the in situ signature of cyclotron resonant heating

9
The In Situ Signature of Cyclotron Resonant Heating Trevor A. Bowen, 1, * Jonathan Squire, 2 Stuart D. Bale, 1, 3 Ben Chandran, 4 Die Duan, 5 Kristopher G. Klein, 6 Davin Larson, 1 Alfred Mallet, 1 Michael D. McManus, 1, 3 Romain Meyrand, 2 J.L. Verniero, 7 and Lloyd D. Woodham 8 1 Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA 2 Department of Physics, University of Otago, 730 Cumberland St., Dunedin 9016, New Zealand 3 Physics Department, University of California, Berkeley, CA 94720-7300, USA 4 Department of Physics & Astronomy, University of New Hampshire, Durham, NH 03824, USA 5 School of Earth and Space Sciences, Peking University, Beijing, 100871, China 6 Department of Planetary Sciences & Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 7 NASA Goddard Space Flight Center 8 Department of Physics, The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK The dissipation of magnetized turbulence is an important paradigm for describing heating and en- ergy transfer in astrophysical environments such as the solar corona and wind; however, the specific collisionless processes behind dissipation and heating remain relatively unconstrained by measure- ments. Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at the active presence of cyclotron resonance. Here, we present Parker So- lar Probe observations that connect the presence of ion-cyclotron waves directly to signatures of resonant damping in observed proton-velocity distributions. We show that the observed cyclotron wave population coincides with both flattening in the phase space distribution predicted by resonant quasilinear diffusion and steepening in the turbulent spectra at the ion-cyclotron resonant scale. In measured velocity distribution functions where cyclotron resonant flattening is weaker, the distribu- tions are nearly uniformly subject to ion-cyclotron wave damping rather than emission, indicating that the distributions can damp the observed wave population. These results are consistent with active cyclotron heating in the solar wind. PACS numbers: Introduction Observations of the solar corona reveal plasma that is millions of degrees hotter than the black- body temperature of the solar surface. It is known that the energy required to heat the corona, and accelerate the solar wind, most likely originates from solar mag- netic fields; however, the specific pathways to heating and particle acceleration remain elusive [1]. The dissipation of Alfv´ enic turbulence has become a common paradigm invoked in coronal heating and solar wind acceleration [2–5]. Though the specific mechanisms governing dissi- pation remain under debate, inter-particle collisions in the solar wind and corona are infrequent, implying that the processes must be collisionless in nature [6]. Possible mechanisms for dissipating Alfv´ enic turbu- lence at kinetic scales include damping through Landau or cyclotron resonance [7–11], stochastic heating [12], or magnetic reconnection [13, 14]. It is additionally un- clear whether turbulent dissipation deposits energy di- rectly into ions directly, or if secondary processes related to kinetic [15–17] and fluid [18–21] instabilities, or in- termittent effects and coherent structures [22–25] play a significant role. Furthermore, the portion of energy deposited by these processes at ion scales, versus that which is subject to a kinetic cascade and dissipated by electrons, remains an open question [11, 26–29]. It is well known that the observed ion temperature pro- files in the solar wind require significant perpendicular heating [19, 30], which is likely initiated at ion kinetic scales, where particles interact efficiently with electro- magnetic waves [10, 28, 31–35]. Cyclotron resonant cou- pling of electromagnetic fluctuations with ion gyromotion [36], has received particular attention as a potential coro- nal heating mechanism [37–41]. Measurements of coronal ion temperature anisotropies by ultraviolet spectroscopy suggest large T /T k , consis- tent with heating through cyclotron damping [39, 42–44]. In the solar wind, observations of magnetic helicity at ion scales have been interpreted as evidence for active cy- clotron damping of quasi-parallel Alfv´ enic fluctuations, which contribute to turbulent heating [9, 10, 45, 46]. Theoretical signatures of cyclotron resonance in particle distribution functions have been studied in the frame- work of quasilinear diffusion [27, 47, 48, 50]. Observa- tional evidence for cyclotron resonant diffusion has been found in signatures of the proton velocity distribution functions f p (v) observed by Wind and Helios [49, 51, 52]. The presence of ion-cyclotron waves has been well documented throughout the heliosphere both as soli- tary waves and as part of the background spectrum of fluctuations [53–59]. While the generation of cyclotron waves through instabilities has been widely discussed [56, 57, 59–61] and signatures of cyclotron resonant dis- sipation have been observed [6, 9, 10, 49, 52, 62, 63], definitive signatures of cyclotron resonant heating suffi- arXiv:2111.05400v1 [astro-ph.SR] 9 Nov 2021

Upload: others

Post on 25-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The In Situ Signature of Cyclotron Resonant Heating

The In Situ Signature of Cyclotron Resonant Heating

Trevor A. Bowen,1, ∗ Jonathan Squire,2 Stuart D. Bale,1, 3 Ben Chandran,4 Die Duan,5 Kristopher G. Klein,6 Davin

Larson,1 Alfred Mallet,1 Michael D. McManus,1, 3 Romain Meyrand,2 J.L. Verniero,7 and Lloyd D. Woodham8

1Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA2Department of Physics, University of Otago, 730 Cumberland St., Dunedin 9016, New Zealand

3Physics Department, University of California, Berkeley, CA 94720-7300, USA4Department of Physics & Astronomy, University of New Hampshire, Durham, NH 03824, USA

5School of Earth and Space Sciences, Peking University, Beijing, 100871, China6Department of Planetary Sciences & Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721

7NASA Goddard Space Flight Center8Department of Physics, The Blackett Laboratory,Imperial College London, London, SW7 2AZ, UK

The dissipation of magnetized turbulence is an important paradigm for describing heating and en-ergy transfer in astrophysical environments such as the solar corona and wind; however, the specificcollisionless processes behind dissipation and heating remain relatively unconstrained by measure-ments. Remote sensing observations have suggested the presence of strong temperature anisotropyin the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magneticfield measurements reveal the presence of cyclotron waves, while measured ion velocity distributionfunctions have hinted at the active presence of cyclotron resonance. Here, we present Parker So-lar Probe observations that connect the presence of ion-cyclotron waves directly to signatures ofresonant damping in observed proton-velocity distributions. We show that the observed cyclotronwave population coincides with both flattening in the phase space distribution predicted by resonantquasilinear diffusion and steepening in the turbulent spectra at the ion-cyclotron resonant scale. Inmeasured velocity distribution functions where cyclotron resonant flattening is weaker, the distribu-tions are nearly uniformly subject to ion-cyclotron wave damping rather than emission, indicatingthat the distributions can damp the observed wave population. These results are consistent withactive cyclotron heating in the solar wind.

PACS numbers:

Introduction Observations of the solar corona revealplasma that is millions of degrees hotter than the black-body temperature of the solar surface. It is known thatthe energy required to heat the corona, and acceleratethe solar wind, most likely originates from solar mag-netic fields; however, the specific pathways to heating andparticle acceleration remain elusive [1]. The dissipationof Alfvenic turbulence has become a common paradigminvoked in coronal heating and solar wind acceleration[2–5]. Though the specific mechanisms governing dissi-pation remain under debate, inter-particle collisions inthe solar wind and corona are infrequent, implying thatthe processes must be collisionless in nature [6].

Possible mechanisms for dissipating Alfvenic turbu-lence at kinetic scales include damping through Landauor cyclotron resonance [7–11], stochastic heating [12], ormagnetic reconnection [13, 14]. It is additionally un-clear whether turbulent dissipation deposits energy di-rectly into ions directly, or if secondary processes relatedto kinetic [15–17] and fluid [18–21] instabilities, or in-termittent effects and coherent structures [22–25] playa significant role. Furthermore, the portion of energydeposited by these processes at ion scales, versus thatwhich is subject to a kinetic cascade and dissipated byelectrons, remains an open question [11, 26–29].

