the integrated highlights of iecm development

15
1 The Integrated The Integrated Environmental Control Environmental Control Model (IECM) Model (IECM) Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania Presentation to the DOE/NETL CO 2 Solvents Group Pittsburgh, Pennsylvania August 30, 2012 E.S. Rubin, Carnegie Mellon Highlights of IECM Development Highlights of IECM Development Originally developed to assess advanced technologies for SO 2 and NO x capture at PC plants; then Hg control as well. Expanded under the DOE Carbon Sequestration Program to include current options for CO 2 capture, transport and storage (CCS) at PC, IGCC and NGCC plants. Major update completed in November 2009 based on DOE/NETL Bituminous Baseline Study; IECM version 6.2.4 posted on Web in spring 2010. Since then, new contracts (via URS and the URA) have focused on modeling advanced CO 2 capture processes. E.S. Rubin, Carnegie Mellon The Integrated Environmental Control The Integrated Environmental Control Model (IECM) Model (IECM) A desktop/laptop computer simulation model developed for DOE/NETL Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of: PC, IGCC and NGCC plants All flue/fuel gas treatment systems CO 2 capture and storage options (pre- and post-combustion, oxy- combustion; transport, storage) Free and publicly available at: www.iecm-online.com E.S. Rubin, Carnegie Mellon Integrated Integrated in Several Dimensions in Several Dimensions A complete power plant with all major components and their interactions Systematic modeling of technologies applied before, during, or after fuel combustion or conversion Environmental emissions/impacts include all media (air, water, and land) Plant-level (or component-level) performance is directly coupled with capital and operating costs

Upload: others

Post on 18-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

1

The Integrated The Integrated Environmental Control Environmental Control

Model (IECM) Model (IECM)

Edward S. RubinDepartment of Engineering and Public Policy

Department of Mechanical EngineeringCarnegie Mellon University

Pittsburgh, Pennsylvania

Presentation to the

DOE/NETL CO2 Solvents GroupPittsburgh, Pennsylvania

August 30, 2012E.S. Rubin, Carnegie Mellon

Highlights of IECM DevelopmentHighlights of IECM Development

• Originally developed to assess advanced technologies for SO2 and NOx capture at PC plants; then Hg control as well.

• Expanded under the DOE Carbon Sequestration Program to include current options for CO2 capture, transport and storage (CCS) at PC, IGCC and NGCC plants.

• Major update completed in November 2009 based on DOE/NETL Bituminous Baseline Study; IECM version 6.2.4 posted on Web in spring 2010.

• Since then, new contracts (via URS and the URA) have focused on modeling advanced CO2 capture processes.

E.S. Rubin, Carnegie Mellon

The Integrated Environmental Control The Integrated Environmental Control Model (IECM) Model (IECM)

• A desktop/laptop computer simulation model developed for DOE/NETL

• Provides systematic estimates of performance, emissions, costs anduncertainties for preliminary design of: PC, IGCC and NGCC plants All flue/fuel gas treatment systems CO2 capture and storage options

(pre- and post-combustion, oxy-combustion; transport, storage)

• Free and publicly available at: www.iecm-online.com

E.S. Rubin, Carnegie Mellon

““IntegratedIntegrated”” in Several Dimensionsin Several Dimensions

• A complete power plant with all major components and their interactions

• Systematic modeling of technologies applied before, during, or after fuel combustion or conversion

• Environmental emissions/impacts include all media (air, water, and land)

• Plant-level (or component-level) performance is directly coupled with capital and operating costs

2

E.S. Rubin, Carnegie Mellon

IECM Modeling ApproachIECM Modeling Approach

• Systems Analysis Approach

• Process Performance Models

• Engineering Economic Models

• Advanced Software Capabilities User-friendly graphical interface Probabilistic analysis capability Versatile input/output features

E.S. Rubin, Carnegie Mellon

IECM Software PackageIECM Software Package

PowerPowerPlantPlant

ModelsModels

GraphicalGraphicalUserUser

InterfaceInterface

Plant andPlant andFuelFuel

DatabasesDatabases

Fuel PropertiesFuel Properties-- Heating ValueHeating Value-- CompositionComposition-- Delivered CostDelivered Cost

