the influence of ph and chloride concentration on the corrosion behavior of aisi 316l steel in...

Upload: franklin-kaic

Post on 19-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    1/19

    Corrosion Science Vol. 33, No . 11, pp . 1809-1827, 1992 0010--938X/92 $5.00 + 0.00

    Printed in Gre at Britain. ~ 1992 Pergamon Press Ltd

    T H E I N F L U E N C E O F p H A N D C H L O R I D E

    C O N C E N T R A T I O N O N T H E C O R R O S I O N B E H A V I O U R

    O F A IS I 3 16 L S T E E L IN A Q U E O U S S O L U T I O N S

    A . U . M A L I K , P . C . M A Y A N K U TT Y , N A D EE M A . S I D D IQ I , IS M A EE L N . A N D I J A N I a n d

    SHAHREER AH ME D

    Research D evelopm ent and Training Cen ter , Saline Water Conversion Corp orat ion (SWCC ),

    P.O . B ox 8034, A1-Jubail-31951, Kingdom o f Saudi A rab ia

    Abst ract - -The ef fect of chlor ide concentrat ion, pH, dissolved oxygen and temperature on the pi t t ing

    behaviour of 316L SS in aqueous solutions has been investigated under dynamic and static condit ions.

    W eight loss , metal lograph y and elect rochemical polar izat ion techniques have been emp loyed dur ing the

    investigation. I t has been foun d that th e corro sion rate ge nerally increases l inearly with increasing CI

    concentrat ion in the range 100-5000 ppm . W ith increasing pH , the cor rosion rate de creases, being highest

    at pH 4 and lowest a t pH 9. The num ber and d epth of p i ts increase wi th increasing CI concentrat ion.

    From the res ults of cyclic polariz ation studies i t is inferred that the p it t ing po tentia l , Epi is shifted to a

    more negat ive potent ia l wi th increasing C I- concentrat ion and tem perature an d decreasing pH. I t has

    been e stablish ed that low pH, high C I- co nten t and stagnancy are the conditions m ost suitable for

    init iat ion and pro pag ation o f pit t ing in A1SI 316L stainless ste el .

    I N T R O D U C T I O N

    PITTIN G i s a l o c a l i z e d c o r r o s i o n a t t a c k o n m e t a l s a n d a l l o y s i n a q u e o u s e n v i r o n m e n t s .

    I t i s a m a j o r c a u s e o f fa i l u re o f c h e m i c a l p r o c e s s i n g a n d d e s a l i n a t i o n p l a n t s , w a t e r

    s t o r a g e t a n k s a n d p i p e l i n e s , p u m p s a n d v a l v e s , p e t r o l e u m r e f in e r i e s e t c . D u e t o t h e

    l o c a l iz e d n a t u r e o f p i t t i n g c o r r o s i o n , t h e f o r m a t i o n o f p i t s is c o n f i n e d t o m u c h s m a l l e r

    a r e a s c o m p a r e d t o th e o v e r a l l e x p o s e d s u r fa c e . B r o a d l y s p e a k i n g , t h e i n i t i a t i o n o f

    p i t t i n g is t h e r e s u l t o f t h e b r e a k d o w n o f t h e p a s s i v e f il m o n t h e m e t a l d u e t o t h e

    p r e s e n c e o f c e r t a i n a n i o n s s u c h a s C 1 - a n d t h e s u b s e q u e n t e s t a b l i s h m e n t o f an

    e l e c t r o c h e m i c a l c e l l i n w h i c h t h e d a m a g e d s i te a c t s a s a n a n o d e a n d t h e p a s s i v e s i t e

    a c ts a s a c a t h o d e . T h e b u i l d i n g u p o f c o r r o s i o n p r o d u c t s o n t h e m o u t h o f t h e p i t m a y

    r e s u l t in t h e f o r m a t i o n o f a c r e v i c e , t h u s p r o d u c i n g m o r e a g g r e s s iv e c o r r o s i o n a t t a c k .

    I r o n - b a s e a l l o y s , p a r t i c u l a r l y a u s t e n i t i c s ta i n l e s s s t e e l s , a r e m o s t p r o n e t o p i t t i n g in

    d i s s o l v e d C O 2 - a n d C l - - c o n t a i n i n g e n v i r o n m e n t s s u c h as t h o s e o b s e r v e d in b r i n e

    r e c y c le a n d b l o w d o w n p u m p s , f la sh c h a m b e r s a n d d e m i s t e r s o f d e s a l i n a t i o n p l an t s ,

    a n d i n s t e a m b o i l e r s , f e e d w a t e r h e a d e r t u b e s a n d s t e a m t u r b i n e b l a d e s o f p o w e r

    p l a n t s . 1 -5

    T h e e f f e c t o f c h l o r i d e o n t h e p i t t in g s u s c e p t i b i l i t y o f v a r i o u s m e t a l s a n d a l l o y s a n d

    e s p e c i a l ly s t a in l e s s s t e e l s h a s b e e n e x t e n s i v e l y i n v e s t i g a t e d b y n u m e r o u s r e s e a r c h e r s

    a n d is r e v i e w e d i n a n u m b e r o f b o o k s , r e v i e w s a n d a r t ic l e s . 6-~3 P a r t i c u l a r i n t e r e s t h a s

    b e e n s h o w n f o r t h e C I - d u e t o i t s p r e s e n c e in s ea w a t e r a s t h e m a j o r c o n s t i t u e n t a n d

    i ts r o l e a s a n a c t i v e p i t t in g a g e n t . B e s i d e s t h e i n f lu e n c e o f t e m p e r a t u r e , f lo w v e l o c i t y ,

    p H a n d C I - c o n c e n t r a t i o n [ C I - ] o n p i t t i n g , t h e s y n e r g ic e f f e c t o f a n i o n s s u ch a s

    S O ] - , $ 2 0 32 - , C 1 0 4 e t c . h a v e a l s o b e e n s t u d i e d . S m i a l o w s k a 14 f o u n d t h a t a m a j o r i t y

    Manuscript rec eived 25 Septem ber 1991.

    1809

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    2/19

    1 8 1 0 A . U . M A LI K e t a l .

    o f c o n s t r u c t i o n m a t e r i a ls s u f f e r p i tt i n g o n l y in s o l u t i o n s c o n t a i n i n g C i - o r o t h e r

    h a l i d e i o n s . T h r e e m a i n r e a s o n s a r e g iv e n f o r t h e s p e c if i c e f f e c t s o f c h l o r i d e a n d i ts

    a b i l i t y t o p r o d u c e p i t t i n g . F i r s t l y , t h e f o r m a t i o n o f a c h l o r i d e c o m p l e x w i t h c a t i o n

    a n d h y d r o x i d e ; s e c o n d l y , a n i n c r e a s e o f h y d r o g e n i o n a c t i v it y in t h e p it e l e c t r o l y t e

    a n d t h i r d l y , t h e f o r m a t i o n o f a sa l t l a y e r a t t h e b o t t o m o f p it s . T h e t h i r d fa c t o r

    a p p e a r s t o e x p l a i n m o r e s p e c i f i c a l l y t h e r o l e o f h a l i d e s i n p it t i n g a t t a c k . I t i s

    s u g g e s t e d t h a t t r a n s i t i o n f r o m p a s s i v i t y t o p i t t i n g c o n d i t i o n s c a n b e e x p l a i n e d b y a

    c o m p e t i ti v e a d s o r p t io n m e c h a n i s m i n w h i c h c h l o r i d e io n s m o v e i n t o th e d o u b l e l a y er

