the high contrast performance of an optical vortex coronagraph

48
e High Contrast Performance An Optical Vortex Coronagraph By Dr. David M. Palacio Jet Propulsion Laboratory California Institute of Technology

Upload: hea

Post on 13-Jan-2016

36 views

Category:

Documents


0 download

DESCRIPTION

The High Contrast Performance Of An Optical Vortex Coronagraph. By Dr. David M. Palacios Jet Propulsion Laboratory California Institute of Technology. Acknowledgements. Stuart Shaklan Jet Propulsion Laboratory G.A. Swartzlander Jr. University of Arizona Dimitri Mawet University of. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The High Contrast Performance  Of An Optical Vortex Coronagraph

The High Contrast Performance Of An Optical Vortex Coronagraph

By

Dr. David M. Palacios

Jet Propulsion LaboratoryCalifornia Institute of Technology

Page 2: The High Contrast Performance  Of An Optical Vortex Coronagraph

Stuart Shaklan Jet Propulsion Laboratory

G.A. Swartzlander Jr.University of Arizona

Dimitri Mawet University of

Acknowledgements

Page 3: The High Contrast Performance  Of An Optical Vortex Coronagraph

1.) What is an Optical Vortex?

2.) Optical Vortex Mask Design

3.) Lyot Optimization

4.) Planet Light Throughput Efficiency

5.) Conclusions

Outline

Page 4: The High Contrast Performance  Of An Optical Vortex Coronagraph

E(r,,z;t)A(r,z)exp(im)exp[i(tkz)]

0

2ππ

The Complex Field

Amplitude Phase

What is an Optical Vortex?

Page 5: The High Contrast Performance  Of An Optical Vortex Coronagraph

Laser θ0

N =πθ02 2λ2

Optical Vortices in Speckle

Page 6: The High Contrast Performance  Of An Optical Vortex Coronagraph

HG01 LG01

1-D Gouy Phase Shift

Cylindrical lens

Astigmatic Mode Converter

Page 7: The High Contrast Performance  Of An Optical Vortex Coronagraph

z

x

E0 exp(imθ) E0 exπ(−ixΛ)

Λ

I( z 0)2E02[1+ cos(mθ +

xΛ)]

Optical Vortex Holograms

Page 8: The High Contrast Performance  Of An Optical Vortex Coronagraph

The Optical Vortex Mask

Mask Thickness

Page 9: The High Contrast Performance  Of An Optical Vortex Coronagraph

Coronagraph Architecture

Final Image PlaneIncident Light

Pupil

L1

OVM Lyot Stop

L2 L3

FP

0

2πm

Page 10: The High Contrast Performance  Of An Optical Vortex Coronagraph

The Optical Vortex Mask

Mask Thickness

Page 11: The High Contrast Performance  Of An Optical Vortex Coronagraph

d

d

n1

n0

dz

θt

Ray Trace Analysis of the Vortex Mask

tanφ =dzdφ

dz=mλdφ

2π n1 −n0( )

φ =tan−1 mλ

2π n1 −n0( )

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 12: The High Contrast Performance  Of An Optical Vortex Coronagraph

d

d

n1

n0

dz

The Vortex Core

TIR =sin−1n0

n1

⎝ ⎜

⎠ ⎟

c =mλ

2π n1 −n0( ) tanTIR( )

When c E Transmitted = 0

Page 13: The High Contrast Performance  Of An Optical Vortex Coronagraph

Output Amplitude Profile

Transmitted amplitude for the E Polarization

E0

=1−μ1μ2n2

2cos φ( )−n1 n2

2−n1

2sin2 φ( )

μ1μ2n2

2cos φ( ) +n1 n2

2−n1

2sin2 φ( )

Er

E0

=1−n1 cos φ( )−

μ1μ2

n2

2−n1

2sin2 φ( )

n1 cos φ( ) +μ1μ2

n2

2−n1

2sin2 φ( )

Transmitted amplitude for the Er Polarization

0

0.2

0.4

0.6

0.8

1

0 5 10 15

m=2m=4m=6

r(lambda)

0

0.2

0.4

0.6

0.8

1

0 5 10 15

m=2 m=4 m=6

r(lambda)

Page 14: The High Contrast Performance  Of An Optical Vortex Coronagraph

A Discrete Representation of an OVM

0 8π

Phase profile of an m=4 OVM

dz

d

dz

d

Page 15: The High Contrast Performance  Of An Optical Vortex Coronagraph

Coronagraph Leakage!

Ideal OVC6 Pupil Discretized OVC6 Pupil

OVC Discretization Leakage

Page 16: The High Contrast Performance  Of An Optical Vortex Coronagraph

Numerical Simulations

Array Size

Pupil Size

λ

f #

Mask Pixel Size

n1

μ1

4096 x 4096 pixels

100 pixels in diameter

600 nm

27

0.2 microns

1.5

1

Page 17: The High Contrast Performance  Of An Optical Vortex Coronagraph

m=2 m=4 m=6

Even charged OVMs theoretically cancel the entire pupil!