It is well known that the observed ion temperature pro-files in the solar wind require significant perpendicular

heating [19, 30], which is likely initiated at ion kineticscales, where particles interact efficiently with electro-magnetic waves [10, 28, 31–35]. Cyclotron resonant cou-pling of electromagnetic fluctuations with ion gyromotion[36], has received particular attention as a potential coro-nal heating mechanism [37–41].

Measurements of coronal ion temperature anisotropiesby ultraviolet spectroscopy suggest large T⊥/T‖, consis-tent with heating through cyclotron damping [39, 42–44].In the solar wind, observations of magnetic helicity at ionscales have been interpreted as evidence for active cy-clotron damping of quasi-parallel Alfvenic fluctuations,which contribute to turbulent heating [9, 10, 45, 46].Theoretical signatures of cyclotron resonance in particledistribution functions have been studied in the frame-work of quasilinear diffusion [27, 47, 48, 50]. Observa-tional evidence for cyclotron resonant diffusion has beenfound in signatures of the proton velocity distributionfunctions fp(v) observed by Wind and Helios [49, 51, 52].

The presence of ion-cyclotron waves has been welldocumented throughout the heliosphere both as soli-tary waves and as part of the background spectrum offluctuations [53–59]. While the generation of cyclotronwaves through instabilities has been widely discussed[56, 57, 59–61] and signatures of cyclotron resonant dis-sipation have been observed [6, 9, 10, 49, 52, 62, 63],definitive signatures of cyclotron resonant heating suffi-

arX

iv:2

111.

0540

0v1

[as

tro-

ph.S

R]

9 N

ov 2

021

Page 2: The In Situ Signature of Cyclotron Resonant Heating

2

01-30-2020

-150-100

-500

50100150

B n

T

BzByBx

-300

-200

-100

0

100

v km

/s

00:00:02 01:59:24 03:58:45

Vx Vy Vz

0.01 0.10 1.00 10.00 100.0010-6

10-4

10-2

100

102

104

nT2 /H

z

f-2.7f-4f-3/2

f*fρfΩ

-0.04

-0.02

0.00

0.02

0.04

σB

0 10 20 30 40 50θvB [deg]

1

10

f [H

z]

0 10 20 30 40 50θvB [deg]

1

10

-0.4

-0.2

0.0

0.2

0.4

σB

fΩ f* fρ

FIG. 1: (a) Magnetic field measurements from PSP/FIELDS.(b) Velocity measurements from PSP/SPANi. (c) Spectra ofmagnetic field data. Vertical lines at fΩ and fρ as well asspectral indices at -3/2,-4 and -2.7 are shown. Helicity σb isshown in blue. (d) Joint distribution of helicity with θvB withleft/right handed helicity in blue/red. Frequencies fΩ and fρand the approximate sign change in helicity f∗ are shown.

cient to power the solar wind have not been observed.In this Letter, we use quasilinear theory [47, 48] to

provide evidence for resonant cyclotron heating in thesolar wind. Through comparing theoretical signatures ofcyclotron damping with observed ion distributions andmeasurements of helicity and ion-scale waves, a com-pelling picture of ion-heating in the solar wind emerges.

Data The Parker Solar Probe (PSP) mission [64] at-tempts to answer many fundamental questions surround-ing coronal heating and solar wind acceleration. Recentwork from PSP has revealed both prevalent ion-scale elec-

tromagnetic waves [58, 59] and ion-distributions out ofthermal equilibrium [65, 66], and resonant wave-particleinteractions consistent with quasilinear theory [67].

PSP provides measurements of the inner heliosphereusing the electromagnetic FIELDS [68] and Solar WindElectron Alpha and Proton (SWEAP, [69]) instruments.We study a stream from PSP perihelion 4 from 2020-01-31/00:00-04:00 with well resolved core and beamobservations. Magnetic field data are obtained fromPSP/FIELDS [58]. We use merged search coil and flux-gate magnetometer data [70] enabling measurement ofthe inertial, transition, and kinetic scales of turbulence;the merged data set only has two axes available, thus weuse vector-fluxgate magnetometer data to study wave-polarization. Figure 1(a) shows B in the spacecraftframe. Proton velocity distribution functions fp(v) areobtained from the PSP/SWEAP Solar Probe ANalyzer(SPANi). Bi-Maxwellian fits to a proton core and field-aligned beam provide estimates of bulk velocity and tem-perature u, T‖,⊥, and the beam to core nb/nc protondensity ratio [66, 69]. Figure 1(b) shows measurementsof u in the spacecraft frame. The density of fp(v) iscalibrated to quasi-thermal noise from FIELDS [68, 71].

The stream is relatively slow with an average speed of∼200 km/s, and moderately Alfvenic with cross helicityof ∼0.85. The mean magnetic field was directed sunward,with an Alfven speed of 60 km/s. The mean proton den-sity is np = 1100/cm3, SPANi gives an average beam tocore density ratio of 0.48. The core/beam have T⊥ of17 eV/20 eV and T‖ of 12 eV/23 eV. The average driftof the beam relative to the core is 80 km/s. The indi-vidual core and beam have βc = 0.65 and βb = 0.92. Asingle component bi-Maxwellian proton population withequivalent macroscopic thermodynamic properties to thedrifting bi-Maxwellian fit has parallel and perpendiculartemperatures of 29 eV and 18 eV, with T⊥/T‖ < 1 andβ = 0.96 [66].

Cyclotron Waves A Morlet wavelet transform is ap-plied to the vector magnetic field data [72] and rotatedinto field aligned coordinates. Signatures of circularlypolarized waves can be found in the magnetic helicity

σB(f, t) = −2Im(B⊥1B∗⊥2)/(B2

⊥1 +B2⊥2), (1)

with left/right handed waves corresponding to posi-tive/negative helicity [54, 55, 73, 74].

Figure 1(c) shows the magnetic field spectra alongsidethe average σB over the measured interval; the measure-ments of σB are consistent with previous PSP observa-tions [75]. A steep transition range is observed at ion-kinetic scales [76–78]. We consider frequencies (assumingTaylor’s hypothesis) corresponding to the ion gyroscaleand cyclotron resonance of the thermal speed [32]

Page 3: The In Situ Signature of Cyclotron Resonant Heating

3

fρ =vsw2π

qB0

mpv⊥pth(2)

fΩ =vsw2π

ΩpvA + v‖pth

. (3)

Helicity is measured in the spacecraft frame, such thatthe measured sign may not correspond to the innateplasma frame polarization [73]. A sign change in σB oc-curs if the wave is Doppler shifted to negative frequenciesin the spacecraft frame. However, it has been demon-strated that the majority of waves are outward propagat-ing; thus, Doppler shift does not change their handednesswhen observed in the spacecraft frame [79].

Figure 1(d) shows the joint distribution helicityσ(f, θvB), revealing the distribution of helicity as a func-tion of sampling direction. Both left- and right-handedmodes are evident at θvB ∼ 0 with right-handed modesoccurring at higher frequencies. The helicity inverts atapproximately f∗ = 3.6 Hz. At θvB ∼ 0 the mea-sured fluctuations correspond to k‖ fluctuations, whileat oblique θvB the measurements are dominated by k⊥modes [80, 81]. Observation of parallel propagating cir-cular polarized waves may be inhibited when the back-ground turbulent amplitude is sufficiently large or whenthe angle between the solar wind and the mean magneticfield is oblique such that polarization plane is out of theplane sampled by the spacecraft [73]. The lack of circularpolarization signatures at ion scales when θvB ∼ 1 rad isconsistent with sampling effects of quasi-parallel waves atoblique angles in anisotropic turbulence [59], suggestingthat ion-scale waves may persist at oblique θvB .Distribution Functions Figure 2 shows a distribution

function from the stream at 2020-01-30/03:54:55. Fig-ure 2(a) shows a interpolation of the 3D measurementsin the v⊥ − v‖ plane constructed by identifying values ofv⊥ and v‖ for each 3D energy bin assuming gyrotropy. Adrifting bi-Maxwellian fit to the data, without assuminggyrotropy, is shown in Figure 2(b). Figure 2(c) showsthe single bi-Maxwellian with macroscopic np, P‖, andP⊥ equal to the drifting bi-Maxwellian fit [66]. The dis-

tributions are shown in field aligned coordinates with B0

in the vertical direction. The drifting bi-Maxwellian fitsprovide good approximation of core and beam properties,the true distribution function is not exactly parameter-ized by the fit, as evidenced by the interpolated fp(v)falling to zero more slowly than the fit fp(v).