    ( o x i d e / l i q u i d i n t e r f a c e ) , e v e n t u a l l y r e a c h i n g , a t a c r it ic a l p o t e n t i a l , E m it, c o r r e s p o n d -

    i n g t o t h e [ C I -] r e q u i r e d t o d i s p l a c e t h e a d s o r b e d o x y g e n s p e c i e s . ~5-f? , N a s h i m u r a e t

    a l . 1 7 1 8 f o u n d t h a t p i t i n i t i a t i o n i s s t r o n g l y r e l a t e d t o t w o d i f f e r e n t t y p e s o f b o u n d

    w a t e r in a f il m . I t w a s f o u n d t h a t t h e p i tt i n g b e h a v i o u r o f a l l o y s c o v e r e d w i t h t h e

    p a s s i v e f i lm i s l a r g e ly d e p e n d e n t o n t h e f i lm t h i c k n e s s a n d i o n s e l e c ti v i t y . D u r i n g

    s t u d i e s 19 o n t h e e f f e c t s o f [ C I - ] o n p i tt i n g b e h a v i o u r o f s t e e l s l i n e a r r e la t i o n s h i p s

    h a v e b e e n f o u n d t o e x i s t b e t w e e n p i t n u c l e a t i o n p o t e n t i a l v s l o g c h l o r i d e i o n

    c o n c e n t r a t i o n , a n d l o g i n d u c t i o n t i m e v s l o g c h l o r i d e i o n c o n c e n t r a t i o n . T h e

    t e m p e r a t u r e a p p e a r s t o b e a n i m p o r t a n t p a r a m e t e r i n i n f l u e n c i n g t h e p r o te c t i v i ty o f

    t h e o x i d e s c a l e s .

    A I S I 3 1 6 L is c o n s i d e r e d t o b e o n e o f t h e m o s t i m p o r t a n t o f s ta i n l e s s s te e l s f o r

    m a r i n e e n v i r o n m e n t s a n d t h e r e f o r e i s w i d e l y u s e d a s a s t ru c t u ra l m a t e r i a l fo r

    d e s a l i n a t i o n p l a n t s. E v e n t h i s a l l o y m a y f a i l u n d e r c o n d i t i o n s o f l o w p H , h i g h

    c h l o r i d e c o n t e n t o r s t a g n a t i o n . 8 2 -21 R e l a t i v e l y f e w s t u d i e s h a v e b e e n c a r r ie d o u t t o

    i n v e s t i g a t e t h e r o l e o f p H a n d s t a g n a n c y o n t h e p i tt i n g b e h a v i o u r o f a u s t e n i t ic s t e e l s .

    T h e p r e s e n t c o m m u n i c a t i o n c o n t a i n s t h e r es u lt s o f a s tu d y e m p h a s i z in g t h e r o l e o f

    p H , c h l o r i d e i o n c o n c e n t r a t i o n , s t a g n a n c y a n d t e m p e r a t u r e o n t h e p i tt i n g b e h a v i o u r

    o f A I S I 3 1 6 L a u s t e n i t ic s t a i n l e ss s t e e l i n a q u e o u s c h l o r i d e s o l u t i o n s .

    E X P E R I M E N T A L M E T H O D

    C o m m e r c i a l g r a d e

    A I S I 3 1 6 L

    s t a i n l e s s s t e e l

    ( 1 7 . 1 C r , 1 1 . 3 N i , 2 . 1 M o , 0 . 0 2 C

    a n d b a l a n c e F e , a l l i n

    w t % ) , i n s h e e t a n d r o d fo r m s , w a s u s e d f o r th e s t u d i e s .

    F o r i m m e r s i o n t e s t s , c o u p o n s o f a b o u t

    5 c m 2

    a r e a w e r e c u t f r o m t h e s h e e t a n d a b r a d e d s e q u e n t i a l l y

    w i t h 1 8 0 , 3 2 0 , 4 0 0 a n d 6 0 0 g r it Si C p a p e r s . T h e a b r a d e d s p e c i m e n s w e r e c l e a n e d i n a n u l t r a s o n i c c l e a n e r

    f o l l o w e d b y d ry i n g. T h e d r i e d s p e c i m e n s w e r e w e i g h e d p r io r to i m m e r s i o n .

    F o r e l e c t r o c h e m i c a l m e a s u r e m e n t s , c i r cu l a r f la t t e s t s p e c i m e n s o f

    1 . 5 - 1 . 6 c m

    d i a m e t e r w e r e u s e d . T h e

    e x p o s e d a r e a o f t h e t es t s p e c im e n s w h i c h w a s s c r e w e d i n t h e s a m p l e h o l d e r w a s

    1 c m2 .

    E l e c t r o c h e m i c a l

    p o l a r i z a t i o n s t u d i e s w e r e c a r r i e d o u t o n a n

    E G & G m o d e l 3 4 2 - 2 so f t C o r r

    m e a s u r e m e n t s y s t e m . T h e

    s y s t e m w a s c o n s i s t e d o f m o d e l 2 7 3 p o t e n t i o s t a t / g a l v a n o s t a t , m o d e l 3 4 2 C o r r s o f t w a r e a n d m o d e l 3 0 I B M

    P S - 2 .

    A l l t h e e x p e r i m e n t s w e r e c a r r i e d o u t u s i n g a c o r r o s i o n c e l l

    ( E G & G

    m o d e l K 0 0 4 7 ) w i t h s a t u r a t e d

    c a l o m e l a n d g r a p h i t e a s r e f e r e n c e a n d c o u n t e r e l e c t r o d e s , r e s p e c t i v e l y . S e v e r a l s e r i e s o f e x p e r i m e n t s w e r e

    c a r r i e d o u t i n o r d e r t o s t u d y t h e e f f e c t o f

    [ C I - ] , p H

    a n d s t a g n a n c y o n t h e p i t t i n g b e h a v i o u r o f

    A I S I : 3 1 6 L

    s t e e l u s i n g t e s t s o l u t i o n s u n d e r f o l l o w i n g c o n d i t i o n s :

    p H

    [ CI I ( p p m )

    A r t i f i c i a l s e a w a t e r

    I m m e r s i o n t i m e ( w e e k s )

    C o n d i t i o n

    T e m p e r a t u r e

    D i s s o l v e d o x y g e n ( p p m )

    4 , 7 a n d 9

    0 , 1 0 , 1 0 0 , 3 0 0 , 5 0 0 , 1 0 00 a n d 50 0 0

    C I 2 4 1 5 0

    p p m

    4 , 8 , 1 6 a n d 2 4

    S t a ti c o r d y n a m i c

    2 0 , 25 , 3 0 , 5 0 a n d 8 0 ( 2 C )

    6 0 . 5

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    3/19

    p H an d [C I - ] an d t h e co r ro s i o n o f A IS I 3 1 6L s t ee l 1811

    Prev i o u s ly w e i g h ed co u p o n s w ere i m mers ed i n te s t s o l u ti o n s fo r v a r io u s t i me i n t e rv a l s o f 1 , 2 , 4 an d 6

    mo n t h s . Imm ers i o n t e st s u n d e r s t a ti c co n d i t i o n s w ere p e r fo rm ed fo l l o w i n g t h e A ST M G 3 1 -7 2 p ro ced u re .