Plant DesignPlant Design-- Conversion ProcessConversion Process-- Emission ControlsEmission Controls-- Solid Waste MgmtSolid Waste Mgmt-- Chemical InputsChemical Inputs

Cost FactorsCost Factors-- O&M CostsO&M Costs-- Capital CostsCapital Costs-- Financial FactorsFinancial Factors

Plant & ProcessPlant & ProcessPerformancePerformance

-- EfficiencyEfficiency-- Resource useResource use

EnvironmentalEnvironmentalEmissionsEmissions

-- Air, water, landAir, water, land

Plant & ProcessPlant & ProcessCosts Costs -- CapitalCapital

-- O&MO&M-- COECOE

E.S. Rubin, Carnegie Mellon

Attributes of Process ModelsAttributes of Process ModelsTurnaround

Time

Scope

Complexity

Micro-Scale

PlantComponent

Mult-Component

IntegratedPlant

Sec

Min

Days

Hrs

Weeks

Algebraic

Mechanistic

CFD

ASPENIECM IECM

E.S. Rubin, Carnegie Mellon

IECM Technologies for PC PlantsIECM Technologies for PC Plants(excluding CO(excluding CO22 capture, transport and sequestration)capture, transport and sequestration)

Particulate Removal• Cold-side ESP• Fabric filter

- Reverse Air, Pulse Jet

SO2 Removal• Wet limestone

- Conventional, Forced oxidation- Additives

• Wet lime• Lime spray dryer

Solids Management• Ash pond, Landfill, Co-mixing• Byproducts (for export)

Cooling and Wastewater Systems• Once-through cooling• Wet cooling tower• Dry cooling tower• Chemical treatment• Mechanical treatment

Boiler/Turbine Types• Subcritical• Supercritical• Ultra-supercritical

Furnace Firing Types• Tangential• Wall• Cyclone

Furnace NOx Controls• LNB• SNCR• SNCR + LNB• Gas reburn

Flue Gas NOx Removal• Hot-side SCR

Mercury Removal• Carbon/sorbent injection

3

E.S. Rubin, Carnegie Mellon

Air Separation Unit • Cryogenic

Slurry Preparation

Coal Pretreatment

Gasification• Slurry-feed gasifier (GE-Q)• Dry-feed gasifier (Shell)

Syngas Cooling andParticulate Removal System

Mercury Removal• Activated carbon

H2S Removal System- Selexol- Sulfinol

Sulfur Recovery System• Claus Plant• Beavon-Stretford Unit

Gas Turbine- GE 7FA- GE 7FB

Heat Recovery Steam GeneratorSteam TurbineBoiler Feedwater SystemProcess Condensate TreatmentAuxiliary EquipmentCooling Water System

• Once-through• Wet cooling tower• Air cooled condenser

IECM Technologies for IGCC PlantsIECM Technologies for IGCC Plants(excluding CO(excluding CO22 capture, transport and sequestration)capture, transport and sequestration)

E.S. Rubin, Carnegie Mellon

IECM Technologies for CCSIECM Technologies for CCS• CO2 Capture Options

Pre-Combustion (IGCC):– Water gas shift + Selexol– Chemical looping

Oxy-Combustion (PC) Post-Combustion (PC, NGCC):

– Amine systems (MEA, FG+)– Chilled ammonia– Membrane systems– Chemical looping– Auxiliary NG boiler or power plant (optional)

• CO2 Transport Options Pipelines (six U.S. regions)

• CO2 Sequestration Options Geologic: Deep Saline or Other Formations Geologic: Enhanced Oil Recovery (EOR)

E.S. Rubin, Carnegie Mellon

• Detailed mass and energy balances for each major component and overall plant

• For components with complex chemistry and/or heat integration schemes, multi-variate regression or other reduced-order models (ROMs) are derived from experimental data and detailed process models

