the importance of the atomic history in time-dependent … · 2019. 9. 21. · miguel a. de avillez...

16
Miguel A. de Avillez Dieter Breitschwerdt Dept. Mathematics, University of Évora, Portugal ZAA, Technical University Berlin, Germany The Importance of the Atomic History in Time-Dependent Simulations of the Interstellar Gas

Upload: others

Post on 01-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Miguel A. de Avillez Dieter Breitschwerdt

    Dept. Mathematics, University of Évora, Portugal ZAA, Technical University Berlin, Germany

    The Importance of the Atomic History in Time-Dependent Simulations of the Interstellar Gas

  • �2

    Parallel AMR Coarse resolution = 8 pc Higher resolution = 0.5 pc Effective grids of 20003 cells Evolution time = 500 Myr Cut through the Galactic midplane

    Free electrons distribution

    THERMAL + DYNAMICAL EVOLUTION OF THE ISM

    ➔ Ionizing

    ➔ Recombining

    ➔ Cooling

    ➔ Turbulent mixing

    ➔ Conductive interfaces

    ➔ Particles acceleration (DSA)

    ➔ Non-equilibrium plasmas ➔ Thermal + Non-thermal ➔ Feedback

  • LARGE RANGE OF SCALES TO CONSIDER

    �3

    Visc

    ous

    Dis

    sipa

    tion

    500 250 75−100 −210

  • !4

    Thermal translational

    energy

    Energy stored in (or delivered) from excited states

    Total energy loss (gain) is not synchronized with equivalent decrease (increase) of temperature.

    Feed into the momentum equation

    Affects the dynamics

    INTERNAL ENERGY

    @⇢e

    @t+r · [(⇢e+ Pth)~v] = ⇢~v · ~g +r · (rT ) + �SN +H� nenH⇤(T )

    AAACpnicbVFbi9NAFJ7E21pvVR99GSxCSrEkVdAXYcEHK8hS3Xa70AnxZDJphk4uzEwKZchP80/45r9xkkZ0dz0ww3e+852Zc4krwZX2/V+Oe+v2nbv3Tu4PHjx89PjJ8OmzC1XWkrIVLUUpL2NQTPCCrTTXgl1WkkEeC7aOdx/b+HrPpOJlsdSHioU5bAuecgraUtHwB0klUEMqkJqDwERmJWbNX0I3E1JALIDQpNREsFRvuts7SieLyOisIZJvMz0me0bNvvfCD53kD9fm40Hnba886pEdVBUcGbwcT8gnyHOIzPlZMzGE2irmzesiMqyx17whX2x/CXjLcTQc+VO/M3wTBD0Yod4W0fAnSUpa56zQVIBSm8CvdGjaXqlgzYDUilVAd7BlGwsLyJkKTTfmBr+yTILTUtpTaNyx/2YYyJU65LFV5qAzdT3Wkv+LbWqdvg8NL6pas4IeP0prO/sStzvDCZeManGwAKjktlZMM7B703azAzuE4HrLN8HFbBq8mc6+vh2dzvpxnKAX6CXyUIDeoVM0Rwu0QtQZOZ+db86567ln7spdH6Wu0+c8R1fM/f4bqm/SPQ==