The Lyot Plane for Even Values of m

Page 18: The High Contrast Performance  Of An Optical Vortex Coronagraph

System Performance

C =I x,y( )∫∫ dxdy

Iopen x,y( )∫∫ dxdy ⋅ o x,y( )2dxdy∫∫

Contrast

I(x,y) = Intensity with the occulter in place

Iopen(x,y) = Intensity with the occulter removed

o(x,y) = Occulter transmission function

Page 19: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0 2 4 6 8 10

Average Radial Contrast

Average Contrast Between 2-3 λ/DC

ontr

ast

m=6

r (λ/D)

Page 20: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0 2 4 6 8 10

Con

tras

t

m=6

Average Contrast Between 2-8 λ/D

Average Radial Contrast

r (λ/D)

Page 21: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0 2 4 6 8 10

Con

tras

t

m=6

Average Radial Contrast

Average Contrast Between 4-5 λ/D

r (λ/D)

Page 22: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0 2 4 6 8 10

Con

tras

t

m=6

Average Radial Contrast

Average Contrast Between 4-10 λ/D

r (λ/D)

Page 23: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0.5 0.6 0.7 0.8 0.9 1

Con

tras

t

m=2

m=4

m=6

Lyot Size (r/Rp)

Contrast vs. Lyot Size

Average Contrast Between 2-3 λ/D

Page 24: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0.5 0.6 0.7 0.8 0.9 1

Con

tras

t

m=2

m=4

m=6

Lyot Size (r/Rp)

Contrast vs. Lyot Size

Average Contrast Between 2-8 λ/D

Page 25: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0.5 0.6 0.7 0.8 0.9 1

Con

tras

t

m=2

m=4

m=6

Lyot Size (r/Rp)

Contrast vs. Lyot Size

Average Contrast Between 4-5 λ/D

Page 26: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

0.5 0.6 0.7 0.8 0.9 1

Con

tras

t

m=2

m=4

m=6

Lyot Size (r/Rp)

Contrast vs. Lyot Size

Average Contrast Between 4-10 λ/D

Page 27: The High Contrast Performance  Of An Optical Vortex Coronagraph

Optimized Contrast

Lyot Stop Radius = 0.8Pr

Average Contrast

2-3 λ/D 2-8 λ/D 4-5 λ/D 4-10 λ/D

5.3x10-11 2.9x10-11 2.5x10-11 2.0x10-11

m = 2

m = 4

m = 6

1.2x10-10 5.1x10-11 4.1x10-11 2.5x10-11

2.8x10-10 9.3x10-11 6.4x10-11 3.5x10-11

Page 28: The High Contrast Performance  Of An Optical Vortex Coronagraph

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Thr

ough

put

Lyot Size (r/Rp)

m=2

m=4

m=6

m=0

Throughput Efficiency vs. Lyot Size

Planet Located at 2λ/D

Page 29: The High Contrast Performance  Of An Optical Vortex Coronagraph

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Thr

ough

put

Lyot Size (r/Rp)

m=2

m=4

m=6

m=0

Throughput Efficiency vs. Lyot Size

Planet Located at 4λ/D

Page 30: The High Contrast Performance  Of An Optical Vortex Coronagraph

m=6m=4m=2m=0

2λ/D

4λ/D

0.64

0.64 0.64 0.62 0.58

0.62 0.53 0.43

Optimized Planet Light Throughput

Lyot Stop Radius = 0.8Pr

Page 31: The High Contrast Performance  Of An Optical Vortex Coronagraph

Is an Achromatic OVC Possible?

10-13

10-12

10-11

10-10

10-9

10-8

C

m

6 6.0015.999

m must be maintained to ~5x10-4 across the bandpass!

Page 32: The High Contrast Performance  Of An Optical Vortex Coronagraph

f/30 beam

Holographic Vortex

Direction-compensating Grating

Zero-order blocker

Lyot Stop

Achromatic Holographic Vortex Coronagraph

Page 33: The High Contrast Performance  Of An Optical Vortex Coronagraph

System advantages

•Small inner working angle ~ 2λ/D

•High throughput (theoretically 100%)

• Same WFC architecture as other Lyot type coronagraphs

•Small polarization effects (dependent on creation method)

•Low aberration sensitivity to low-order Zernikes

•Large search area (radially symmetric)

•System can be chained in series

Page 34: The High Contrast Performance  Of An Optical Vortex Coronagraph

System Disadvantages

•Broadband operation requires further research on new OV creation techniques

• Issues with mask Fabrication or hologram fabrication are just beginning to be explored.