• Approximately 10-20 performance parameters for each component technology

Process Performance ModelsProcess Performance Models

E.S. Rubin, Carnegie Mellon

IECM Performance Parameters for IECM Performance Parameters for Amine Capture SystemAmine Capture System

• Flue gas composition• Flue gas temp/pressure• CO2 removal efficiency• SO2 removal efficiency• NO2 removal efficiency• HCl removal efficiency• Sorbent concentration• Lean solvent loading• Acid gas sorbent loss• Sorbent oxidation loss• Nominal sorbent makeup• Ammonia generation

• Cooling water makeup• Reclaimer chemical reqm’t• Flue gas pressure drop• Fan efficiency • Sorbent pumping head• Pump efficiency• Regeneration heat • Equiv. elec. requirement• CO2 product pressure• CO2 product purity• Compressor efficiency• Compression energy

4

E.S. Rubin, Carnegie Mellon

Performance Models Account forPerformance Models Account forMultiMulti--Pollutant InteractionsPollutant Interactions

CriteriaAir

Pollutants

PMSO2

NOx

HazardousAir

Pollutants

HgHClH2SO4

CO2

CH4

GreenhouseGas

Emissions

E.S. Rubin, Carnegie Mellon

• Direct cost models for each major process area (typically 5-10 areas per technology) based on detailed engineering design studies

• Explicit links to process performance models via key parameters (e.g., flow rate, temp., pressure, etc.)

• Calculate total capital cost, variable O&M costs, fixed O&M costs and annualized cost of electricity

• Approximately 20-30 cost elements per technology

Technology Cost ModelsTechnology Cost Models

E.S. Rubin, Carnegie Mellon

IECM Cost Model Parameters IECM Cost Model Parameters for Amine Capture Systemfor Amine Capture System

• Process Area Costs (12)• Process Facilities Cost• Eng’g. & Home Office• General Facilities• Contingency Costs (2)• Interest during Construction• Royalty Fees• Pre-production Costs• Inventory (startup) Cost• Total Plant Cost• Total Capital Reqm’t

• Operating Labor• Maintenance Labor• Admin./Support Labor• Maintenance Materials• Amine Sorbent Cost• Other Chemicals Cost• Waste Disposal Cost• Water Cost• (Power Cost)*• CO2 Transport Cost• CO2 Storage Cost______________________________*Only for stand-alone component analysis

E.S. Rubin, Carnegie Mellon

Probabilistic CapabilityProbabilistic Capability

• Allows users to explicitly model and quantify the effects of uncertainty and/or variability on component and system performance, emissions and cost

• Values for user-selected parameters are specified as a probability distribution function, which is sampled using a selected method and sample size

• Results are displayed as a cumulative distribution function, yielding confidence intervals and probability of different outcomes for selected parameters

5

Running the Model

www.iecm-online.comor

www.cmu.edu/epp/iecm

E.S. Rubin, Carnegie Mellon

E.S. Rubin, Carnegie Mellon

Graphical User InterfaceGraphical User Interface

E.S. Rubin, Carnegie Mellon

Running the Model: Three StepsRunning the Model: Three Steps

• Configure Plant (from menus of component options for each plant type)

• Set Parameters (or accept model defaults for system and component

technical, economic, emissions and financial parameters)

• Get Results (for overall plant or individual components in graphical

and/or tabular form, in English or metric units)

6

E.S. Rubin, Carnegie Mellon

Configure Plant: Configure Plant: PC Case StudyPC Case Study

21 E.S. Rubin, Carnegie Mellon

Set Parameters:Base Plant and CO2 Capture System

E.S. Rubin, Carnegie Mellon

Get Results:Overall Plant Performance and Cost

E.S. Rubin, Carnegie Mellon

Get Results:CO2 Capture System

7

E.S. Rubin, Carnegie Mellon

Probabilistic Results:Probabilistic Results:NGCC Case Study NGCC Case Study (no CCS)(no CCS)

0%

25%

50%

75%

100%

40 50 60 70 80

Cum

ulat

ive P

roba

bilit

y

Levelized Cost of Electricity (2007$/MWh)