    ⇢e =3

    2(ntot + ne)kBT +

    X

    Z

    ZX

    z=1

    nZ,z

    z�1X

    l=0

    �Z,l

    !+X

    Z

    ZX

    z=1

    2

    4X

    j=no+1

    nZ,z,j��Ej,no

    �Z,z

    3

    5

    AAACyHicdVFdb9MwFHXC1ygf68YjLxYVUqeWKumQtpdKEzAJ8VSkdZtoQuS4TuPViSP7BtRGftlP3BtP/BXcpBuwwZUsH59z7r22b1wIrsHzfjjuvfsPHj7aetx68vTZ8+32zu6plqWibEKlkOo8JpoJnrMJcBDsvFCMZLFgZ/Hi/Vo/+8aU5jI/gWXBwozMc55wSsBSUftnoFKJ2ShIFKHVvqmGpptHFUgwPbszs4cXUfXOnPQCXWZR9cU0+2rkm6/2ZD2W7K+MCQRLoNuoYuRZdfXGN8E45WuDMIHi8xT2/lOnzp423MWoriqN6fk3DfoXNy0+MAEEt46ts3/tvC7/+zr1OYzaHW/g1YHvAn8DOmgT46h9FcwkLTOWAxVE66nvFRBWRAGngplWUGpWELogcza1MCcZ02FVD8Lg15aZ4UQqu3LANftnRkUyrZdZbJ0ZgVTf1tbkv7RpCclhWPG8KIHltGmUlAKDxOup4hlXjIJYWkCo4vaumKbEjhTs7Fv2E/zbT74LTocDf38w/Py2czTcfMcWeoleoS7y0QE6Qh/RGE0QdY6dhQNO6X5yC/e7u2ysrrPJeYH+CvfyFyfc4pc=

    Energy stored in (or delivered) from high ionization stages

    @⇢~v

    @t+r · (⇢~v~v + Pth) = �⇢g + S⇢~v

    AAACW3icbVHRatswFJXdbc2ybktX9rQXsTDoCAt2VmhfBoW+7DFjTVuIgrlW5FhUlox0HQjGP7mn7WG/UiqnhnVtLwgdzjlXujpKSyUdRtGfINx59vzFbu9l/9Xe6zdvB/vvLpypLBczbpSxVyk4oaQWM5SoxFVpBRSpEpfp9VmrX66FddLoc9yUYlHASstMckBPJQPLMgu8ZiVYlKAos7lha8HrddP8Y7EZMQ2pAsaXBpkSGR62TtpZu200TWrMG2blKsfP375sLavRz6S+f2wyGEbjaFv0MYg7MCRdTZPBL7Y0vCqERq7AuXkclbio29m4Ek2fVU6UwK9hJeYeaiiEW9TbbBr6yTNLmhnrl0a6Ze931FA4tylS7ywAc/dQa8mntHmF2cmilrqsUGh+d1FW+awMbYOmS2kFR7XxALiVflbKc/Bho/+Ovg8hfvjkx+BiMo6/jic/joanky6OHvlAPpJDEpNjckq+kymZEU5+k5tgN+gFf8OdsB/u3VnDoOs5IP9V+P4WWIK37A==

  • INTERNAL ENERGY & ADIABATIC PARAMETER

    �5

    � =cpcv

    ⇢u =3

    2(ntot + ne)kBT +

    X

    Z

    ZX

    z=1

    nZ,z

    z�1X

    l=0

    �Z,l

    !+X

    Z

    ZX

    z=1

    2

    4X

    j=no+1

    nZ,z,j��Ej,no

    �Z,z

    3

    5

    AAACyHicdVFdb9MwFHXC1ygf68YjLxYVUqeWKumQtpdKEzAJ8VSkdZtoQuS4TuPViSP7BtRGftlP3BtP/BXcpBuwwZUsH59z7r22b1wIrsHzfjjuvfsPHj7aetx68vTZ8+32zu6plqWibEKlkOo8JpoJnrMJcBDsvFCMZLFgZ/Hi/Vo/+8aU5jI/gWXBwozMc55wSsBSUftnoFKJy1GQKEKrfVMNTTePKpBgenZnZg8vouqdOe kFusyi6otp9tXIN1/tyXos2V8ZEwiWQLdRxciz6uqNb4JxytcGYQLF5yns/adOnT1tuItRXVUa0/NvGvQvblp8YAIIbh1bZ//aeV3+93Xqcxi1O97AqwPfBf4GdNAmxlH7KphJWmYsByqI1lPfKyCsiAJOBTOtoNSsIHRB5mxqYU4ypsOqHoTBry0zw4lUduWAa/bPjIpkWi+z2DozAqm+ra3Jf2nTEpLDsOJ5UQLLadMoKQUGiddTxTOuGAWxtIBQxe1dMU2JHSnY2bfsJ/i3n3wXnA4H/v5g+Plt52i4+Y4t9BK9Ql3kowN0hD6iMZog6hw7Cwec0v3kFu53d9lYXWeT8wL9Fe7lL02s4qc=