Resonant interaction of ion scale waves with particlescan significantly affect the shape of the distribution func-tion. The ion cyclotron resonance condition is

ω(k) = ±Ω + kv‖, (4)

such that outward propagating cyclotron waves resonatewith the inward propagating portion of the distributionfunction. The evolution of the distribution function in

-200

-100

0

100

200

v ||

a

103

104

105

106

d

-200

-100

0

100

200

v ||

b

103

104

105

106

f(v)

| C

e

-200 -100 0 100 200v⟂

-200

-100

0

100

200v |

|c

0 50 100 150v⟂

103

104

105

106

f

0 1e3 5e3 1e4 5e4 1e5 5e5 1e6Normalized f(v)

FIG. 2: (a) Gyrotropic interpolation of fp(v) from SPANi 3Ddata in the v⊥ − v‖ plane; data are in magnetic field alignedcoordinates, with the mean field pointing vertically. Pointsshow locations of SPANi measurements in the v⊥ > 0 half ofthe plane. The minimum v∗‖ resonant speed and a set resonantcyclotron diffusion contours are plotted. (b) Correspondingdrifting bi-Maxwellian fit to fp(v). (c) Corresponding sin-gle bi-Maxwellian fit with equivalent macroscopic thermody-namic properties. (d) Contours of fp(v) determined by inter-polating the gyrotropic distribution along diffusion contoursof parallel cyclotron resonance from quasilinear theory. (e-f) Contours of fp(v) from drifting and single population bi-Maxwellian fits evaluated along cyclotron resonance contours.Colored + marks v∗⊥ corresponding to v∗‖ , the minimal speedneeded for cyclotron resonant interaction for each contour;constant values of fp(v) are expected for v⊥ < v⊥∗.

the presence of resonant interactions can be describedby quasilinear diffusion theory [47, 48]. In a stationaryframe moving with the wave, the electric field of the waveis zero and particles conserve kinetic energy as they scat-ter off waves, tracing contours in v⊥ and v‖ defined by thewave dispersion relation and resonance condition [40, 47–

Page 4: The In Situ Signature of Cyclotron Resonant Heating

4

49]. Defining y = k‖vA/Ω, the contours for parallel cold-plasma ion cyclotron waves [48, 82],

v2⊥v2a

+1

y2− sinh−1y/2 + lny = const, (5)

with y(v‖) defined implicitly through Equation 4, areoverlaid on the distribution functions in Figure 2(a-c).If fp(v) is a decreasing function along the scatteringcontours, diffusion heats the plasma in the range of fre-quencies where there are resonant waves. Conversely,if fp(v) is an increasing along the scattering contours,the distribution function will become unstable, leadingto the growth of outward propagating cyclotron wavesand cooling the plasma. Cyclotron resonant equilibriumcorresponds to a flattening of fp(v) along the contours.Figure 2(d-f) shows fp(v) evaluated along the quasilin-ear diffusion contours, parameterized on v⊥, for the in-terpolated data as well as the drifting bi-Maxwellian, andsingle bi-Maxwellian fits. The interpolated and driftingbi-Maxwellian fp(v) are characteristically flat along con-tours, suggesting the presence of cyclotron resonance.

The lack of left hand polarized waves above f∗ in-dicates a minimum v∗‖ for particles to interact reso-nantly with outward propagating cyclotron waves. Par-ticles with v < v∗‖ do not have a resonance at wave-numbers with significant power in the cyclotron mode;accordingly, quasilinear diffusion cannot heat the plasmathrough cyclotron resonance and the distribution func-tion should not flatten against the diffusion contours forv < v∗‖ . The minimum v∗‖ corresponding to f∗ is shown

in the distribution functions in Figure 2(a-c). The corre-sponding v∗⊥ for each contour is shown in Figure 2(d-f).

A statistical analysis of flattening is performed by com-puting the values of the distribution function evaluatedon contour paths, fp(v)|C , for 2048 measurements overthe studied interval. For each contour, the average valueof the derivative along the diffusion contour 〈∂vfp(v)|C〉is computed for both the resonant, v‖ > v∗‖ , and non-resonant, v‖ < v∗‖ portions of the contour. The analy-sis is performed for both the drifting bi-Maxwellian fitand the single bi-Maxwellian fit. Figure 3(a) shows thedistribution of 〈∂vfp(v)|C〉, over the resonant portion ofthe contour for the drifting bi-Maxwellian. The sign of〈∂vfp(v)|C〉 is near uniformly negative indicating thatthe curvature along the distributions should damp theobserved waves. Additionally, Figure 3(b) shows the ra-tio of the average derivative 〈∂vfp(v)|C〉 for the resonantpart of the diffusion contour to the non-resonant part ofthe diffusion contour. For the drifting bi-Maxwellian fit,the gradient in fp(v) along the contour is typically muchlarger in the non-resonant portion of the diffusion con-tour, indicating relative flattening in the cyclotron reso-nant portion of the contour. Figure 3(c,d) show corre-sponding data for the single bi-Maxwellian fit, which hasmuch larger curvature than the drifting bi-Maxwellian,

100

101

102

103

104

PD

F d

riftin

g bi

-Max

. [ct

s]

100

200

300

400

500b

-10000 -4000 2000<∂vf(v)|C(v>v*)>

100

101

102

103

104

PD

F s

ingl

e bi

-Max

. [ct

s] c

10-2 10-1 100 101 102

<∂vf(v)|C(v>v*)>/<∂vf(v)|C(v<v*)>

100

200

300

400

500d

a

FIG. 3: (a) Distribution of 〈∂vfp(v)|C〉 for the cyclotron reso-nant portion of the quasilinear diffusion contours for driftingbi-Maxwellian fits; black line shows 〈∂vfp(v)|C〉=0, dottedlines show values corresponding to the distribution in Fig-ure 2. (b) Distribution of ratios of 〈∂vfp(v)|C〉 of resonantv‖ > v∗‖ to non-resonant v‖ < v∗‖ portion of the diffusion con-tours; black line shows unity. (c-d) Corresponding data forsingle proton population bi-Maxwellian fits with equivalentthermodynamic properties.

and has steepest gradients along the v‖ > v∗‖ portion ofthe contour, contrasting signatures of resonance evidentin the two-component fit and interpolated fp(v).

Discussion Previous studies have suggested the sig-nificant role that cyclotron resonance may play in shap-ing magnetic field and helicity spectra [9, 10, 34, 46, 62]as well as particle distribution functions [49, 52]. Re-cent work has additionally shown signatures of quasilin-ear resonant diffusion of the proton beam with outwardpropagating right-handed modes [67]. Here, we show sig-nificant statistical flattening of the observed proton dis-tribution functions along contours of cyclotron resonancepredicted by quasilinear diffusion [47, 48, 50]. Flatteningalong quasilinear diffusion contours implies an equilib-rium with respect to the Alfven/ion cyclotron instability;in our observations, flattening is only observed in the in-terpolated and drifting (two component) bi-Maxwellianapproximations to the data, indicating that correctly un-derstanding growth/damping rates through quasilinaercontours requires accurate descriptions of fp(v) that maynot be possible with a single particle population.