Capital cost

Capital cost + Financing

Capital cost + Financing + O&M costCapital cost + Financing + O&M cost + PerformanceUtilization

- - - - Deterministic case

E.S. Rubin, Carnegie Mellon

Advanced Graphing OptionsAdvanced Graphing Options

• Can easily and quickly plot any model variable as a function of any other variable

• Can display results from up to six different runs on same graph

• All graphs and data easily exported for display or further processing

E.S. Rubin, Carnegie Mellon

The IECM TeamThe IECM Team

• Performance and Cost Models of Advanced CO2 Capture Systems: Advanced liquid solvents (Peter Versteeg)

Solid sorbent systems (Justin Glier)

Membrane capture systems (Haibo Zhai)

Advanced oxy-combustion (Kyle Borgert)

Chemical looping combustion (Hari Mantripragada)

• Software Development & Dist. (Karen Kietzke)

E.S. Rubin, Carnegie Mellon

Recent Developments Recent Developments (1)(1)

• Developed reduced order models (ROMs) for several advanced CO2 capture processes, now implemented in new IECM test versions: Chilled ammonia process (post-comb.) Membrane capture system (post-comb.) Chemical looping system (pre-comb.)

• Additional process models under development: Advanced oxy-combustion system Solid sorbent capture system (post-comb.) Chemical looping system (post-comb.)

• Prepared draft technical reports documenting new CO2 capture process models

8

E.S. Rubin, Carnegie Mellon

Recent Developments Recent Developments (2)(2)

• Posted beta version 7.0 for testing >500 downloads to date

• Additional new capabilities in v. 7.1.0, used for two IECM workshops at the recent NETL capture meeting

• Conducted case studies of CCS designs to characterize performance, cost, and uncertainties, including: CCS costs for NGCC plants Effect of proposed CO2 NSPS for coal plants Effect of EOR credits on capture system cost Comparisons of advanced capture technologies with

current amine-based systems.

Illustrative Results:Deterministic Cases

E.S. Rubin, Carnegie Mellon

Flue Gas Solvent Water CO2 Ammonia Return

Flue Gas

CO2(to Comp.)

CO2 StrippingFlue Gas Cooling CO2 Absorption

Ammonia CleanupTo Stack

Cooling Water

Chilled Water

Chilled Water

Steam

Steam

Steam

DCC1

DCC2

Makeup

Flue Gas Solvent Water CO2 Ammonia ReturnFlue Gas Solvent Water CO2 Ammonia Return

Flue Gas

CO2(to Comp.)

CO2 StrippingFlue Gas Cooling CO2 Absorption

Ammonia CleanupTo Stack

Cooling Water

Chilled Water

Chilled Water

Steam

Steam

Steam

DCC1

DCC2

Makeup

Flue Gas

CO2(to Comp.)

CO2 StrippingFlue Gas Cooling CO2 Absorption

Ammonia CleanupTo Stack

Cooling Water

Chilled Water

Chilled Water

Steam

Steam

Steam

DCC1

DCC2

Makeup

CO2 StrippingFlue Gas Cooling CO2 Absorption

Ammonia CleanupTo Stack

Cooling Water

Chilled Water

Chilled Water

Steam

Steam

Steam

DCC1

DCC2

Makeup

AmmoniaAmmonia--Based COBased CO22 Capture System Capture System (Detailed performance model in Aspen Plus)(Detailed performance model in Aspen Plus)

E.S. Rubin, Carnegie Mellon

AmmoniaAmmonia--Based COBased CO22 Capture System Capture System (Reduced Order Model in IECM)(Reduced Order Model in IECM)

9

E.S. Rubin, Carnegie Mellon

Some of the IECM Parameters for the NewSome of the IECM Parameters for the NewChilled Ammonia Capture System ModelChilled Ammonia Capture System Model Sensitivity of Sensitivity of

performance and performance and cost results to cost results to

selected ammonia selected ammonia system parameters*system parameters*

*All other parameters held constant

E.S. Rubin, Carnegie Mellon

New 2New 2--Stage Membrane System Stage Membrane System Model in IECMModel in IECM