  • All fluid elements have the same atomic history

    SIMULATIONS OF THE ISM WITH FIXED COOLING

    !6

    ➔ Maxwell-Boltzmann distribution

    ➔ Temperature equilibration ions and electrons ➔ Include a fixed cooling function (of a gas parcel)

    ➔ Adiabatic parameter constant (5/3) ➔ Internal energy includes only the thermal component

    ➔ Neglect the feedback of dynamics

    102

    103

    104

    105

    106

    107

    108

    109

    T [K]

    10-27

    10-26

    10-25

    10-24

    10-23

    10-22

    10-21

    10-20

    ΛP

    roc [

    erg

    cm

    3 s

    -1]

    BremRRDREII2γ

    LinesTotal

    NEIIsochoric: solid linesIsobaric: dashed lines

    102

    103

    104

    105

    106

    107

    108

    109

    T [K]

    10-27

    10-26

    10-25

    10-24

    10-23

    10-22

    10-21

    10-20

    ΛP

    roc [

    erg

    cm

    3 s

    -1]

    BremRRDREII2γLinesTotal

    CIE

    Not correct

  • !7

    THERMAL + DYNAMICAL SIMULATIONS OF THE ISM

    Mass Conservation

    Energy Conservation

    Momentum Conservation

    Maxwell Equations

    Equation of StateInternal Energy

    Charge ConservationCooling

    Ionization Structure

    τdyn=τth? StopYesNo

    τth

    τdyn

    Γ-Λ

    ρ, u, τdyn

    Cosmic Rays

    Wave field

    DY

    NA

    MIC

    AL

    + T

    HE

    RM

    AL

    EV

    OLU

    TIO

    N

    @⇢

    @t+r · (⇢~v) = S⇢

    AAACLnicbVBdS8MwFE39nPNr6qMvwSEowmhloC/CQAQfJzoV1jJus9QF06Qk6WCU/iJf/Cv6IKiIr/4M063g54XAuefcw809YcKZNq777ExNz8zOzVcWqotLyyurtbX1Sy1TRWiHSC7VdQiaciZoxzDD6XWiKMQhp1fh7XGhXw2p0kyKCzNKaBDDjWARI2As1aud+JECkvkJKMOAY18NZP7VmnzPFxBywD7pS4N3Ch37Q0qyYb57dN7LxoZere423HHhv8ArQR2V