Similar results have been previously reported in Helios[49] and Wind data [52]; however, our observations cou-ple the presence of flattened fp(v) along the cyclotron

Page 5: The In Situ Signature of Cyclotron Resonant Heating

5

resonance diffusion contours to an observed spectrum ofcyclotron waves. The left handed wave spectrum, withcutoff at f∗, corresponds well to observed flattening inthe proton distribution, which is a significant predictionof cyclotron resonant quasilinear diffusion [47, 48]. Whilemany of the studied ion distributions are significantly flatalong the diffusion contours, those with curvature almostuniformly occur with a negative pitch-angle gradient, in-dicating that the distributions damp the observed popu-lation of cyclotron waves and do not contribute to theirgrowth through instabilities. These observations providesignificant evidence for the mediation of ion-scale dissi-pation in the solar wind through cyclotron resonance.

The origin of the observed cyclotron waves remains animportant unresolved point. Our observations show that95% of the time helicical signatures with σ > 0.5 arepresent, a relatively moderate left-handed polarization,the curvature of the distribution functions is negative,indicating the absorption of cyclotron resonant waves,which specifically suggests that the observed signaturecyclotron resonant signature corresponds to a heatingmechanism. While we have focused on the signature ofparallel cyclotron waves, the damping of oblique wavesmay play a role in heating [83, 84]; the oblique diffusioncontours are steeper [27], indicating the observed distri-butions are likewise subject to oblique damping.

There are two main physical origins for theseAlfven/ion cyclotron waves. First, they may be ex-cited by beam instabilities [85], though recent work sug-gests that the dominant instability associated with thestrong beam corresponds to right-handed modes [65, 66].Second, they may be generated by turbulence, thoughcanonical theories of Alfvenic nonlinearity preferentiallytransport energy to large k⊥ but not large k‖ [86, 87], pos-ing a difficulty to the turbulent generation of cyclotronresonant waves. However, recent work suggests that im-balance, i.e. the dominance of the outward Alfven mode,may prevent energy from cascading to kinetic scales [88].Fully kinetic simulations in the presence of such a bar-rier [82] show the generation of quasi-parallel cyclotronmodes, similar to those observed in the solar wind. Thisbarrier to imbalanced energy flux [82, 88] provides a novelmethod for generating cyclotron waves that can dissipateimbalanced turbulence that is consistent with a varietyof observations [58, 59, 78, 89–93]. Further work is re-quired to understand the origin of cyclotron waves andtheir connection to turbulence.

This work explicitly shows that distribution functionsin the solar wind contain evidence of cyclotron resonantheating. Whether the observed heating is sufficient topower the expanding solar wind remains an outstandingquestion; however, these results are significant to under-standing the underlying physics of collisionless heating inastrophysical plasmas.

∗ Electronic address: [email protected][1] Eckart Marsch. Kinetic Physics of the Solar Corona and

Solar Wind. Living Reviews in Solar Physics, 3(1):1, July2006. doi: 10.12942/lrsp-2006-1.

[2] Jr. Coleman, Paul J. Turbulence, Viscosity, and Dis-sipation in the Solar-Wind Plasma. The AstrophysicalJournal, 153:371, Aug 1968. doi: 10.1086/149674.

[3] W. H. Matthaeus and M. L. Goldstein. Measure-ment of the rugged invariants of magnetohydrodynamicturbulence in the solar wind. Journal of Geophysi-cal Research, 87:6011–6028, Aug 1982. doi: 10.1029/JA087iA08p06011.

[4] S. R. Cranmer and A. A. van Ballegooijen. Alfvenic Tur-bulence in the Extended Solar Corona: Kinetic Effectsand Proton Heating. The Astrophysical Journal, 594(1):573–591, Sep 2003. doi: 10.1086/376777.

[5] Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers,Eliot Quataert, and Kai Germaschewski. PerpendicularIon Heating by Low-frequency Alfven-wave Turbulencein the Solar Wind. The Astrophysical Journal, 720(1):503–515, Sep 2010. doi: 10.1088/0004-637X/720/1/503.

[6] J. C. Kasper, A. J. Lazarus, and S. P. Gary. Hot Solar-Wind Helium: Direct Evidence for Local Heating byAlfven-Cyclotron Dissipation. PRL, 101(26):261103, De-cember 2008. doi: 10.1103/PhysRevLett.101.261103.

[7] A. Barnes. Collisionless Damping of HydromagneticWaves. Physics of Fluids, 9:1483–1495, August 1966. doi:10.1063/1.1761882.

[8] A. Barnes. Hydromagnetic waves and turbulence in thesolar wind, volume 1, pages 249–319. 1979.

[9] M. L. Goldstein, D. A. Roberts, and C. A. Fitch. Prop-erties of the fluctuating magnetic helicity in the inertialand dissipation ranges of solar wind turbulence. Journalof Geophysical Research, 99(A6):11519–11538, Jun 1994.doi: 10.1029/94JA00789.

[10] Robert J. Leamon, William H. Matthaeus, Charles W.Smith, and Hung K. Wong. Contribution of Cyclotron-resonant Damping to Kinetic Dissipation of Interplane-tary Turbulence. The Astrophysical Journal Letters, 507(2):L181–L184, Nov 1998. doi: 10.1086/311698.

[11] G. G. Howes, J. M. Tenbarge, W. Dorland, E. Quataert,A. A. Schekochihin, R. Numata, and T. Tatsuno. Gyroki-netic Simulations of Solar Wind Turbulence from Ion toElectron Scales. Physical Review Letters, 107(3):035004,Jul 2011. doi: 10.1103/PhysRevLett.107.035004.

[12] B. D. G. Chandran, D. Verscharen, E. Quataert, J. C.Kasper, P. A. Isenberg, and S. Bourouaine. Stochas-tic Heating, Differential Flow, and the Alpha-to-protonTemperature Ratio in the Solar Wind. ApJ, 776(1):45,October 2013. doi: 10.1088/0004-637X/776/1/45.

[13] Alfred Mallet, Alexander A. Schekochihin, and BenjaminD. G. Chand ran. Disruption of Alfvenic turbulence bymagnetic reconnection in a collisionless plasma. Journalof Plasma Physics, 83(6):905830609, Dec 2017. doi: 10.1017/S0022377817000812.

[14] Nuno F. Loureiro and Stanislav Boldyrev. Role ofMagnetic Reconnection in Magnetohydrodynamic Tur-bulence. Physical Review Letters, 118(24):245101, Jun2017. doi: 10.1103/PhysRevLett.118.245101.

[15] S. D. Bale, J. C. Kasper, G. G. Howes, E. Quataert,C. Salem, and D. Sundkvist. Magnetic Fluctuation Power

Page 6: The In Situ Signature of Cyclotron Resonant Heating

6

Near Proton Temperature Anisotropy Instability Thresh-olds in the Solar Wind. PRL, 103(21):211101, November2009. doi: 10.1103/PhysRevLett.103.211101.

[16] O. Alexandrova, C. H. K. Chen, L. Sorriso-Valvo, T. S.Horbury, and S. D. Bale. Solar Wind Turbulence and theRole of Ion Instabilities. SSR, 178(2-4):101–139, October2013. doi: 10.1007/s11214-013-0004-8.

[17] K. G. Klein, B. L. Alterman, M. L. Stevens, D. Vech, andJ. C. Kasper. Majority of Solar Wind Intervals SupportIon-Driven Instabilities. PRL, 120(20):205102, May 2018.doi: 10.1103/PhysRevLett.120.205102.

[18] Petr Hellinger, Pavel Travnıcek, Justin C. Kasper,and Alan J. Lazarus. Solar wind proton temperatureanisotropy: Linear theory and WIND/SWE observa-tions. GRL, 33(9):L09101, May 2006. doi: 10.1029/2006GL025925.