E.S. Rubin, Carnegie Mellon

SweepSweep--based 2based 2--Stage, 2Stage, 2--Step Step Membrane System Model Membrane System Model

Flue GasTo Stack

1st Stage

2nd Stage

2nd Step

Sweep Air to BoilerAir

CO2 to Storage

CO2Recycle

10

E.S. Rubin, Carnegie Mellon

Some IECM Parameters for the NewSome IECM Parameters for the NewMembrane Capture System ModelMembrane Capture System Model

E.S. Rubin, Carnegie Mellon

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75

Cos

t of C

O2

Avo

ided

($/m

t CO

2)

Membrane CO2/N2 Selectivity

Membrane CO2 Permeance (gpu)

1000

2500

5000

Effect of Membrane Properties on Effect of Membrane Properties on Cost of COCost of CO22 Avoided Avoided

(Sweep-based Membrane System)

E.S. Rubin, Carnegie Mellon

40

50

60

70

80

10 30 50 70 90 110 130 150

Cos

t of C

O2A

void

ed ($

/mt C

O2)

Membrane Facilities Price ($/m2)

Membrane CO2 Permeance (gpu)

1000

2500

5000

Effect of Membrane Facilities Price on Effect of Membrane Facilities Price on Cost of COCost of CO22 Avoided Avoided

(Sweep-based Membrane System)

Illustrative Results:Probabilistic Cases

11

E.S. Rubin, Carnegie Mellon

Two Classes of Research QuestionsTwo Classes of Research Questions

Questions about a particular technology, e.g.:• What is the likelihood that Technology A will

meet a specified target for a key performance and/or cost metric ?

Questions of a comparative nature, e.g.:• What is the likelihood that Technology A will

cost X% less, or perform Y% better, than Technology B in a particular application ?

E.S. Rubin, Carnegie Mellon

Examples of IECM Parameter Examples of IECM Parameter Uncertainty DistributionsUncertainty Distributions

NORMAL UNIFORM LOGNORMAL

FRACTILETRIANGULAR ½ -NORMAL

E.S. Rubin, Carnegie Mellon

Stochastic SimulationStochastic Simulation

StochasticSampler

SAMPLING LOOP

(n iterations)

PowerPlantModel

Parameter UncertaintyDistributions ResultsResults

E.S. Rubin, Carnegie Mellon

Case Study:Case Study:SCPC Plants with and w/o CCS SCPC Plants with and w/o CCS

(13 uncertain parameters specified)(13 uncertain parameters specified)

0%

20%

40%

60%

80%

100%

0 40 80 120 160

Cumulative Prob

ability 

Plant Levelized Cost of Electricity (2010 $/MWh)

without CCS

with CCS

Both plant costs are uncertain. How to quantify the difference?

12

E.S. Rubin, Carnegie Mellon

IECM Probabilistic Cost IECM Probabilistic Cost DifferenceDifference(accounting for all correlated variables)(accounting for all correlated variables)

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

Cumulative

 Prob

ability 

Increase in Plant Levelized Cost of Electricity for CO2 Capture and Storage (2010 $/MWh)

~10% chance of ≤ $40/MWh

Question: What is the probability that the added cost of CCS will be no more than $40/MWh?

E.S. Rubin, Carnegie Mellon

Probabilistic Difference in LCOE for Probabilistic Difference in LCOE for Ammonia vs. Amine CaptureAmmonia vs. Amine Capture

0%

20%

40%

60%

80%

100%

-20 -10 0 10 20

Cum

ulat

ive P

roba

bilit

y

Difference in Plant Levelized Cost of Electricity for Ammonia versus Amine CO2 Capture (2010 $/MWh)

<20% chance that ammonia system

cheaper than amines for this case study

Work in Progress

E.S. Rubin, Carnegie Mellon

Remaining Work This YearRemaining Work This Year• New IECM release this fall with:

Final performance and cost models of chilled ammonia process, post-combustion membrane capture, plus chemical looping pre-combustion system

Other updates and enhancements (e.g., capability for probabilistic difference between two uncertain systems)

Technical reports and model documentation

• Continued model development for: Post-combustion solid sorbents Advanced oxy-combustion systems Post-combustion CLC (calcium looping)

13

E.S. Rubin, Carnegie Mellon

Also Under Development:Also Under Development:Solid Sorbent Capture SystemSolid Sorbent Capture System

RegeneratorAdsorber

Makeup Sorbent

SpentSorbent 

Flue gas in

Clean flue gas out

CO2+ H2O + trace acid gas

CO2‐lean sorbent

CO2‐rich sorbent

Steam

E.S. Rubin, Carnegie Mellon

Also Under Development:Also Under Development:Advanced OxyAdvanced Oxy--Combustion SystemCombustion System

Source: B&W, 2011

Current IECM model

One option for advanced design

E.S. Rubin, Carnegie Mellon

Also Under Development:Also Under Development:PostPost--Combustion Chemical LoopingCombustion Chemical Looping

Calcium Looping(post-combustion systems)

Source: Dean, et al., 2011

Model Users

14

E.S. Rubin, Carnegie Mellon

Some Recent IECM UsersSome Recent IECM Users

Terra Humana Clean Tech. Eng'r Ltd.Ontario Power Gen.Inst. of Applied Energy (IAE)ENSR, Inc.Chinese Academy of Sci.Tennessee Valley Authority (TVA)NTPC LimitedInstitut TeknologiBandung (ITB)Energy Res. Centre of the NetherlandsChalmers University

