricted to T bu is an equivalence relation with quotient space Q,

Q : T bu → Q quotient map.

Each equivalence class is given by the image of a distance preserving map

γ : Iγ ⊂ R→ X .(T bu =

⋃γ∈Q Im(γ)

)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 7 / 13

Page 45: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Forward and backward branching points:

A+ = x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γu, (y , z) /∈ RuA− =

x ∈ Tu : ∃y , z ∈ Tu s.t. (x , y), (x , z) ∈ Γ−1

u , (y , z) /∈ Ru

Define the non-branched transport set T b

u = Tu\(A+ ∪ A−)

zγ2

w

γ3

xy

Ru restricted to T bu is an equivalence relation with quotient space Q,

Q : T bu → Q quotient map.

Each equivalence class is given by the image of a distance preserving map

γ : Iγ ⊂ R→ X .(T bu =

⋃γ∈Q Im(γ)

)Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 7 / 13

Page 46: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Disintegration formula:

m|T bu

=

∫mγ dq(γ)

where q = Q#m and the measures mγ are concentrated on Im(γ).

Theorem (Cavalletti-Mondino)

Let (X , d ,m) be an essentially non-branching CD(K ,N)-space. Then

m(A+ ∪ A−) = 0,

For q-a.e. γ the metric measure space (Im(γ), d ,mγ) is CD(K ,N).

Remark: mγ = γ#

(hγdL1|Iγ

)for hγ : Iγ → [0,∞) continuous such that

d2

dth

1N−1γ +

K

N − 1h

1N−1γ ≤ 0 in distrib. sense.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 8 / 13

Page 47: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Disintegration formula:

m|T bu

=

∫mγ dq(γ)

where q = Q#m and the measures mγ are concentrated on Im(γ).

Theorem (Cavalletti-Mondino)

Let (X , d ,m) be an essentially non-branching CD(K ,N)-space. Then

m(A+ ∪ A−) = 0,

For q-a.e. γ the metric measure space (Im(γ), d ,mγ) is CD(K ,N).

Remark: mγ = γ#

(hγdL1|Iγ

)for hγ : Iγ → [0,∞) continuous such that

d2

dth

1N−1γ +

K

N − 1h

1N−1γ ≤ 0 in distrib. sense.

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 8 / 13

Page 48: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 49: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 50: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 51: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 52: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 53: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 54: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 55: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 56: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 57: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 58: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 59: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Ω ⊂ X open, S = ∂Ω satisfying an ext/int ball condition.

Signed distance function: dS = dΩ − dX\Ω where dΩ(·) = infx∈Ω d(x , ·)

dS is 1-Lipschitz since X is a length space.

Hence, apply 1D localisation method to u = dS :

Ω

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 9 / 13

Page 60: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Surface measure, Mean curvature

q-a.e. needle γ : Iγ → X does NOT intersect with S at its endpoits.

Choose (arclength) parametrisation s.t. 0 ∈ Int(Iγ) and S ∩ Im(γ) = γ(0)for q-a.e. γ.

Identify Q with p ∈ S : p = γ(0), γ ∈ Q ⊂ S via γ 7→ γ(0).

Define surface measure mS on S via

d mS := hγ(0)dq(γ).

Recall hγ is semi-concave: Left and right derivatives d±

dt exist ∀t ∈ Int(Iγ).

Define the mean curvature of S as

H(p) := max

d+

dtlog hγ(0),

d−

dtlog hγ(0)

, p = γ(0)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 10 / 13

Page 61: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Surface measure, Mean curvature

q-a.e. needle γ : Iγ → X does NOT intersect with S at its endpoits.

Choose (arclength) parametrisation s.t. 0 ∈ Int(Iγ) and S ∩ Im(γ) = γ(0)for q-a.e. γ.

Identify Q with p ∈ S : p = γ(0), γ ∈ Q ⊂ S via γ 7→ γ(0).

Define surface measure mS on S via

d mS := hγ(0)dq(γ).

Recall hγ is semi-concave: Left and right derivatives d±

dt exist ∀t ∈ Int(Iγ).

Define the mean curvature of S as

H(p) := max

d+

dtlog hγ(0),

d−

dtlog hγ(0)

, p = γ(0)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 10 / 13

Page 62: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Surface measure, Mean curvature

q-a.e. needle γ : Iγ → X does NOT intersect with S at its endpoits.

Choose (arclength) parametrisation s.t. 0 ∈ Int(Iγ) and S ∩ Im(γ) = γ(0)for q-a.e. γ.

Identify Q with p ∈ S : p = γ(0), γ ∈ Q ⊂ S via γ 7→ γ(0).

Define surface measure mS on S via

d mS := hγ(0)dq(γ).

Recall hγ is semi-concave: Left and right derivatives d±

dt exist ∀t ∈ Int(Iγ).

Define the mean curvature of S as

H(p) := max

d+

dtlog hγ(0),

d−

dtlog hγ(0)

, p = γ(0)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 10 / 13

Page 63: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Surface measure, Mean curvature

q-a.e. needle γ : Iγ → X does NOT intersect with S at its endpoits.

Choose (arclength) parametrisation s.t. 0 ∈ Int(Iγ) and S ∩ Im(γ) = γ(0)for q-a.e. γ.

Identify Q with p ∈ S : p = γ(0), γ ∈ Q ⊂ S via γ 7→ γ(0).