[19] Lorenzo Matteini, Simone Landi, Petr Hellinger, Fil-ippo Pantellini, Milan Maksimovic, Marco Velli, Bruce E.Goldstein, and Eckart Marsch. Evolution of the so-lar wind proton temperature anisotropy from 0.3 to 2.5AU. GRL, 34(20):L20105, October 2007. doi: 10.1029/2007GL030920.

[20] T. A. Bowen, A. Mallet, J. W. Bonnell, and S. D. Bale.Impact of Residual Energy on Solar Wind TurbulentSpectra. The Astrophysical Journal, 865:45, Sep 2018.doi: 10.3847/1538-4357/aad95b.

[21] Anna Tenerani, Marco Velli, Lorenzo Matteini, VictorReville, Chen Shi, Stuart D. Bale, Justin C. Kasper,John W. Bonnell, Anthony W. Case, Thierry Dudok deWit, Keith Goetz, Peter R. Harvey, Kristopher G. Klein,Kelly Korreck, Davin Larson, Roberto Livi, Robert J.MacDowall, David M. Malaspina, Marc Pulupa, MichaelStevens, and Phyllis Whittlesey. Magnetic Field Kinksand Folds in the Solar Wind. ApJS, 246(2):32, February2020. doi: 10.3847/1538-4365/ab53e1.

[22] O Alexandrova. Solar wind vs. magnetosheath turbulenceand Alfven vortices. Nonlin. Proc. Geophys., 15:95, 2008.

[23] K. T. Osman, W. H. Matthaeus, A. Greco, and S. Ser-vidio. Evidence for Inhomogeneous Heating in the SolarWind. ApJL, 727(1):L11, January 2011. doi: 10.1088/2041-8205/727/1/L11.

[24] Sonny Lion, Olga Alexandrova, and Arnaud Zaslavsky.Coherent Events and Spectral Shape at Ion KineticScales in the Fast Solar Wind Turbulence. The Astro-physical Journal, 824(1):47, Jun 2016. doi: 10.3847/0004-637X/824/1/47.

[25] Alfred Mallet, Kristopher G. Klein, Benjamin D. G.Chand ran, Daniel Groselj, Ian W. Hoppock, Trevor A.Bowen, Chadi S. Salem, and Stuart D. Bale. Inter-play between intermittency and dissipation in collision-less plasma turbulence. Journal of Plasma Physics, 85(3):175850302, Jun 2019. doi: 10.1017/S0022377819000357.

[26] Eliot Quataert and Andrei Gruzinov. Turbulenceand Particle Heating in Advection-dominated AccretionFlows. The Astrophysical Journal, 520(1):248–255, Jul1999. doi: 10.1086/307423.

[27] Benjamin D. G. Chandran, Peera Pongkitiwanichakul,Philip A. Isenberg, Martin A. Lee, Sergei A. Markovskii,Joseph V. Hollweg, and Bernard J. Vasquez. ResonantInteractions Between Protons and Oblique Alfven/Ion-cyclotron Waves in the Solar Corona and Solar Flares.ApJ, 722(1):710–720, October 2010. doi: 10.1088/0004-637X/722/1/710.

[28] Benjamin D. G. Chandran, Timothy J. Dennis, Eliot

Quataert, and Stuart D. Bale. Incorporating KineticPhysics into a Two-fluid Solar-wind Model with Temper-ature Anisotropy and Low-frequency Alfven-wave Turbu-lence. The Astrophysical Journal, 743(2):197, Dec 2011.doi: 10.1088/0004-637X/743/2/197.

[29] O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin,and M. Maksimovic. Solar Wind Turbulent Spectrum atPlasma Kinetic Scales. ApJ, 760(2):121, December 2012.doi: 10.1088/0004-637X/760/2/121.

[30] John D. Richardson, Karolen I. Paularena, Alan J.Lazarus, and John W. Belcher. Radial evolution of thesolar wind from IMP 8 to Voyager 2. Geophys. Re-search Letters, 22(4):325–328, Feb 1995. doi: 10.1029/94GL03273.

[31] Eliot Quataert. Particle Heating by Alfvenic Turbulencein Hot Accretion Flows. The Astrophysical Journal, 500(2):978–991, Jun 1998. doi: 10.1086/305770.

[32] Robert J. Leamon, Charles W. Smith, Norman F. Ness,William H. Matthaeus, and Hung K. Wong. Obser-vational constraints on the dynamics of the interplane-tary magnetic field dissipation range. Journal of Geo-physical Research, 103(A3):4775–4788, Mar 1998. doi:10.1029/97JA03394.

[33] S. Peter Gary. Collisionless dissipation wavenumber:Linear theory. JGR, 104(A4):6759–6762, April 1999. doi:10.1029/1998JA900161.

[34] R. J. Leamon, W. H. Matthaeus, C. W. Smith, G. P.Zank, D. J. Mullan, and S. Oughton. MHD-driven Ki-netic Dissipation in the Solar Wind and Corona. TheAstrophysical Journal, 537(2):1054–1062, Jul 2000. doi:10.1086/309059.

[35] G. G. Howes, S. C. Cowley, W. Dorland, G. W. Ham-mett, E. Quataert, and A. A. Schekochihin. A modelof turbulence in magnetized plasmas: Implications forthe dissipation range in the solar wind. Journal of Geo-physical Research (Space Physics), 113(A5):A05103, May2008. doi: 10.1029/2007JA012665.

[36] Thomas Howard Stix. Waves in plasmas. 1992.[37] Joseph V. Hollweg and Walter Johnson. Transition re-

gion, corona, and solar wind in coronal holes: Some two-fluid models. JGR, 93(A9):9547–9554, September 1988.doi: 10.1029/JA093iA09p09547.

[38] C. Y. Tu and E. Marsch. Two-Fluid Model for Heating ofthe Solar Corona and Acceleration of the Solar Wind byHigh-Frequency Alfven Waves. Sol Phys, 171(2):363–391,April 1997. doi: 10.1023/A:1004968327196.

[39] Steven R. Cranmer. Ion Cyclotron Wave Dissipation inthe Solar Corona: The Summed Effect of More than 2000Ion Species. The Astrophysical Journal, 532(2):1197–1208, Apr 2000. doi: 10.1086/308620.

[40] Joseph V. Hollweg and Philip A. Isenberg. Generationof the fast solar wind: A review with emphasis on theresonant cyclotron interaction. Journal of GeophysicalResearch (Space Physics), 107(A7):1147, July 2002. doi:10.1029/2001JA000270.

[41] Steven R. Cranmer. Ensemble Simulations of ProtonHeating in the Solar Wind via Turbulence and Ion Cy-clotron Resonance. ApJS, 213(1):16, July 2014. doi:10.1088/0067-0049/213/1/16.

[42] J. L. Kohl, G. Noci, E. Antonucci, G. Tondello,M. C. E. Huber, L. D. Gardner, P. Nicolosi, L. Strachan,S. Fineschi, J. C. Raymond, M. Romoli, D. Spadaro,A. Panasyuk, O. H. W. Siegmund, C. Benna, A. Cia-ravella, S. R. Cranmer, S. Giordano, M. Karovska,

Page 7: The In Situ Signature of Cyclotron Resonant Heating

7

R. Martin, J. Michels, A. Modigliani, G. Naletto,C. Pernechele, G. Poletto, and P. L. Smith. First Re-sults from the SOHO Ultraviolet Coronagraph Spectrom-eter. Sol Phys, 175(2):613–644, October 1997. doi:10.1023/A:1004903206467.

[43] J. L. Kohl, G. Noci, E. Antonucci, G. Tondello, M. C. E.Huber, S. R. Cranmer, L. Strachan, A. V. Panasyuk,L. D. Gardner, M. Romoli, S. Fineschi, D. Dobrzy-cka, J. C. Raymond, P. Nicolosi, O. H. W. Sieg-mund, D. Spadaro, C. Benna, A. Ciaravella, S. Gior-dano, S. R. Habbal, M. Karovska, X. Li, R. Mar-tin, J. G. Michels, A. Modigliani, G. Naletto, R. H.O’Neal, C. Pernechele, G. Poletto, P. L. Smith, andR. M. Suleiman. UVCS/SOHO Empirical Determina-tions of Anisotropic Velocity Distributions in the So-lar Corona. ApJL, 501(1):L127–L131, July 1998. doi:10.1086/311434.