1e7VHv2+JGlMhSEctO56bmKCrNhKOM2rfqppAuQWbmjXQgEx1UE2PjfH25bp40gq+4TBY/a7I4NY61Ec2skYzED/1gryP62bmugwyJhIUkMFmSyKUpuCxEV2uM8UJYaPLACimP0rJgOw+RmbcNWG4P0++S+43G94bsM7a9ZbzTKOCtpEW2gHeegAtdApaqMOIugOPaAX9OrcO0/Om/M+GZ1ySs8G+lHOxyfqiKmXAAACLnicbVBdS8MwFE39nPNr6qMvwSEowmhloC/CQAQfJzoV1jJus9QF06Qk6WCU/iJf/Cv6IKiIr/4M063g54XAuefcw809YcKZNq777ExNz8zOzVcWqotLyyurtbX1Sy1TRWiHSC7VdQiaciZoxzDD6XWiKMQhp1fh7XGhXw2p0kyKCzNKaBDDjWARI2As1aud+JECkvkJKMOAY18NZP7VmnzPFxBywD7pS4N3Ch37Q0qyYb57dN7LxoZere423HHhv8ArQR2V1e7VHv2+JGlMhSEctO56bmKCrNhKOM2rfqppAuQWbmjXQgEx1UE2PjfH25bp40gq+4TBY/a7I4NY61Ec2skYzED/1gryP62bmugwyJhIUkMFmSyKUpuCxEV2uM8UJYaPLACimP0rJgOw+RmbcNWG4P0++S+43G94bsM7a9ZbzTKOCtpEW2gHeegAtdApaqMOIugOPaAX9OrcO0/Om/M+GZ1ySs8G+lHOxyfqiKmXAAACLnicbVBdS8MwFE39nPNr6qMvwSEowmhloC/CQAQfJzoV1jJus9QF06Qk6WCU/iJf/Cv6IKiIr/4M063g54XAuefcw809YcKZNq777ExNz8zOzVcWqotLyyurtbX1Sy1TRWiHSC7VdQiaciZoxzDD6XWiKMQhp1fh7XGhXw2p0kyKCzNKaBDDjWARI2As1aud+JECkvkJKMOAY18NZP7VmnzPFxBywD7pS4N3Ch37Q0qyYb57dN7LxoZere423HHhv8ArQR2V1e7VHv2+JGlMhSEctO56bmKCrNhKOM2rfqppAuQWbmjXQgEx1UE2PjfH25bp40gq+4TBY/a7I4NY61Ec2skYzED/1gryP62bmugwyJhIUkMFmSyKUpuCxEV2uM8UJYaPLACimP0rJgOw+RmbcNWG4P0++S+43G94bsM7a9ZbzTKOCtpEW2gHeegAtdApaqMOIugOPaAX9OrcO0/Om/M+GZ1ySs8G+lHOxyfqiKmXAAACLnicbVBdS8MwFE39nPNr6qMvwSEowmhloC/CQAQfJzoV1jJus9QF06Qk6WCU/iJf/Cv6IKiIr/4M063g54XAuefcw809YcKZNq777ExNz8zOzVcWqotLyyurtbX1Sy1TRWiHSC7VdQiaciZoxzDD6XWiKMQhp1fh7XGhXw2p0kyKCzNKaBDDjWARI2As1aud+JECkvkJKMOAY18NZP7VmnzPFxBywD7pS4N3Ch37Q0qyYb57dN7LxoZere423HHhv8ArQR2V1e7VHv2+JGlMhSEctO56bmKCrNhKOM2rfqppAuQWbmjXQgEx1UE2PjfH25bp40gq+4TBY/a7I4NY61Ec2skYzED/1gryP62bmugwyJhIUkMFmSyKUpuCxEV2uM8UJYaPLACimP0rJgOw+RmbcNWG4P0++S+43G94bsM7a9ZbzTKOCtpEW2gHeegAtdApaqMOIugOPaAX9OrcO0/Om/M+GZ1ySs8G+lHOxyfqiKmX