    S i mi l a r t e s ts w e re ca r r i ed o u t u n d e r d y n am i c co n d i t io n s u s in g a t h e rmo s t a t i c s h ak e r m o v i n g a t a s p eed o f

    60 osc i l l a t ions min - 1. A t the end o f the t es t per iod s the coup ons w ere t aken ou t , washed in d i s t il l ed water ,

    d r i ed an d t h e i r w e i g h ts w e re d c t e rm i n cd .

    Fo l l o w i n g th e i mm ers i o n t e s t , m i c ro s tru c t u ra l ex am i n a t i o n o f a ll t h e t e s t s p ec i men s w as ca r r i ed o u t t o

    assess the na tu re and ex ten t o f the local i zed a t t ack . Th e shap e , s i ze and dens i ty (d i s t r ibu t ion) o f the p it s

    w ere d e t e rm i n ed me t a l l o g rap h i ca l l y u s in g an o p t io n a l m i c ro s co p e an d fo l lo w i n g A S T M G 4 6 -7 6 p ro -

    ced u re .

    O p en c i r cu i t p o t en t i a l (O CP) w ere meas u red u s i n g 3 1 6 L co u p o n a s a w o rk i n g e l ec t ro d e (W E ) an d

    s a t u ra t ed ca l o me l (b e l o w 8 0 C) o r s i l v e r - s i lv e r ch l o r i d e a s a r e fe r en ce e l ec t ro d e . T h e O C P s t u d ie s w crc

    carr i ed o u t w i th 100 , 300 , 500 , 1000 and 5(100 ppm ch lor ide so lu t ions o f pH 4 , 7 o r 9 and a t d i f feren t

    t emp e ra t u re s . I t to o k 2 4 -4 8 h t o ach i ev e a co n s t an t p o t en t ia l co r r e s p o n d i n g t o o p en c i r cu i t co r ro s i o n

    poten t i a l .

    Po ten t iodyn am ic po lar i za t ion ex per im ents we re car r i ed ou t us ing a scan ra te o f 0 .1 m V s i

    co mmen c i n g a t a p o t en t i a l ab o u t 2 5 0 mV mo re ac t i v e t h an t h e s t ab l e O CP. Be fo re s t a r t i n g t h e

    polar i za t ion sca n , the spec ime n in the sam ple ho lder (W E) was l ef t in the ce l l fo r about 1 h to a t ta in a

    s teady s t a te which i s shown by a cons tan t po ten t i a l and curren t a t the beg inn ing of the expe r ime nt . Thc

    p o t cn t i o d y n am i c ru n s w ere p ro g ram me d s u ch th a t u p o n a t t a in i n g a cu r r en t d en s i ty o f 2 5 / t A cm

    2,

    the

    scan d i rec t ion was reversed and the po ten t i a l s were scanned back to the s t ar t ing po ten t i a l .

    Po lar i za t ion res i s t ance m easu rem ents w ere con ducted a t a scan ra te o f 0.1 mV s ~ wi th s tar t ing and

    f in a l p o t en t i a ls co r r e s p o n d i n g t o - 2 0 an d + 2 1) mV (O C P) , r e s p ec t iv e l y . T h e max i m u m cu r r en t r an g e w as

    0 . 1 / A c m

    2

    E X P E R I M E N T A L R E S U L T S

    W eigh t lo ss s tud ie s

    W e i g h t l o s s s t u d i e s s h o w e d t h a t n o p e r c e p t i b l e w e i g h t lo s s o c c u r s d u r i n g

    i m m e r s i o n p e r i o d s o f u p t o 6 w e e k s i r r e s p e c t i v e o f [ C 1 - ] , p H a n d d y n a m i c o r s t a t i c

    c o n d i t i o n s . E x t r e m e l y l o w w e i g h t l o s se s ( 5 0 - 7 0 k tg c m 2) w e r e n o t e d d u r i n g

    i m m e r s i o n t i m e v a r y i n g f r o m 1 6 t o 2 4 w e e k s . T h e w e i g h t l o s se s r e c o r d e d w e r e

    h i g h e s t a t p H 4 u n d e r s t a t i c c o n d i t i o n s a n d w e r e l o w e s t a t p H 7 u n d e r d y n a m i c

    c o n d i t i o n s .

    M e t a l l o g r a p h ic e x a m i n a t i o n s

    U n d e r s i m i la r c o n d i t i o n s , a m a x i m u m n u m b e r o f p i t s w e r e f o u n d o n t h e

    s p e c i m e n s i m m e r s e d i n s o l u t i o n s o f p H 4 a n d a m i n i m u m o n s p e c i m e n s i m m e r s e d i n

    s o l u t i o n s o f p H 7 . U n d e r d y n a m i c c o n d i t i o n s ( w h e n t h e s o l u t i o n s w e r e a g i t a t e d

    c o n t i n u o u s l y d u r i n g t h e e n t i r e p e r i o d s o f i m m e r s i o n t e s t ) t h e n u m b e r o f p i t s

    o b s e r v e d o n t h e s u r f a c e o f t h e s p e c i m e n w a s s m a l l e r t h a n u n d e r s t a t i c o r s t a g n a n t

    c o n d i t i o n s . I n g e n e r a l , t h e n u m b e r a n d d e p t h o f t h e p i ts i n c r e a s e d w i t h in c r e a s i n g

    [ C I ] a n d i m m e r s i o n t i m e .

    P i t d e p t h m e a s u r e m e n t s

    T h e d e p t h o f t h e p i ts o n 3 1 6 L s p e c i m e n s w a s m e a s u r e d m i c r o s c o p i c a l l y . M i n i -

    m u m a n d m a x i m u m p i t d e p t h s w e r e m e a s u r e d f o r a p a r t i c u l a r s p e c i m e n . A v e r a g e

    d e p t h s w e r e d e t e r m i n e d b y c o n s i d e r i n g t h e d e p t h o f a ll t h e p i ts p r e s e n t . F i g u r e 1

    s h o w s p l o t s o f m a x i m u m p i t d e p t h v s [C1 ] a n d d i f f e r i n g p H f o r t h e i m m e r s i o n p e r i o d

    o f 4 m o n t h s . T h e p i t d e p t h i n c r e a s e s w i t h in c r e a s i n g [ C I ] . A p a r a b o l i c r e l a t i o n s h i p

    a p p e a r s t o e x i s t b e t w e e n p i t d e p t h a n d c h l o r i d e c o n c e n t r a t i o n a s i n d i c a t e d b y t h e

    l i n e a r n a t u r e o f p i t d e p t h v s [C 1 ]1/2 p l o t s ( F i g . 2 ) .

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    4/19

    1 8 1 2 A . U . M A L I K e t a l .