Define surface measure mS on S via

d mS := hγ(0)dq(γ).

Recall hγ is semi-concave: Left and right derivatives d±

dt exist ∀t ∈ Int(Iγ).

Define the mean curvature of S as

H(p) := max

d+

dtlog hγ(0),

d−

dtlog hγ(0)

, p = γ(0)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 10 / 13

Page 64: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Surface measure, Mean curvature

q-a.e. needle γ : Iγ → X does NOT intersect with S at its endpoits.

Choose (arclength) parametrisation s.t. 0 ∈ Int(Iγ) and S ∩ Im(γ) = γ(0)for q-a.e. γ.

Identify Q with p ∈ S : p = γ(0), γ ∈ Q ⊂ S via γ 7→ γ(0).

Define surface measure mS on S via

d mS := hγ(0)dq(γ).

Recall hγ is semi-concave: Left and right derivatives d±

dt exist ∀t ∈ Int(Iγ).

Define the mean curvature of S as

H(p) := max

d+

dtlog hγ(0),

d−

dtlog hγ(0)

, p = γ(0)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 10 / 13

Page 65: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Surface measure, Mean curvature

q-a.e. needle γ : Iγ → X does NOT intersect with S at its endpoits.

Choose (arclength) parametrisation s.t. 0 ∈ Int(Iγ) and S ∩ Im(γ) = γ(0)for q-a.e. γ.

Identify Q with p ∈ S : p = γ(0), γ ∈ Q ⊂ S via γ 7→ γ(0).

Define surface measure mS on S via

d mS := hγ(0)dq(γ).

Recall hγ is semi-concave: Left and right derivatives d±

dt exist ∀t ∈ Int(Iγ).

Define the mean curvature of S as

H(p) := max

d+

dtlog hγ(0),

d−

dtlog hγ(0)

, p = γ(0)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 10 / 13

Page 66: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Heintze-Karcher inequality for metric measure spaces

Theorem (K. 2019)

Let (X , d ,m) be an essentially nonbranching CD(K ,N) space, and let Sbe as before. S+

ε = Bε(Ω)\Ω. Then

m(S+ε ) ≤

∫S

∫ ε

0JH(p),K ,N(t)dtd mS(p)

where

JH,K ,N(t) =(

cos(t√

K/(N − 1)) + HN−1 sin(t

√K/(N − 1))

)N+.

Also

m(M) ≤∫ ∫

JH(p),K ,N(t)dtd mS(p).

For X satisfying RCD(K ,N) “=” if and only if there exists aRCD(K ,N − 1) space Y such that X is an N − 1-suspension over Y .

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 11 / 13

Page 67: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Proof of the first inequality

m(S+ε )

=

∫mγ(Bε(Ω)\Ω)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)dt

)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)

hγ(0)dt

)hγ(0)dq(γ)

≤∫ (∫ ε

0JH(γ(0)),K ,N(t)dt

)hγ(0)dq(γ)

=

∫ ∫ ε

0JH(p),K ,N(t)dtd mS(p)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 12 / 13

Page 68: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Proof of the first inequality

m(S+ε ) =

∫mγ(Bε(Ω)\Ω)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)dt

)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)

hγ(0)dt

)hγ(0)dq(γ)

≤∫ (∫ ε

0JH(γ(0)),K ,N(t)dt

)hγ(0)dq(γ)

=

∫ ∫ ε

0JH(p),K ,N(t)dtd mS(p)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 12 / 13

Page 69: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Proof of the first inequality

m(S+ε ) =

∫mγ(Bε(Ω)\Ω)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)dt

)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)

hγ(0)dt

)hγ(0)dq(γ)

≤∫ (∫ ε

0JH(γ(0)),K ,N(t)dt

)hγ(0)dq(γ)

=

∫ ∫ ε

0JH(p),K ,N(t)dtd mS(p)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 12 / 13

Page 70: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Proof of the first inequality

m(S+ε ) =

∫mγ(Bε(Ω)\Ω)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)dt

)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)

hγ(0)dt

)hγ(0)dq(γ)

≤∫ (∫ ε

0JH(γ(0)),K ,N(t)dt

)hγ(0)dq(γ)

=

∫ ∫ ε

0JH(p),K ,N(t)dtd mS(p)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 12 / 13

Page 71: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Proof of the first inequality

m(S+ε ) =

∫mγ(Bε(Ω)\Ω)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)dt

)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)

hγ(0)dt

)hγ(0)dq(γ)

≤∫ (∫ ε

0JH(γ(0)),K ,N(t)dt

)hγ(0)dq(γ)

=

∫ ∫ ε

0JH(p),K ,N(t)dtd mS(p)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 12 / 13

Page 72: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Proof of the first inequality

m(S+ε ) =

∫mγ(Bε(Ω)\Ω)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)dt

)dq(γ)

=

∫ (∫Iγ∩(0,ε)

hγ(t)

hγ(0)dt

)hγ(0)dq(γ)

≤∫ (∫ ε

0JH(γ(0)),K ,N(t)dt

)hγ(0)dq(γ)

=

∫ ∫ ε

0JH(p),K ,N(t)dtd mS(p)

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 12 / 13

Page 73: The Heintze-Karcher inequality for metric measure spaces · with \=" i M = Sn and S has constant mean curvature. Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality

Thank you!

Christian Ketterer (University of Toronto ) The Heintze-Karcher inequality for metric measure spaces June 12, 2020 13 / 13