    @⇢XZ,z@t

    +r · (⇢XZ,z~v) = ⇢SZ,zAAACQXicbZDLSgMxFIYz9V5vVZdugkVQlDIjBd0IghuXFW0tdko5k2ba0EwyJJlCHebV3PgG7ty7caGIWzemF1CrBwI/3zkhJ18Qc6aN6z45uZnZufmFxaX88srq2nphY7OmZaIIrRLJpaoHoClnglYNM5zWY0UhCji9CXrnw/5NnyrNpLg2g5g2I+gIFjICxqJWoe6HCkjqx6AMA4591ZW43kpvD++y7Bub7MAXEHDAPmlLg/d+zvl9StJ+tn86gldj2CoU3ZI7Kvw3eJNQRJOqtAqPfluSJKLCEA5aNzw3Ns10uADhNMv7iaYxkB50aMNGARHVzXRkIMO7lrRxKJU9wuAR/XkjhUjrQRTYyQhMV0/3hvC/XiMx4UkzZSJODBVk/FCYWCESD3XiNlOUGD6wAYhidldMumCVGis9byV401/+G2pHJc8teZfl4ll5omMRbaMdtIc8dIzO0AWqoCoi6B49o1f05jw4L8678zEezTmTO1voVzmfX99TsPM=AAACQXicbZDLSgMxFIYz9V5vVZdugkVQlDIjBd0IghuXFW0tdko5k2ba0EwyJJlCHebV3PgG7ty7caGIWzemF1CrBwI/3zkhJ18Qc6aN6z45uZnZufmFxaX88srq2nphY7OmZaIIrRLJpaoHoClnglYNM5zWY0UhCji9CXrnw/5NnyrNpLg2g5g2I+gIFjICxqJWoe6HCkjqx6AMA4591ZW43kpvD++y7Bub7MAXEHDAPmlLg/d+zvl9StJ+tn86gldj2CoU3ZI7Kvw3eJNQRJOqtAqPfluSJKLCEA5aNzw3Ns10uADhNMv7iaYxkB50aMNGARHVzXRkIMO7lrRxKJU9wuAR/XkjhUjrQRTYyQhMV0/3hvC/XiMx4UkzZSJODBVk/FCYWCESD3XiNlOUGD6wAYhidldMumCVGis9byV401/+G2pHJc8teZfl4ll5omMRbaMdtIc8dIzO0AWqoCoi6B49o1f05jw4L8678zEezTmTO1voVzmfX99TsPM=AAACQXicbZDLSgMxFIYz9V5vVZdugkVQlDIjBd0IghuXFW0tdko5k2ba0EwyJJlCHebV3PgG7ty7caGIWzemF1CrBwI/3zkhJ18Qc6aN6z45uZnZufmFxaX88srq2nphY7OmZaIIrRLJpaoHoClnglYNM5zWY0UhCji9CXrnw/5NnyrNpLg2g5g2I+gIFjICxqJWoe6HCkjqx6AMA4591ZW43kpvD++y7Bub7MAXEHDAPmlLg/d+zvl9StJ+tn86gldj2CoU3ZI7Kvw3eJNQRJOqtAqPfluSJKLCEA5aNzw3Ns10uADhNMv7iaYxkB50aMNGARHVzXRkIMO7lrRxKJU9wuAR/XkjhUjrQRTYyQhMV0/3hvC/XiMx4UkzZSJODBVk/FCYWCESD3XiNlOUGD6wAYhidldMumCVGis9byV401/+G2pHJc8teZfl4ll5omMRbaMdtIc8dIzO0AWqoCoi6B49o1f05jw4L8678zEezTmTO1voVzmfX99TsPM=AAACQXicbZDLSgMxFIYz9V5vVZdugkVQlDIjBd0IghuXFW0tdko5k2ba0EwyJJlCHebV3PgG7ty7caGIWzemF1CrBwI/3zkhJ18Qc6aN6z45uZnZufmFxaX88srq2nphY7OmZaIIrRLJpaoHoClnglYNM5zWY0UhCji9CXrnw/5NnyrNpLg2g5g2I+gIFjICxqJWoe6HCkjqx6AMA4591ZW43kpvD++y7Bub7MAXEHDAPmlLg/d+zvl9StJ+tn86gldj2CoU3ZI7Kvw3eJNQRJOqtAqPfluSJKLCEA5aNzw3Ns10uADhNMv7iaYxkB50aMNGARHVzXRkIMO7lrRxKJU9wuAR/XkjhUjrQRTYyQhMV0/3hvC/XiMx4UkzZSJODBVk/FCYWCESD3XiNlOUGD6wAYhidldMumCVGis9byV401/+G2pHJc8teZfl4ll5omMRbaMdtIc8dIzO0AWqoCoi6B49o1f05jw4L8678zEezTmTO1voVzmfX99TsPM=

  • IONIZATION STRUCTURE + LEVEL POPULATIONS

    �8

    RZ,z = ne⇣↵rr

    Z,z+ ↵dr

    Z,z

    ⌘+

    X

    Z̃,z̃

    ↵ceZ̃,z̃

    ñZ̃,z̃

    IZ,z = ⇣Z,z + ne⇣Ceii

    Z,z+ Cea

    Z,z

    ⌘+

    X

    Z̃,z̃

    CceZ̃,z̃

    ñZ̃,z̃

    ⇣Z,z = ⇣phZ,z

    + ⇣cZ,z

    + ⇣peZ,z

    dnZ,zdt

    = IZ,z�1nZ,z�1 ��IZ,z +RZ,z

    �nZ,z +RZ,z+1nZ,z+1

    dnZ,z,jdt

    =X

    mj

    Dexcn!j �X

    j>m

    Dexcj!m �X

    jm

    ⇣Cd,X

    jmnX +Ajm

    ⌘nZ,z,j �

    X

    j

  • PROCESSES + COMPUTING TIME

    !9

    ➔ Non-equilibrium ionization: H, He, C, N, O, Ne, Mg, Si, S, Ar, Fe + H, C, O chemistry