    5 o o

    3 0 0

    cL 200

    o

    o pH 4 S

    0 pH 7S

    t - b

    p H 9 S _ ~

    I O 0

    0 ~ I I I I I I

    4 0 8 0 1 20 1 6 0 2 0 0 Z 4 0 2 8 0

    C I - ( p p m )

    M a x i m i m p i t d e p t h v s [ C 1 - ] f o r A I S I 3 1 6 L in C l - - c o n t a i n i n g a q u e o u s s o l u t i o n o f

    [ c . 1 .

    v a r i o u s p H v a l u e s u n d e r s t a t ic ( S ) a n d d y n a m i c ( D ) c o n d i t i o n s . I m m e r s i o n t i m e : 4 m o n t h s .

    F i g u r e s 3 a n d 4 s h o w t y p i c a l o p t i c a l m i c r o g r a ph s o f t h e p i t s pr o d u c e d b y

    p o t e n t i o d y n a m i c a n o d i c p o l a r i z a t i o n a t t w o d i f f e r e n t [ C I - ] . M o s t o f t h e p i t s a r e

    g e n e r a ll y o f s m a ll d i a m e t e r ( < 5 0 ~ m ) .

    E lec tr o chem i ca l measu r em en ts

    Open c i r c u i t c o r r o s i o n po t en t i a l

    F i g u r e s 5 - 7 s h o w s o m e t y p i c a l t i m e v s o p e n

    c i r c u i t po t e n t i a l p l o t s f o r 3 1 6 L s t e e l i mme r s e d i n a q u e o u s s o l u t i o n s c o n t a i n i n g

    vary ing [C1- ] a t pH 4 , 7 and 9 , a nd a t 30 , 50 and 80C. Th e indu c t ion t im e , t i, f or p i t

    F r o . 2 .

    5 0 0

    [ ] S to t i c J

    0 I I I I I I I

    3 5 7' 9 11 13 15 17

    1

    [cl ]~

    P l o t o f [ E l - ] 1/2 v s m a x i m u m p i t d e p t h f o r A I S I 3 1 6 L i m m e r s e d i n C l - - c o n t a i n in g

    s o l u t i o n s o f

    p H 4

    u n d e r s t a t ic ( S ) a n d d y n a m i c ( D ) c o n d i t io n s .

    3 0 0

    "o

    2OO

    o

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    5/19

    FIG. 3.

    FIG. 4.

    P h o t o m i c r o g r a p h o f a c r os s s e c ti o n o f A I S I 3 1 6 L s p e ci m e n p i t te d p o t e n t i o -

    d y n a m i c a l l y ( [C I ] : 5 0 0 0 p p m , p H 4 ) . x 4 0 0 .

    P h o t o m i c r o g r a p h o f a c r o s s s e c t i o n o f A I S I 3 1 6 L s p e c i m e n p i t t e d p o t c n t i o -

    dyn amic a l ly ([C1 ] : 1000 ppm , pH 7 , un de r de -a e ra t ed co nd i t i o n) . )

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    6/19

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    7/19

    E

    o

    5

    (3-

    FIG.

    5.

    p H a n d [ C I - ] a n d t h e c o r r o s io n o f A 1 S I 3 1 6 L s t e e l

    2 0 0

    100

    -100

    3 0 0

    o 5 0 0

    . 1 0 0 0

    -2oo ~ 1 L _ _ _ i _ _ J . _ _ ~

    0 4 8 12 16 20 24 23 32 36 40 44 48

    T i m e ( h )

    V a r i a t i o n o f O C P w i t h t i m e f o r A I S I 3 1 6 L i m m e r s e d i n a q u e o u s s o l u t i o n s o f

    v a r y i n g

    [ C I - ]

    ( in p p m ) a t

    2 0 C ( p H 4 ) .

    1815

    i n i t ia t i o n h a s b e e n d e t e r m i n e d f r o m t h e p l o t s. A t a n y g i v e n t e m p e r a t u r e , ti i s a l i n e a r

    f u n c t i o n o f [ C I- ] a n d c a n b e r e p r e s e n t e d b y t h e r e la t i o n s h i p:

    l o g t = C + D l o g [ C I - ] .

    B o t h C a n d D c o e f f i c i e n t s a r e t e m p e r a t u r e d e p e n d e n t . F i g u r e 8 s h o w s p l o t s f o r

    l o g i n d u c t i o n t i m e f o r pi t i n i t ia t i o n v s l o g [ C I- ] a t p H 4 a n d a t d i f fe r e n t t e m p e r a t u r e s .

    F ig u r e 9 s h o w s p l o ts o f l o g in d u c t i o n t i m e v s t e m p e r a t u r e a t t w o [ C l - ] c o n c e n -

    t r a ti o n s . T h e p l o t s i n d i c a t e t h a t i n d u c t i o n t i m e f o r pi t i n i t ia t i o n , t d e c r e a s e s w i t h

    i n c r e a s i n g [ C I - l ] a n d in c r e a s i n g t e m p e r a t u r e .

    E

    "6

    F1o. 6.

    40

    O'

    - 40

    [J 30 C

    -8 0 ,,, 50oc

    o

    80C

    -120

    - 1 6 0

    - 2 0 0 . ~

    0 4 8 12 16 20 24 28 32 36 40 44 48

    T i m e

    ( h )

    V a r i a ti o n o f O C P w i t h ti m e f o r

    A I S I 3 1 6 L

    i m m e r s e d i n 10 0 0 p pm

    [C1- ]

    a q u e o u s

    s o l u t i o n s a t v a r i o u s t e m p e r a t u r e s

    ( p H 4 ) .

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    8/19

    1 8 1 6 A . U . M A L IK etal

    8O

    - _

    / o 4

    ~T o pH 9

    - 2 0 0

    0 4 8 12 16 20 24 28 32 36 40 44 48

    T i m e (h)

    FIG. 7. Var iat ion of OCP w i t h t i m e f o r A[S[ 316L i m m e r s e d i n 1 00 0 p p m C I - a q u e o u s

    s o l u t io n s o f d i f f e r e n t pH v a l u e s a t 20C.

    Polar izati on resistance P o l a r i za t i o n m e a s u r e m e n t s w e r e c a r r ie d o u t u s i n g 3 16 L

    c o u p o n s i m m e r s e d i n c h l o r i d e - c o n t a i n i n g a q u e o u s s o l u t i o n s u n d e r c o n d i t i o n s o f

    v a r y i n g t e m p e r a t u r e , p H a n d [ C I - ] . Ty p i c a l p o l a r iz a t i o n r e s i s t a n c e p lo t s a r e s h o w n

    i n F i g s 1 0 - 1 2 . Ta b l e 1 l i s t s t h e c o r r o s i o n r a t e v a l u e s c o m p u t e d f r o m t h e p l o t s . Th e

    c o r r o s i o n r a t e v a l u e s a s d e t e r m i n e d f r o m t h e p o l a r i z a t i o n r e s i s t a n c e e x p e r i m e n t s

    w e r e b a s e d o n a n o d i c a n d c a t h o d i c T a fe l v a l u e s w h i c h w e r e o b t a i n e d f r o m p r e v i o u s l y

    c a r r ie d o u t Ta f e l p l o t r u n s . Th e p o l a r i z a t i o n d a t a p r o v i d e t h e f o l l o w i n g i n f o r m a t i o n

    r e g a r d i n g t h e b e h a v i o r o f 3 1 6 L i n c h l o r i d e - c o n t a i n i n g s o l u t i o n s : ( i ) a t p H 4 , t h e

    2.0

    FIG. 8.

    i.8

    1.6

    1.4

    12

    ~ - 1.0

    ...I Q8

    0.6

    0.4

    Q2

    [] 30 C

    z~ 5 0 C

    o 80 c

    0 I I I

    1 2 3

    L o g CI -

    L o g i n d u c t i o n t i m e f o r p i t i n i t i a t i o n v s l o g [ C I - ] a t v a r i o u s t e m p e r a t u r e s ( p H 4 ) .