[44] Steven R. Cranmer, George B. Field, and John L. Kohl.Spectroscopic Constraints on Models of Ion CyclotronResonance Heating in the Polar Solar Corona and High-Speed Solar Wind. ApJ, 518(2):937–947, June 1999. doi:10.1086/307330.

[45] Philip A. Isenberg. Investigations of a turbulence-drivensolar wind model. JGR, 95(A5):6437–6442, May 1990.doi: 10.1029/JA095iA05p06437.

[46] Lloyd D. Woodham, Robert T. Wicks, Daniel Ver-scharen, and Christopher J. Owen. The Role of ProtonCyclotron Resonance as a Dissipation Mechanism in So-lar Wind Turbulence: A Statistical Study at Ion-kineticScales. The Astrophysical Journal, 856(1):49, Mar 2018.doi: 10.3847/1538-4357/aab03d.

[47] C. F. Kennel and F. Engelmann. Velocity Space Diffu-sion from Weak Plasma Turbulence in a Magnetic Field.Physics of Fluids, 9(12):2377–2388, December 1966. doi:10.1063/1.1761629.

[48] Philip A. Isenberg and Martin A. Lee. A dispersive anal-ysis of bispherical pickup ion distributions. JGR, 101(A5):11055–11066, May 1996. doi: 10.1029/96JA00293.

[49] E. Marsch and C. Y. Tu. Evidence for pitch anglediffusion of solar wind protons in resonance with cy-clotron waves. JGR, 106(A5):8357–8362, May 2001. doi:10.1029/2000JA000414.

[50] Philip A. Isenberg. The kinetic shell model of coro-nal heating and acceleration by ion cyclotron waves:2. Inward and outward propagating waves. JGR, 106(A12):29249–29260, December 2001. doi: 10.1029/2001JA000176.

[51] E. Marsch and S. Bourouaine. Velocity-space diffusion ofsolar wind protons in oblique waves and weak turbulence.Annales Geophysicae, 29(11):2089–2099, November 2011.doi: 10.5194/angeo-29-2089-2011.

[52] Jiansen He, Linghua Wang, Chuanyi Tu, Eckart Marsch,and Qiugang Zong. Evidence of Landau and CyclotronResonance between Protons and Kinetic Waves in SolarWind Turbulence. ApJ, 800(2):L31, February 2015. doi:10.1088/2041-8205/800/2/L31.

[53] Lan K. Jian, Christopher T. Russell, Janet G. Luh-mann, Robert J. Strangeway, Jared S. Leisner, and An-toinette B. Galvin. Ion Cyclotron Waves in the SolarWind Observed by STEREO Near 1 AU. ApJL, 701(2):L105–L109, August 2009. doi: 10.1088/0004-637X/701/2/L105.

[54] J. J. Podesta and S. P. Gary. Magnetic Helicity Spectrumof Solar Wind Fluctuations as a Function of the Angle

with Respect to the Local Mean Magnetic Field. TheAstrophysical Journal, 734(1):15, Jun 2011. doi: 10.1088/0004-637X/734/1/15.

[55] Jiansen He, Eckart Marsch, Chuanyi Tu, Shuo Yao, andHui Tian. Possible Evidence of Alfven-cyclotron Wavesin the Angle Distribution of Magnetic Helicity of SolarWind Turbulence. The Astrophysical Journal, 731(2):85,Apr 2011. doi: 10.1088/0004-637X/731/2/85.

[56] R. T. Wicks, R. L. Alexander, M. Stevens, III Wilson,L. B., P. S. Moya, A. Vinas, L. K. Jian, D. A. Roberts,S. O’Modhrain, J. A. Gilbert, and T. H. Zurbuchen.A Proton-cyclotron Wave Storm Generated by UnstableProton Distribution Functions in the Solar Wind. ApJ,819(1):6, March 2016. doi: 10.3847/0004-637X/819/1/6.

[57] Lloyd D. Woodham, Robert T. Wicks, Daniel Ver-scharen, Christopher J. Owen, Bennett A. Maruca, andBenjamin L. Alterman. Parallel-propagating Fluctua-tions at Proton-kinetic Scales in the Solar Wind AreDominated By Kinetic Instabilities. ApJL, 884(2):L53,October 2019. doi: 10.3847/2041-8213/ab4adc.

[58] SD Bale, ST Badman, JW Bonnell, TA Bowen,D Burgess, AW Case, CA Cattell, BDG Chandran,CC Chaston, CHK Chen, et al. Highly structured slowsolar wind emerging from an equatorial coronal hole. Na-ture, pages 1–6, 2019.

[59] Trevor A. Bowen, Alfred Mallet, Jia Huang, Kristo-pher G. Klein, David M. Malaspina, Michael Stevens,Stuart D. Bale, J. W. Bonnell, Anthony W. Case, Ben-jamin D. G. Chandran, C. C. Chaston, Christopher H. K.Chen, Thierry Dudok de Wit, Keith Goetz, Peter R.Harvey, Gregory G. Howes, J. C. Kasper, Kelly E. Kor-reck, Davin Larson, Roberto Livi, Robert J. MacDowall,Michael D. McManus, Marc Pulupa, J. L. Verniero, andPhyllis Whittlesey. Ion-scale Electromagnetic Waves inthe Inner Heliosphere. ApJS, 246(2):66, February 2020.doi: 10.3847/1538-4365/ab6c65.

[60] S. Peter Gary, Ruth M. Skoug, John T. Stein-berg, and Charles W. Smith. Proton temperatureanisotropy constraint in the solar wind: ACE obser-vations. GRL, 28(14):2759–2762, January 2001. doi:10.1029/2001GL013165.

[61] S. Peter Gary, Lan K. Jian, Thomas W. Broiles,Michael L. Stevens, John J. Podesta, and Justin C.Kasper. Ion-driven instabilities in the solar wind: Windobservations of 19 March 2005. Journal of GeophysicalResearch (Space Physics), 121(1):30–41, January 2016.doi: 10.1002/2015JA021935.

[62] Daniele Telloni, Francesco Carbone, Roberto Bruno,Gary P. Zank, Luca Sorriso-Valvo, and Salvatore Man-cuso. Ion Cyclotron Waves in Field-aligned Solar WindTurbulence. ApJL, 885(1):L5, November 2019. doi:10.3847/2041-8213/ab4c44.

[63] D. Vech, M. M. Martinovic, K. G. Klein, D. M.Malaspina, T. A. Bowen, J. L. Verniero, K. Paulson,T. Dudok de Wit, J. C. Kasper, J. Huang, M. L. Stevens,A. W. Case, K. Korreck, F. S. Mozer, K. A. Goodrich,S. D. Bale, P. L. Whittlesey, R. Livi, D. E. Larson,M. Pulupa, J. Bonnell, P. Harvey, K. Goetz, and R. Mac-Dowall. Wave-particle energy transfer directly observedin an ion cyclotron wave. A&AP, 650:A10, June 2021.doi: 10.1051/0004-6361/202039296.

[64] N. J. Fox, M. C. Velli, S. D. Bale, R. Decker, A. Dries-man, R. A. Howard, J. C. Kasper, J. Kinnison, M. Kus-terer, D. Lario, M. K. Lockwood, D. J. McComas, N. E.

Page 8: The In Situ Signature of Cyclotron Resonant Heating

8

Raouafi, and A. Szabo. The solar probe plus mission:Humanity’s first visit to our star. Space Science Re-views, 204(1):7–48, Dec 2016. ISSN 1572-9672. doi:10.1007/s11214-015-0211-6. URL https://doi.org/10.