    ➔ 70-level ions ➔ Abundances (solar and pre-solar)

    ➔ Equal and/or different temperature for electrons and ions ➔ Thermal and non-thermal particle distributions (e.g., kappa, n, cosmic rays)

    ➔ Rates calculated from cross sections on the fly

    ➔ Excitation/deexcitation rates calculated from collision strengths (R-Matrix calculations) ➔ Calculations are made in accelerators/coprocessors while CPUs are idle for 10-5 s

    ➔ Parallel computing - dynamical model in CPUs + thermal model in GPUs/Xeon Phi

    ➔ Electron impact ionization (total and shell), inner-shell excitation auto-ionization

    ➔ Radiative (RR) and dielectronic (DR) recombination followed by cascades ➔ Charge-transfer reactions ➔ Photoionisation + Auger photoelectrons + Secondaries

    ➔ Continuum (bremsstrahlung, free–bound, two-photon) ➔ Line (permitted, semi-forbidden, forbidden) emission

  • !10

    ➔ 3D multi-fluid HD or MHD evolution over 500 Myr

    ➔ Grid: 1 kpc × 1kpc × ± 15 kpc Δx=0.25 pc and 0.5 pc (40003 cells per kpc3)

    ➔ Density distribution from observations (Dickey & Lockman 91, Ferriere 98)

    ➔ Star Formation based on thresholds: n > 100 cm-3 & T

  • !11

    ➔ Background heating due to diffuse UV photon field calculated from the stars

    ➔ Galactic gravitational field by stars (Kuijken & Gilmore 1989) + self gravity

    ➔ Heat conduction (Dalton & Balbus 1993)

    ➔ Magnetic field (random + mean components 6 μG)

    THERMAL + DYNAMICAL MODEL

  • HISTORY OF THE PLASMA

    �12

    Avillez+Breitschwerdt (2012)

  • �13

    ➡ Jenkins (2013): FUSE observations of UV spectra of 44 hot subdwarf stars a few hundred parsecs away from the Sun

    ✓ Compare column densities of ArI to those go OI

    ✓ The measured deficiency [ArI/OI]=-0.427 below the expectation for a fully neutral medium

    ✓ Implies that the electron density ne~0.04 cm-3 if n(H)=0.5 cm-3

    ➡ Dispersion measurements against pulsars of known distances (Berkhuijsen+ 2008; Gaensler+ 2008; Schnitzeler 2012, see also Avillez+2012):

    ✓ Electrons have a clumpy distribution

    ✓ Log ne has a Gaussian PDF

    ✓ ne (z=0 pc)=0.02-0.04 cm-3

    CAN WE TRUST THESE SIMULATIONS? ELECTRONS

    ne~0.033 cm-3

  • 14

    Dispersion is constant with d

    Electrons: clumpy distribution.

    From pulsars DMs up to 8 kpc from Sun

    CAN WE TRUST THESE SIMULATIONS? ELECTRONS

    Avillez+ 2012, 2019

    33 pulsars at |z|

  • FINAL REMARKS

    �15

    ➔ Full blown simulations imply ten most abundant elements (112 ions), thermal and non-thermal electron/proton distributions, large database of cross sections and collision strengths.

    ➔ CRs ISM simulations must include DSA and full calculation of ionisation, recombination and excitation/deexcitation rates using cross sections and the local electron/proton distribution function

    HD/MHD/CR-MHD + ATOMIC/MOLECULAR PHYSICS

    ➔ Cooling time < Recombination time of ions

    ➔ Plasma keeps a record of its history - Need to include all the ions

    ➔ The ionization structure varies in space and time and depends on the ICs

    ➔ The cooling paths can be quite different for plasmas with the same initial temperature, but having different evolution histories;