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    9/19

    pH and [C1-] and the corrosio n of AISI 316L steel 1817

    FIG. 9.

    2.0

    .J

    1.8

    1 . 6 -

    1 . 4 -

    1.2 -

    1.0

    -

    0 . 8 -

    0.6- -

    0.4 --

    0 .2 - -

    01

    0

    1000 ppm

    I I I I

    20 4O 60 80 100

    Tempereture (C)

    Log induction ti me r or pit initiatio n vs temperaturc at 100 and 1000 pp m[ Ct ]

    (pH4) .

    TABLE 1. RE SULT S FROM POLARIZATION RESISTANCE MEASURE-

    MENTS

    Tem p [Cl ] pH E ..... Corro sion rate

    C ppm mV MPY

    20 100 4 -1 56 0.104

    20 300 4 -1 20 0.116

    20 500 4 -14 4 0.119

    20 100(I 4 -168 0.135

    20 5000 4 -1 85 0.148

    30 1000 4 -203 0.143

    5(1 1000 4 -127 0.154

    80 1000 4 -93 0.295

    20 1000 7 -50 0.071

    30 1000 7 -15 0 0.051

    50 1000 7 -12 2 0.03

    80 1000 7 -200 0.169

    20 1000 9 -2 31 0.011

    30 1000 9 -2 19 0.041

    50 1000 9 -238 0.(155

    8(1 1000 9 - 287 0.163

    25 24153* 7.3 -2 49 0.064

    20 1000t 4 -3 43 0.049

    20 1000t 7 -2 35 0.041

    20 1000+ 9 -238 0.010

    * Artificial sea water.

    t De-aerated.

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    10/19

    1 8 1 8 A . U . M A L IK

    e t a l .

    FIG. 10.

    - 1 4 5

    - 1 5 6

    - 1 6 7

    - 1 7 8

    - 1 8 9

    I

    - 0 . 0 4 4

    100 p p m

    1 0 0 0 p p m

    . r ,

    5 0 0 0 p p m

    - 20 0 ' ' ,

    - 0 .060 - 0 .028 - 0 .012 0 .00 4

    I ( / c A m - 2 )

    P o l a r i z a t i o n r e s is t an c e c u r v e s f o r A I S i 3 1 6 L i n a q u e o u s s o l u t i o n s o f v a r i o u s

    c h l o r i d e c o n c e n t r a t i o n s a t p H 4 a n d 2 0 C .

    FIG. II.

    E

    uJ

    - 8 5

    - 1 1 0

    - 1 3 5

    - -1 6 0

    - 1 8

    l 8 0 ~ C

    .:

    l

    50 .

    :...-

    ....

    2 0 = C

    3 0 C

    r ~

    -2 1( l i i I

    - 0 . 1 0 - 0 . 0 6 -0 . 0 2 0 . 0 2 0 . 0 6

    I ( # A c m -2 )

    P o l a r i z a t i o n r e s is ta n c e c u r v e s fo r A I S [ 3 1 6 L i n 1 0 0 0 p p m C I - s o l u t i o n s o f p H 4

    a n d a t d i f f e r e n t te m p e r a t u r e s

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    11/19

    FIG. 12.

    0 . 1 6

    - 1 4 5

    1

    - 1 6 3

    - 1 8 1

    E

    w

    - 1 9 9

    - 2 1 7

    - 2 3 5 ~ i

    - 0 0 3 0 - 0 . 0 2 2 - 0 . 0 1 4 - 0 . 0 0 6

    I ( ,Am 2 )

    p H 7

    pH4

    p H 9

    0,002

    P o l a r i z a t io n r e s i s ta n c e c u r v e s f o r A I S I 3 1 6 L i n 1 00 0 p p m C l - s o l u t i o n s o f v a r io u s

    p H v a l u e s a t 3 0 C .

    0 . 1 5 -

    0 . 1 4 -

    0 . 1 3 -

    0 . 1 2 -

    0 . 1 1

    -

    . 1 1 . 4

    A

    E

    o

    8

    o

    (.~

    Fro . 13 .

    I I I I I I

    1 .8 2 , 2 2 . G 3 . 0 3 , 4 3 , 8

    L o g C l -

    C o r r o s i o n r a t e v s lo g [ C I - ] a t 20 C a n d p H 4 .

    p H a n d [ C I - ] a n d t h e c o r r o s i o n o f A I S I 3 1 6 L s t e el 1 81 9

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    12/19

    8 20 A . U . M A LIK e t a l .

    0 . 3 0

    0 . 2 6

    A

    > , 0 . 2 2

    E

    0 . 1 8

    o

    0.14.

    8

    ~

    0 . 1 0

    L_

    g , -

    0.06

    0 . 0 2

    FIG. 14.

    13 p H 4

    ,a, pH 9

    zx

    /x

    ~,

    i I I

    2 0 4 0 6 0 8 0 1 0 0

    T e m p e r e t u r e ( C )

    C o r r o s i o n r a t e v s t e m p e r a t u r e a t 2 0 C a n d p H v a l u e s 4 a n d 9 .

    F1G. 15.

    9 0 0

    6 0 0

    3 0 O

    >

    E

    , , , 0

    - 3 0 0

    ' 1 ' ' I ' ' 1 ' ' ' ~ . . . . . . . . I ' '~ . .. .

    J

    ,

    . - "

    . . . . . . . . . . . . . - _ ~ . "

    10 -3 10 -2 10 1 100 101 102 103

    I ( /~A cm 2)

    C y c l i c p o l a r i z a t i o n c u r v e f o r A I S I 3 1 6 L i n 1 0 0 p p m C I - s o l u t i o n o f p H 4 a t 3 0 (

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    13/19

    p H a n d [ C I - ] a n d t h e c o r r o s i o n o f A I S I 3 1 6 L s t ee l 1 82

    FIG. 16.

    6 0 0

    4 0 0

    2 0 0

    E

    U.I

    - 200

    ' " i ' " , l ' " i ' " ' l ' " i ' " ' l ' " 1 ' " 9 ' " i ' " ' i " l '

    7

    J

    - 4 0 0 , , ;, , , l < , : A . . . . . . [ , ~ l l , , , , ,

    1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 01 1 0 2 1 0 3

    I ( / ~A

    c m - 2 )

    C y c l i c p o l a r i z a t i o n c u r v e f o r A I S 1 3 1 6 L i n 1 0 00 p p m C I - s o l u t i o n o f p H 4 a t

    3 0 C .

    F I~ . 17 .