1007/s11214-015-0211-6.[65] J. L. Verniero, D. E. Larson, R. Livi, A. Rahmati, M. D.

McManus, P. Sharma Pyakurel, K. G. Klein, T. A.Bowen, J. W. Bonnell, B. L. Alterman, P. L. Whittlesey,David M. Malaspina, S. D. Bale, J. C. Kasper, A. W.Case, K. Goetz, P. R. Harvey, K. E. Korreck, R. J. Mac-Dowall, M. Pulupa, M. L. Stevens, and T. Dudok de Wit.Parker Solar Probe Observations of Proton Beams Simul-taneous with Ion-scale Waves. ApJS, 248(1):5, May 2020.doi: 10.3847/1538-4365/ab86af.

[66] K. G. Klein, J. L. Verniero, B. Alterman, S. Bale,A. Case, J. C. Kasper, K. Korreck, D. Larson, E. Lichko,R. Livi, M. McManus, M. Martinovic, A. Rahmati,M. Stevens, and P. Whittlesey. Inferred Linear Stabilityof Parker Solar Probe Observations Using One- and Two-component Proton Distributions. ApJ, 909(1):7, March2021. doi: 10.3847/1538-4357/abd7a0.

[67] J. L. Verniero, B. D. G. Chandran, D. E. Larson, K. Paul-son, B. L. Alterman, S. Badman, S. D. Bale, J. W. Bon-nell, T. A. Bowen, T. Dudok de Wit, J. C. Kasper, K. G.Klein, E. Lichko, R. Livi, M. D. McManus, A. Rah-mati, D. Verscharen, J. Walters, and P. L. Whittle-sey. Strong perpendicular velocity-space in proton beamsobserved by Parker Solar Probe. arXiv e-prints, art.arXiv:2110.08912, October 2021.

[68] S. D. Bale, K. Goetz, P. R. Harvey, P. Turin, J. W. Bon-nell, T. Dudok de Wit, R. E. Ergun, R. J. MacDowall,M. Pulupa, M. Andre, M. Bolton, J.-L. Bougeret, T. A.Bowen, D. Burgess, C. A. Cattell, B. D. G. Chandran,C. C. Chaston, C. H. K. Chen, M. K. Choi, J. E. Conner-ney, S. Cranmer, M. Diaz-Aguado, W. Donakowski, J. F.Drake, W. M. Farrell, P. Fergeau, J. Fermin, J. Fischer,N. Fox, D. Glaser, M. Goldstein, D. Gordon, E. Han-son, S. E. Harris, L. M. Hayes, J. J. Hinze, J. V. Holl-weg, T. S. Horbury, R. A. Howard, V. Hoxie, G. Jannet,M. Karlsson, J. C. Kasper, P. J. Kellogg, M. Kien, J. A.Klimchuk, V. V. Krasnoselskikh, S. Krucker, J. J. Lynch,M. Maksimovic, D. M. Malaspina, S. Marker, P. Mar-tin, J. Martinez-Oliveros, J. McCauley, D. J. McComas,T. McDonald, N. Meyer-Vernet, M. Moncuquet, S. J.Monson, F. S. Mozer, S. D. Murphy, J. Odom, R. Oliv-erson, J. Olson, E. N. Parker, D. Pankow, T. Phan,E. Quataert, T. Quinn, S. W. Ruplin, C. Salem, D. Seitz,D. A. Sheppard, A. Siy, K. Stevens, D. Summers, A. Sz-abo, M. Timofeeva, A. Vaivads, M. Velli, A. Yehle,D. Werthimer, and J. R. Wygant. The FIELDS Instru-ment Suite for Solar Probe Plus. Measuring the Coro-nal Plasma and Magnetic Field, Plasma Waves andTurbulence, and Radio Signatures of Solar Transients.Space Science Rev., 204:49–82, December 2016. doi:10.1007/s11214-016-0244-5.

[69] Justin C. Kasper, Robert Abiad, Gerry Austin, MarianneBalat-Pichelin, Stuart D. Bale, John W. Belcher, PeterBerg, Henry Bergner, Matthieu Berthomier, Jay Book-binder, Etienne Brodu, David Caldwell, Anthony W.Case, Benjamin D. G. Chandran, Peter Cheimets,Jonathan W. Cirtain, Steven R. Cranmer, David W. Cur-tis, Peter Daigneau, Greg Dalton, Brahmananda Das-gupta, David DeTomaso, Millan Diaz-Aguado, BlagojeDjordjevic, Bill Donaskowski, Michael Effinger, Vladimir

Florinski, Nichola Fox, Mark Freeman, Dennis Gal-lagher, S. Peter Gary, Tom Gauron, Richard Gates,Melvin Goldstein, Leon Golub, Dorothy A. Gordon, ReidGurnee, Giora Guth, Jasper Halekas, Ken Hatch, Ja-cob Heerikuisen, George Ho, Qiang Hu, Greg John-son, Steven P. Jordan, Kelly E. Korreck, Davin Larson,Alan J. Lazarus, Gang Li, Roberto Livi, Michael Lud-lam, Milan Maksimovic, James P. McFadden, WilliamMarchant, Bennet A. Maruca, David J. McComas, Lu-ciana Messina, Tony Mercer, Sang Park, Andrew M. Ped-die, Nikolai Pogorelov, Matthew J. Reinhart, John D.Richardson, Miles Robinson, Irene Rosen, Ruth M. Sk-oug, Amanda Slagle, John T. Steinberg, Michael L.Stevens, Adam Szabo, Ellen R. Taylor, Chris Tiu, PaulTurin, Marco Velli, Gary Webb, Phyllis Whittlesey, KenWright, S. T. Wu, and Gary Zank. Solar wind electronsalphas and protons (sweap) investigation: Design of thesolar wind and coronal plasma instrument suite for solarprobe plus. Space Science Reviews, 204(1):131–186, Dec2016. ISSN 1572-9672. doi: 10.1007/s11214-015-0206-3.URL https://doi.org/10.1007/s11214-015-0206-3.

[70] T. A. Bowen et al. A merged search-coil and fluxgatemagnetometer data product for parker solar probe fields.JGR, 125(5):e2020JA027813, 2020.

[71] M. Pulupa, S. D. Bale, J. W. Bonnell, T. A. Bowen,N. Carruth, K. Goetz, D. Gordon, P. R. Harvey,M. Maksimovic, J. C. Martınez-Oliveros, M. Moncuquet,P. Saint-Hilaire, D. Seitz, and D. Sundkvist. The So-lar Probe Plus Radio Frequency Spectrometer: Mea-surement requirements, analog design, and digital sig-nal processing. Journal of Geophysical Research (SpacePhysics), 122(3):2836–2854, March 2017. doi: 10.1002/2016JA023345.

[72] Christopher Torrence and Gilbert P. Compo. A Prac-tical Guide to Wavelet Analysis. Bulletin of theAmerican Meteorological Society, 79(1):61–78, January1998. doi: 10.1175/1520-0477(1998)079\textless0061:APGTWA\textgreater2.0.CO;2.

[73] G. G. Howes and E. Quataert. On the Interpretation ofMagnetic Helicity Signatures in the Dissipation Range OfSolar Wind Turbulence. The Astrophysical Journal Let-ters, 709(1):L49–L52, Jan 2010. doi: 10.1088/2041-8205/709/1/L49.

[74] Kristopher G. Klein, Gregory G. Howes, Jason M. Ten-Barge, and John J. Podesta. Physical Interpretation ofthe Angle-dependent Magnetic Helicity Spectrum in theSolar Wind: The Nature of Turbulent Fluctuations nearthe Proton Gyroradius Scale. ApJ, 785(2):138, April2014. doi: 10.1088/0004-637X/785/2/138.