•The Useful throughput decreases with stellar size making operation at 2λ/D difficult on 0.1λ/D sized stars.

Page 35: The High Contrast Performance  Of An Optical Vortex Coronagraph

Conclusions

•An m=6 vortex coronagraph meets TPF contrast requirements

•Simulated 10-11 contrast at 2λ/D with a discretized OVM

• OVM discretized with 0.2 micron pixels

•Even charged OVMs theoretically cancel over the entire pupil

•With discretization errors the Lyot stop radius = 0.8Pr

•53% throughput efficiency at 2λ/D

•62% throughput efficiency at 4λ/D near optimal of 64%

Page 36: The High Contrast Performance  Of An Optical Vortex Coronagraph

Aberration Sensitivity

C = αΔγ

is the order of the aberration sensitivity

4th order linear sinc2 masks best demonstrated contrast

8th order masks presently being explored

Vortex masks possess a 2mth order aberration sensitivity

Page 37: The High Contrast Performance  Of An Optical Vortex Coronagraph

The Aberration Sensitivity

M(ρ ) = tanhm ρ wv( )

Mask Amplitude Transmission Function

E r ,θ( ) = P(r ) 1+i l

l!Φ l

l =1, 2, 3...

∑ r ,θ( ) ⎛

⎝ ⎜

⎠ ⎟

The Entrance Pupil

Assuming (r,θ) <<1,

M ρ( ) ≈ akρk

k =1, 2, 3...

ak =1

wvk!

∂ k

∂ρ kM(ρ = 0)

Page 38: The High Contrast Performance  Of An Optical Vortex Coronagraph

More Math…

The Exit Pupil

Pexit r,θ( ) = E r,θ( )∗Hm M ρ( ){ }

H m ρ k f (ρ ){ } =−1

⎝ ⎜

⎠ ⎟k

r m −k d k

dr k

1

r m −kH m −k f ρ( ){ }

⎣ ⎢ ⎤

⎦ ⎥

Pexit r ,θ( ) = P(r ) 1+i l

l!Φ l

l =1, 2, 3...

∑ r ,θ( ) ⎛

⎝ ⎜

⎠ ⎟∗ ak

−1

⎝ ⎜

⎠ ⎟k

r m −k d k

dr k

1

r m −kδ r( )

⎣ ⎢ ⎤

⎦ ⎥k =m, m+1, m+ 2...

Using the identity:

The Approximate Exit Pupil

Page 39: The High Contrast Performance  Of An Optical Vortex Coronagraph

The Approximate Solution

Pexit r ,θ( ) ≈ am

−1

⎝ ⎜

⎠ ⎟m

dm

dr mP(r ) 1+

i l

l!Φ l

l =1, 2, 3...

∑ r ,θ( ) ⎛

⎝ ⎜

⎠ ⎟

⎣ ⎢ ⎢

⎦ ⎥ ⎥

The first term in the expansion k=m

All terms with less than an rm dependence vanish!

The Intensity has a 2mth aberration sensitivity!

For the m=5 case:

10th order sensitivity predicted!

Page 40: The High Contrast Performance  Of An Optical Vortex Coronagraph

Low Order Zernike Modes

Z=4 Z=5 Z=6 Z=7

Z=8 Z=9 Z=10 Z=11

Page 41: The High Contrast Performance  Of An Optical Vortex Coronagraph

10-16

10-15

10-14

10-13

10-12

0.1 1

z=2z=4z=5z=7z=9z=11z=12

Numerical Simulations

Aberration size (waves peak to valley)

C

Page 42: The High Contrast Performance  Of An Optical Vortex Coronagraph

Coronagraph Comparisons

m=5 vortex8th OrderZernike #

23456789101112

88444444422

99--66445555

Improvement

Page 43: The High Contrast Performance  Of An Optical Vortex Coronagraph

Pupil Vortex Mask Lyot Stop

Lyot Plane Focal Plane

λ/D

The Lyot and Focal Plane Profiles

Page 44: The High Contrast Performance  Of An Optical Vortex Coronagraph

Amplitude Occulting Spots

E(x,y) = A(x,y)exp[i(x,y)]

Sinc2(r)

Hard Stop

Page 45: The High Contrast Performance  Of An Optical Vortex Coronagraph

The Lyot Stop

Hard Stop

Cat’s Eye Stop

Page 46: The High Contrast Performance  Of An Optical Vortex Coronagraph

The Final Image

Before After

Page 47: The High Contrast Performance  Of An Optical Vortex Coronagraph

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

m=4m=3

m=2

m=1

m=0

R/Rdiff

An Optical Limiting TechniqueA

mpl

itude

Page 48: The High Contrast Performance  Of An Optical Vortex Coronagraph

Contrast Simulations

Contrast Image

Compute the Radial Average Contrast