    E

    W

    1 5 0

    5 0

    - 5 0

    - 1 5 0

    2 5 0

    . Z -

    - i

    a r - '

    c

    --- _

    - 3 5 o . . . . . . J . . . . . i . i

    . . . . . . . .

    1 0 - 2 1 0 - 1 1 0 0 1 01 1 0 2

    I (/.LA cm 2)

    C y c l i c p o l a r i z a t i o n c u r v e f o r A I S 3 1 6 L in 1 0 0 0 p p m C I s o l u t i o n o f p H 4 at 8 0 C .

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    14/19

    1822 A . U . MALIKe t a l .

    TABLE 2. RESULTS FROM CYCLIC POLARIZATIONSTUDIES

    T e m p [ C l - ] p H g p i t g p r o t E p it - gp r ot E r

    C ppm mV mV mV mV

    20 100 4 759 -1 99 958 - -

    20 300 4 502 -82 584 300

    20 500 4 438 -100 538 280

    20 1000 4 425 -77 502 250

    20 5000 4 322 -140 462 200

    30 1000 4 260 -62 322 67

    50 1000 4 177 -29 206 20

    80 1000 4 - 4 -38 34 0

    20 1000 7 217 -49 266 233

    30 1000 7 294 -4 298 66

    50 1000 7 234 -4 8 282 82

    80 1000 7 111 -27 138 133

    20 1000 9 862 -186 1058 - -

    30 1000 9 611 -2 79 990 - -

    50 1000 9 389 -27 3 662 - -

    80 1000 9 467 -37 5 842 - -

    25 24153* 7.3 304 -230 534 - -

    20 1000t 4 504 -79 578 200

    20 1000t 7 427 -10 7 634 87.5

    20 1000t 9 814 -216 1030 67

    20 24153* 7.3 304 -230 534 75

    * Art i f i c ia l sea water .

    t

    De -ae r a t e d .

    c o r r o s i o n r a t e g e n e r a l l y i n c r e a s e s l i n e a r l y w i t h i n c r e a s i n g [ C I - ] i n t h e r a n g e

    1 0 0 - 5 0 0 0 p p m ( F i g . 1 3 ) ; ( i i ) w i t h i n c r e a s i n g p H , t h e c o r r o s i o n r a t e d e c r e a s e s , b e i n g

    h i g h e s t a t p H 4 . T h e r a t e s a t p H 7 a n d 9 a r e s i m i l a r i n m a g n i t u d e ; ( i i i ) i n g e n e r a l ,

    c o r r o s i o n r a t e i n c r e a s e s w i t h i n c re a s i n g t e m p e r a t u r e b e i n g h i g h e s t a t 8 0 C a n d

    l o w e s t a t 3 0 C ( F i g . 1 4 ) .

    Cyc l i c po la r i za ti on

    S o m e r e p r e s e n t a t i v e c y c l ic p o l a r i z a t i o n c u r v e s f o r 3 1 6 L i n

    C l - - c o n t a i n i n g s o l u t i o n s a r e s h o w n i n F i g s 15 - 1 7 . A h y s t e r e si s l o o p is t r a ce d d u r i n g

    r e v e r s e s c a n i n d i c a t i n g t h e p o s s i b i l i t y o f p i t ti n g . T a b l e 2 li s ts t h e v a l u e s o f p i t ti n g

    p o t e n t i a l ( Ep it ) a n d p r o t e c t i o n p o t e n t i a l ( Ep ro t ), w h i c h a r e d e f i n e d a s t h e p o t e n t i a l

    w h e r e t h e f o r w a r d a n d r e v e r s e s c a n s c r o s s . R e p a s s i v a t i n g p i t t i n g p o t e n t i a l ( E r ) i s

    a l s o c o n s i d e r e d , w h i c h i s d e f i n e d a s t h e m o s t a c t i v e p o te n t i a l a t w h i c h t h e n u c l e a t i o n

    o f u n s t a b l e ( i . e . r e p a s s i v a t i n g ) p i ts c a n o c c u r a n d i s c h a r a c t e r i z e d b y a r e v e r s i b l e

    i n c r e a s e i n c u r r en t d e n s i t y ( C D ) . T h e s t a b l e n u c l e a t i o n p o t e n t i a l ( E p i t ) i s a s s e s s e d a s

    t h a t a t w h i c h a c o n s i s t e n t i n c r e a s e i n C D o c c u r s , i n d i c a t i n g t h e i n i t i a t i o n o f n o n -

    r e p a s s i v a t i n g p i ts . Epr ot i s t h e m o s t a c t i v e p o t e n t i a l a t w h i c h p i t p r o p a g a t i o n c a n

    O c c u r .

    I n g e n e r a l , p i t ti n g p o t e n t i a l , E pi t i s s h i f t e d t o a m o r e n e g a t i v e ( o r a c t i v e ) v a l u e

    w i t h in c r e a s i n g [ C I - ] o r t e m p e r a t u r e .

    A t a p a r t i cu l a r t e m p e r a t u r e a n d [ C I - ]

    E p i t

    s h i ft s to a m o r e n o b l e p o t e n t i a l w i t h

    i n c r e a si n g p H . T h e e l e c t r o c h e m i c a l l y m e a s u r e d p i t p o t e n t i a l ,

    Epi t

    i s f o u n d t o b e a

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    15/19

    p H a n d [ C 1 - ]

    a n d t h e c o r r o s i o n

    o f A I S I 3 1 6 L

    s t e e l

    1823

    900

    8 0 0

    7 0 O

    6 0 O

    E 5 0 0

    ~

    4oo

    3OO

    2 0 0

    1 0 0

    FIG. 18.

    I I

    2 4

    L o g C I - ( p p m )

    P i t t i n g p o t e n t i a l

    v s l o g [ C 1 - ] a t 2 0 C a n d p H 4 .

    l in e a r f u n c t i o n o f t h e lo g a r i t h m o f [ C I - ] ( F i g . 1 8 ) . Th is li n e a r d e p e n d e n c e o f

    E p i t o n

    l o g [ C 1 - ] c a n b e r e p r e s e n t e d a s:

    g p i t = A + B log [C1-] .

    Bo t h t h e A a n d B c o e f fi c i e n t s a r e t e m p e r a t u r e d e p e n d e n t . F i g u r e 1 9 s h o w s t h e

    d e p e n d e n c e o f

    E p i t o n

    t e m p e r a t u r e a t d i f f er e n t v a l u e s o f p H a t a fi x e d [ C l - ] . A s h i ft

    o f E p i t i n t h e n e g a t i v e d i r e c t i o n u s u a l l y o c c u r s a s th e t e m p e r a t u r e i n c r e a s e s .

    E

    t.u

    FIG. 19.

    9 0 0

    o o

    7 0 0

    6 0 0 [ ] p H 4

    p H 7

    5 0 0 o p H 9

    4 O 0

    2OO

    100

    0

    - 1 0 0 I I I I

    o 2 0 4 0 6 0 8 0 ~ o o

    Tempereture ( C )

    P i t t i n g po t e n t i a l v s t e m p e r a t u r e f o r

    A I S I 3 1 6 L in 1 00 0 p p m C I s o l u t i o n o f

    v a r i o u s p H v a l u e s a t

    3 0 C .

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    16/19

    1 8 2 4 A . U . M A LI K e t a l .