[75] S. Y. Huang, J. Zhang, F. Sahraoui, J. S. He, Z. G. Yuan,N. Andres, L. Z. Hadid, X. H. Deng, K. Jiang, L. Yu,Q. Y. Xiong, Y. Y. Wei, S. B. Xu, S. D. Bale, and J. C.Kasper. Kinetic Scale Slow Solar Wind Turbulence in theInner Heliosphere: Coexistence of Kinetic Alfven Wavesand Alfven Ion Cyclotron Waves. ApJL, 897(1):L3, July2020. doi: 10.3847/2041-8213/ab9abb.

[76] F. Sahraoui, M. L. Goldstein, P. Robert, and Yu. V.Khotyaintsev. Evidence of a Cascade and Dissipationof Solar-Wind Turbulence at the Electron Gyroscale.Physical Review Letters, 102(23):231102, Jun 2009. doi:10.1103/PhysRevLett.102.231102.

[77] K. H. Kiyani, S. C. Chapman, Yu. V. Khotyaintsev,M. W. Dunlop, and F. Sahraoui. Global Scale-InvariantDissipation in Collisionless Plasma Turbulence. Physical

Page 9: The In Situ Signature of Cyclotron Resonant Heating

9

Review Letters, 103(7):075006, Aug 2009. doi: 10.1103/PhysRevLett.103.075006.

[78] Trevor A. Bowen, Alfred Mallet, Stuart D. Bale, J. W.Bonnell, Anthony W. Case, Benjamin D. G. Chan-dran, Alexandros Chasapis, Christopher H. K. Chen, DieDuan, Thierry Dudok de Wit, Keith Goetz, Jasper S.Halekas, Peter R. Harvey, J. C. Kasper, Kelly E. Ko-rreck, Davin Larson, Roberto Livi, Robert J. Mac-Dowall, David M. Malaspina, Michael D. McManus,Marc Pulupa, Michael Stevens, and Phyllis Whittle-sey. Constraining Ion-Scale Heating and Spectral EnergyTransfer in Observations of Plasma Turbulence. PRL,125(2):025102, July 2020. doi: 10.1103/PhysRevLett.125.025102.

[79] Trevor A. Bowen, Stuart D. Bale, J. W. Bonnell, DavinLarson, Alfred Mallet, Michael D. McManus, Forrest S.Mozer, Marc Pulupa, Ivan Y. Vasko, J. L. Verniero,Psp/Fields Team, and Psp/Sweap Teams. The Elec-tromagnetic Signature of Outward Propagating Ion-scaleWaves. ApJ, 899(1):74, August 2020. doi: 10.3847/1538-4357/ab9f37.

[80] Timothy S. Horbury, Miriam Forman, and SeanOughton. Anisotropic Scaling of MagnetohydrodynamicTurbulence. Phys. Rev. Lett. , 101(17):175005, October2008. doi: 10.1103/PhysRevLett.101.175005.

[81] R. W. Fredricks and F. V. Coroniti. Ambiguities in thededuction of rest frame fluctuation spectrums from spec-trums computed in moving frames. JGR, 81(A31):5591–5595, November 1976. doi: 10.1029/JA081i031p05591.

[82] Jonathan Squire, Romain Meyrand, Matthew W. Kunz,Lev Arzamasskiy, Alexander A. Schekochihin, and EliotQuataert. The helicity barrier: how low-frequency turbu-lence triggers high-frequency heating of the solar wind.arXiv e-prints, art. arXiv:2109.03255, September 2021.

[83] Joseph V. Hollweg and S. A. Markovskii. Cyclotron reso-nances of ions with obliquely propagating waves in coro-nal holes and the fast solar wind. Journal of GeophysicalResearch (Space Physics), 107(A6):1080, June 2002. doi:10.1029/2001JA000205.

[84] Philip A. Isenberg and Bernard J. Vasquez. A Ki-netic Model of Solar Wind Generation by Oblique Ion-cyclotron Waves. Astrophys. J. , 731(2):88, April 2011.doi: 10.1088/0004-637X/731/2/88.

[85] Daniel Verscharen, Sofiane Bourouaine, and BenjaminD. G. Chandran. Instabilities Driven by the Drift andTemperature Anisotropy of Alpha Particles in the So-lar Wind. ApJ, 773(2):163, August 2013. doi: 10.1088/0004-637X/773/2/163.

[86] J. V. Shebalin, W. H. Matthaeus, and D. Montgomery.Anisotropy in MHD turbulence due to a mean magnetic

field. Journal of Plasma Physics, 29(3):525–547, June1983. doi: 10.1017/S0022377800000933.

[87] P. Goldreich and S. Sridhar. Toward a Theory of In-terstellar Turbulence. II. Strong Alfvenic Turbulence.The Astrophysical Journal, 438:763, Jan 1995. doi:10.1086/175121.

[88] R. Meyrand, J. Squire, A. A. Schekochihin, and W. Dor-land. On the violation of the zeroth law of turbulencein space plasmas. Journal of Plasma Physics, 87(3):535870301, May 2021. doi: 10.1017/S0022377821000489.

[89] C. H. K. Chen, S. D. Bale, J. W. Bonnell, D. Borovikov,T. A. Bowen, D. Burgess, A. W. Case, B. D. G. Chan-dran, T. Dudok de Wit, K. Goetz, P. R. Harvey, J. C.Kasper, K. G. Klein, K. E. Korreck, D. Larson, R. Livi,

R. J. MacDowall, D. M. Malaspina, A. Mallet, M. D. Mc-Manus, M. Moncuquet, M. Pulupa, M. L. Stevens, andP. Whittlesey. The Evolution and Role of Solar WindTurbulence in the Inner Heliosphere. ApJS, 246(2):53,February 2020. doi: 10.3847/1538-4365/ab60a3.

[90] Die Duan, Trevor A. Bowen, Christopher H. K. Chen,Alfred Mallet, Jiansen He, Stuart D. Bale, Daniel Vech,J. C. Kasper, Marc Pulupa, John W. Bonnell, An-thony W. Case, Thierry Dudok de Wit, Keith Goetz, Pe-ter R. Harvey, Kelly E. Korreck, Davin Larson, RobertoLivi, Robert J. MacDowall, David M. Malaspina, MichaelStevens, and Phyllis Whittlesey. The Radial Dependenceof Proton-scale Magnetic Spectral Break in Slow SolarWind during PSP Encounter 2. ApJS, 246(2):55, Febru-ary 2020. doi: 10.3847/1538-4365/ab672d.

[91] Die D, Jiansen He, Trevor A. Bowen, Lloyd D. Wood-ham, Tieyan Wang, Christopher H. K. Chen, AlfredMallet, and Stuart D. Bale. Anisotropy of Solar WindTurbulence in the Inner Heliosphere at Kinetic Scales:PSP Observations. ApJL, 915(1):L8, July 2021. doi:10.3847/2041-8213/ac07ac.

[92] F. S. Mozer, O. V. Agapitov, S. D. Bale, J. W. Bon-nell, T. A. Bowen, and I. Vasko. DC and Low-FrequencyElectric Field Measurements on the Parker Solar Probe.Journal of Geophysical Research (Space Physics), 125(9):e27980, September 2020. doi: 10.1029/2020JA027980.

[93] Michael D. McManus, Trevor A. Bowen, Alfred Mal-let, Christopher H. K. Chen, Benjamin D. G. Chan-dran, Stuart D. Bale, Davin E. Larson, Thierry Dudok deWit, J. C. Kasper, Michael Stevens, Phyllis Whittlesey,Roberto Livi, Kelly E. Korreck, Keith Goetz, Peter R.Harvey, Marc Pulupa, Robert J. MacDowall, David M.Malaspina, Anthony W. Case, and J. W. Bonnell. CrossHelicity Reversals in Magnetic Switchbacks. ApJS, 246(2):67, February 2020. doi: 10.3847/1538-4365/ab6dce.