    D I S C U S S I O N

    The immersion tests carried out on 316L coupons at different [C1-] concentra-

    tions, pH and time intervals and under static and dynamic conditions show extremely

    low weight losses (10-50/~g in typical 4-month runs). At a particular chloride

    concentration and immersion time, the weight losses were more or less independent

    of pH and immersion conditions (static or dynamic). The number and depth of the

    pits increase with increasing immersion time. The maximum number of pits were

    found on specimens immersed in solutions of pH 4. At pH 7 and 9, the pits were

    generally shallow and the number was smaller, though some of them were deep.

    Under dynamic conditions, the number of pits observed on the surface of the

    specimen was much smaller than under stagnant conditions.

    In the presence of C l- , austenitic stainless steels are subjected to local attack in

    the form of pitting or crevice corrosion due to breakdown of the protective Cr20 3

    film at random sites. 6 The pitting on the passive surface has been explained by the

    competitive adsorption mechanism 15'16 in which chloride ions move into metal/oxide

    film interface at the metal surface. At a particular chloride concentration, a critical

    potential E p i t ) develops which is sufficient to displace oxygen from the protective

    oxide layer. It appears from the present study that the low pH and stagnancy would

    provide most favourable conditions for pit growth. In a typical case, at 30C and 4-5

    ppm dissolved oxygen, the pits grow to maxima of 450 and 325 #m at pH 4 under

    static and dynamic conditions, respectively, when 316L specimens were immersed in

    300 ppm chloride solutions for 4 months. At higher pH values (7 and 9) the depth

    rarely exceeded 70/~m. The pit depth has been found to be a parabolic function of

    CI- concentration and therefore, with increasing [C1-] the rate of pit growth appears

    to slow down.

    The electrochemical studies on pitting corrosion were carried out at pH values of

    4, 7 and 9. At a particular [C1-] and a given temperature, the corrosion rates were

    3 2 0

    300

    280

    260

    I:: 24O

    I,~ 220

    200

    180

    160

    0

    FIG. 20.

    1 I

    2 4 6

    Log Cl - (ppm)

    R e p a s s i v a t i n g p o t e n ti a l v s l og [ C 1 -] f o r A I S I 3 1 6 L i n a q u e o u s s o l u t i o n o f p H 4

    a n d a t 2 0 C .

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    17/19

    p H a n d [ C l - ] a n d t h e c o r r o s i o n o f A I S I 3 1 6 L s t e e l 1 82 5

    900

    8 0 0

    7 0 0

    600

    E

    uj~ 500

    4 O O

    30O

    2O0

    20

    Flo . 21 .

    I I

    2 2 2 4 2 6

    t i

    P i t t in g p o t e n t i a l v s i n d u c t i o n t i m e f o r p it in i t ia t i o n in 1 0 00 p p m C I s o l u t i o n o f p H

    4 and a t 20C.

    f o u n d t o b e h i g h e s t at p H 4 a n d l o w e s t a t p H 9 . C o n s i d e r i n g t h e e f f e c t o f p H o n

    p i t ti n g p o t e n t i a l , E p i , t h e p o t e n t i a l w a s f o u n d t o b e s h i ft in g to m o r e p o s i ti v e v a l u e s

    w i t h i n c r e a s i n g p H . T h e c o r r o s i o n r a t e o f 3 1 6 L in a r ti fi c ia l s e a w a t e r ( [ C 1 -] 2 4 1 53

    p p m a n d p H = 7 . 3 ) w a s s i m i la r t o t h a t i n 10 00 p p m C I - s o l u ti o n s o f p H 7 a n d 9 b u t

    m u c h l o w e r t h a n t h a t i n a s o lu t io n o f p H 4 o f t h e s a m e c o n c e n t r a t i o n . T h e e f f e c t o f

    c h l o r i d e c o n c e n t r a t i o n o n t h e s t a b l e p i t n u c l e a t i o n p o t e n t i a l , Epi t is c o n s i s t e n t w i t h

    t h a t o b s e r v e d w i t h o t h e r s y s t e m s w h e r e b y t h e p o t e n t i a l v a r ie s l in e a r l y w i t h t h e

    l o g a r i t h m o f C l - a c t i v i ty . L e c k i e a n d U h l i g 15 r e p o r t e d a 8 8 m V s h i f t i n t h e c r i ti c a l

    n u c l e a t i o n p o t e n t i a l b y a 1 0 - f o l d i n c r e a s e in C I - a c t iv i ty in th e c o n c e n t r a t i o n r a n g e

    0 . 0 1 -1 M ( 3 5 0 - 3 5 , 0 0 0 p p m ) . I n th e p r e s e n t s t u d y a s h if t o f a b o u t 2 0 0 - 3 0 0 m V w a s

    o b s e r v e d b y a s i m i l a r i n c r e a s e i n t h e c o n c e n t r a t i o n r a n g e 1 0 0 - 50 0 0 p p m a t p H 4 . T h e

    r e p a s s i v a t in g p o t e n t i a l , E r a l so v a r i e s l in e a r l y w i t h t h e l o g a r i t h m o f t h e c o n c e n -

    t r a t i o n o f c h l o r i d e ( F ig . 2 0 ). H o w e v e r , n o s y s t e m a t i c v a r i a t i o n in p r o t e c t i v e

    potent ial ,

    E pro t , w a s f o u n d . A t [ C l - ] l e v e l s o f 1 0 0 p p m o r b e l o w n o r e p a s s i v a t i n g

    p o t e n t i a l w a s o b s e r v e d . T h e i n d u c t i o n t i m e , ti, f o r p i t i n it i a ti o n m e a s u r e d u n d e r

    o p e n c i r c u i t c o n d i t i o n s h a s b e e n f o u n d t o b e a l i n e a r f u n c t i o n o f p i t ti n g p o t e n t i a l ,

    E p it , a n d f o l l o w s t h e r e l a t i o n s h i p :

    Epi t = A + B log t

    w h e r e A a n d B a r e t e m p e r a t u r e d e p e n d e n t c o e f f ic i e nt s ( Fi g. 2 1 ).

    A t [ C 1 -] c o n c e n t r a t i o n s a t w h i c h s ta b l e n u c l e a t i o n w a s e v i d e n t ( 1 0 0 - 3 0 ,0 0 0 p p m )

    e x t e n s i v e h y s t e r e s i s w a s o b s e r v e d u p o n s c a n r e v e r s a l w i th r e p a s s i v a t i o n o c c u r r i n g in

    t h e v i c i ni t y o f th e O C P . T h e p i t t in g p o t e n t i a l , g p i t , w a s i n v a r i a b l y m o r e p o s i t iv e t h a n

    t h e p r o t e c t i v e p o t e n t i a l ,

    Eprot.

    T h e d i f f e r e n c e b e t w e e n p i tt in g a n d p r o t e c t iv e

    p o t e n t i a l s d e c r e a s e s w i t h i n c r e a s i n g [ C I - ] a n d is a l i n e a r f u n c t i o n o f lo g a r i t h m o f

    [ C 1 -] ( F i g . 2 2 ). T h e o c c u r r e n c e o f p i t i n i ti a t io n p o t e n t i a l s i n th e t r a n s p a s s i v e r a n g e

    c a n b e e x p l a i n e d i n te r m s o f t h e l o c a l i z e d b r e a k d o w n o f a s u r f a c e f il m o n 3 1 6 L th a t i s

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    18/19

    1826 A .U . MALIK t a l .

    640

    600

    ; 560

    5 2 0

    ~ 480

    FIG. 22.

    440

    4 0 0 I I

    0 2 4

    L o g C I - ( p p r n )

    Difference of pitting potential and protective potential vs log [C I-] at 20C and

    pH 4.

    s o m e w h a t l es s p r o t e c t i v e ( i. e . s h o w s a h i g h e r r a t e o f g e n e r a l d i s s o l u t i o n ) t h a n t h a t

    p r e v a l e n t i n th e p a s s iv e r e g i o n . A t p H 4 , u n d e r s i m i l ar c o n d i ti o n s o f t e m p e r a t u r e a n d

    [ C l - ] , t h e r e p a s s i v a t i n g p o t e n t i a l , E r , a p p e a r s a t a m u c h h i g h e r p o s i ti v e p o t e n t i a l

    t h a n a t p H 7 . N o r e p a s s i v a t i n g p o t e n t i a l w a s o b s e r v e d a t p H 9 . I t l e a d s t o t h e

    c o n c l u s i o n t h a t a t p H 4 , th e n u c l e a t i o n o f r e p a s s i v a t i n g p it s o c c u r s a t o v e r p o t e n t i a l s

    f a r b e l o w t h a t r e q u i r e d f o r s t a b l e p it t in g ; r e s u l t in g t h e r e b y in t h e o n s e t o f a d y n a m i c

    p r o c e s s o f p it i n it ia t io n a n d r e p a s s iv a t i o n p r i o r t o t h e d e v e l o p m e n t o f p r o p a g a t i n g

    p i t s .

    C O N C L U S I O N

    T h e p i t t i n g b e h a v i o u r o f A I S I 3 1 6 L in c h l o r i d e - c o n t a i n i n g s o l u t io n s i s g r e a t l y

    i n f l u e n c e d b y t h e v a r i a t i o n in [ C 1 - ], p H , d i s s o l v e d o x y g e n , t e m p e r a t u r e a n d f l ow

    c o n d i ti o n s . T h e e l e c t r o c h e m i c a l p o l a ri z a t io n e x p e r i m e n t s c a r r i e d o u t s h o w t h a t t h e

    c o r r o s i o n r a t e , p i t t i n g p o t e n t i a l , E p i t , a n d r e p a s s i v a t i n g p o t e n t i a l , E r , a r e l i n e a r

    f u n c t i o n s o f [ C l - ] . T h e i n d u c t i o n t i m e , ti, m e a s u r e d u n d e r o p e n c i r c u it c o n d i t i o n s ,

    h a s a l so b e e n f o u n d t o b e a l i n e a r f u n c t i o n o f p i tt i n g p o t e n t i a l , E p i .

    A n a n a l ys i s o f th e e x p e r i m e n t a l r e s u lt s in d i c a t e s t h a t in g e n e r a l , l o w p H , h i g h

    [ C l - ] a n d s t a g n a n c y a r e t h e m o s t f a v o u r a b l e c o n d i t i o n s f o r i n i ti a t io n a n d p r o p a g a -

    t i o n o f p i ts i n A I S I 3 1 6 L s t e e l .

    R E F E R E N C E S

    1. T. HODGKIESS,A. MACIVER nd P. Y.

    CHONG,

    D e s a l i n a t i o n 66, 147 (1987).

    2. T . HODGKIESS nd N . G.

    ARY,

    D e s a l i n a t i o n

    55,229 (1985).

    3. E. H. NEWTON, . O. BIRKETT, . A. HUNTER,E. W. SIEDERand P. G. TOMALIN,R & D Progress

    Report No. 278, U.S . Officeof Saline W ater, Arthur D. Little Inc. Report, Cam bridge, MA (1967).

    4. J. W . OLDF1ELD nd B. TODD ,D e s a l i n a t i o n 55,261 (1985).

    5. W . S. LEE , J. W . OLDFIELD nd B . TODD,D e s a l i n a t i o n 44, 209 (1983).

    6. H. H.

    UHLIG,

    C o r r o si o n H a n d b o o k . W iley, New Y ork (1948).

  • 7/23/2019 The Influence of PH and Chloride Concentration on the Corrosion Behavior of AISI 316L Steel in Aqueous Solutions

    19/19

    p H a n d [ C 1 - ] a n d t h e c o r r o s i o n o f A I S I 3 1 6 L s t e e l 1 82 7

    7. M. G. FONTANA, Corros ion Eng ineer ing . M c G r a w H i l l, N e w Y o r k ( 1 9 8 6 ).

    8 . A .J . SEDmCKS,Corros ion o f S ta in les s S tee ls . Wi l ey , N ew Y o r k ( 1 9 7 9 ) .

    9. R. STACKLE, B. BROWN, J . KRUCER an d A . A6RAWAL (ed s) , L o c a l i z ed Co r r o s i o n , 3 r d ed n , p .2 5 2 .

    N A C E , H o u s t o n , T e x a s ( 1 97 4 ).

    10. J. R. GALVELE, P a s s iv i t y o f M e t a l s ( eds R. P . FRANKENTnAL an d J . KRUGER), p . 285 . E lec t roc he m

    So c . , N ew J e r s ey ( 1 9 7 8 ) .

    1 1 . B . B A R OU X , Pas s i v a t i o n an d l o ca l i zed co r r o s i o n o f s t a i n l e s s s t ee l s , i n P a s s i v i t y o f M e t a l s a n d

    S em i c o n d u c t o r s ( ed . M . FORMENT), p . 531 . E lsv ier , Am ste rda m (1983) .

    12. Z.

    SZKLARSKA-SMIALOWSKA,

    i t t ing , C orros ion o f Meta ls . N A C E , H o u s t o n ( 1 9 8 6 ) .

    13. Z.

    SZKLARSKA-SM1ALOWSKA,

    orros ion 2 7 ,2 2 3 ( 1 9 7 1 ) .

    14. Z.

    SZKLARSKA-SMIALOWSKA,

    n d u s t r i a l P r o b l em s T r ea t m en t a n d Co n t r o l T ec h n i q u es . P e r g a m o n

    P r e s s , O x f o r d ( t 9 8 7 ) .

    15 . H . P . LECKIE and H . H . UHUG, J . e lec trochem. Soc . 113, 1262 (1967) .

    16. J . HORVATH an d H . H . U HLIG, J . e lec trochem. Soc . 115 ,791 (1968) .

    17. R. NISHMURA, M . ARAKI an d K . KUDO , Corros ion 40 ,465 (1984) .

    18. R. NISHMURA, Corros ion 4 3 ,4 8 6 ( 1 9 8 7 ) .

    1 9 . J . H . W A N G , C . C . Su an d Z .

    SZKLARSKA-SMIALOWSKA,

    orros . Sci . 44,

    732 (1988) .

    20. H. E. DEVERALL an d J . R . M AURER,M a t er . P er fo r m a n c e 17, 3 (1978) .

    21. H. P. HACK, M a t er . P er fo r m a n c e 22 , 24 (1983) .