World BankTampa Electric Co.NTNU/StatoilINERCOEnergy & Env. StrategiesCarnegie Mellon UniversityWolk Integrated Technical ServicesSyncrudeNRDC Natural Res. DefenceCouncilIndustries LimitedEnergy & Env. Res. Corp.Canadian Clean Power CoalitionWisconsin Public Service Corp.Superior Adsorbents, Inc.Nova Scotia Power, Inc.Indian Inst. of Tech.Energy & Env. Res. Center (EERC)Canada Natural ResourcesWisconsin Dept. of Natural Res.Steven Coons ConsultingNorwegian University of Sci. and Tech.Imperial CollegeEnergi E2Canada Env.WheelabratorAir Poll. Control Inc.StatoilNorth Carolina State UniversityIllinois Inst. of Tech.Energetics, Inc.BP SunburyWashington PowerSouthern Co. Services, Inc.Norsk Hydro ASA, Oil & Energy Res.Illinois Dept. of Natural ResourcesAmerenUEBP Power Ltd.W.L. Gore & Associates, Inc.Southern Co. Gen.Norsk Hydro ASAIllinois Clean Coal Inst.EnelBP Int'l LimitedVattenfallUtveckling ABSNC LavalinNorman Plaks ConsultingIFPEmera Inc.BPVattenfallABSintef Energy Res.Niro A/SIEA Greenhouse Gas R&DElectricitede France (EDF)Boiler Systems Eng'r, E.S.O.URS CorpSierra Pacific Power Co.NIPSCOIEA Env. Projects, Ltd.Electric Power Res. Inst. (EPRI)BOC GasesUniversity of WaterlooSiemensNiksa Energy AssociatesIEA Clean Coal CentreElectric Power Gen. Assoc.Black & Veatch Corp.University of TwenteShell Global Solutions Int'lNicholson & Hall Corp.Holland Board of Public WorksElectric Energy, Inc. (EEI)Bechtel Power Corp.University of TorontoShell Chemical Co.New Energy & Ind. Tech. Org. (NEDO)Hatch AcresEdison Mission EnergyBattelle NorthwestUniversity of TexasSFA Pacific, Inc.NESCAUMHarvard UniversityE.ON EnergieAGBattelleUniversity of StuttgartScientechNeill and GunterHamonRes. Cottrell, Inc.E. On UKBasin Electric Power Coop.University of South WalesSci. Applications Int'l. Corp. (SAIC)National Power Plc.H&W Mgmt. Sci. ConsultantsDynegy Midwest Gen.Balcke-Durr GmbHUniversity of Salvador UNIFACSSavvy Eng'r, LLCNational Energy Tech. Lab. (NETL)GyeongsangNational UniversityDoosan Babcock Energy Ltd.ATCO PowerUniversity of ReginaSaskPowerNanyangTechnological UniversityGreat River EnergyDont Inc.Argonne National Lab.University of QueenslandSargent & LundyMinnkotaPower Coop., Inc.GM R&D CenterDONG Energy Gen.ARCADISUniversity of PittsburghSalt River Project (SRP)Midwest Gen. EME, LLCGenerators for Clean Air (GCA)DMCR/Dutch Ministry of Env. (VROM)Apogee Scientific, Inc.University of North CarolinaSalt River ProjectMidAmerican Energy Co.General Electric Co.Detroit Edison Co.APATUniversity of NewcastleSAICMichigan State UniversityGE Infra, EnergyDept. of Env. Services - NH (DES)Ankara UniversityUniversity of New OrleansRWE Power AGMassachusetts Inst. of Tech. (MIT)GE Global Res.Dept. of Env. Quality - VA (DEQ)American Transmission Co.University of Manchester Inst. Sci. Tech.RMB Consulting & Res., Inc.MacQuarieUniversityGassnovaDept. of Env. Protection - PA (DEP)American Electric PowerUniversity of MaineRes. Triangle Inst.Lower Colorado River AuthorityGas Tech. Inst. (GTI)Dept. of Env. Protection - NJ (DEP)Alstom Power Plant Lab.University of LecceRes. Inst. of Innovative Tech. EarthLincoln Electric SystemFuel Tech, Inc.Dept. of Env. and Natural Res. - NCAlstom Power Inc.University of EdinburghReaction Eng'r Int'lLehigh UniversityFriedman, Billings, Ramsey & Co.Dept. of Energy, Institutode CarboquimicaALSTOM Power CentralesUniversity of CaliforniaReaction Eng'r Inst.LAB SAFoster Wheeler EnergiaOyDept. of Energy (DOE)Alstom Power Boiler GmbHUniversity of CalgaryPrinceton UniversityKorea Western Power Co.Fossil Energy Res. Corp.CSEnergyAlstom (Switzerland)University of BathPraxair Inc.Korea Inst. of Energy Res.Fortum Power and Heat OyCroll-ReynoldsAlliant EnergyUniversity of AberdeenPrairie Adaptation Res. Coll.Korea Electric Power Corp.FordCQ, Inc.Allegheny Energy SupplyTXU ElectricPPL Gen., LLCKinectricsFluor Daniel Canada, Inc.COORETECALCOA Power Gen., Inc.Twenty-First Strategies, LLCPowergenPower Tech.Kennecott EnergyFluent, Inc.Coop. Res. Centre for Greenhouse GasAlberta Res. CouncilTU DresdenPowerGenKEMA Nederland B.V.FLS Miljo A/SConsumers EnergyAlberta Env.TransAltaPIRA Energy GroupKansas City Power & Light Co.Florida Power & Light Co.CONSOL Energy, Inc.Alberta Economic Dev.Toshiba Corp.Pinnacle West EnergyKanazawa UniversityFirstEnergy Corp.Columbia UniversityAkzo Nobel Functional ChemTNO Env., Energy and Process InnovPembina Inst.Japan Petroleum Exploration Co.First Energy Corp.CogentrixEnergy, Inc.Airborne Clean EnergyTMommerConsultantsPacific Northwest National Lab. (PNNL)Jack R. McDonald, Inc.Env. Protection Agency (EPA)Coaltek LLC / Jupiter Oxygen Corp.Air Products plcTexas Municipal Power AgencyPacific Corp.Ishikawajima-Harima Heavy IndustryEnv. Protection Agency - IL (EPA)Coal in Sustainable Dev., Tech TransferAir LiquideTexas A&M UniversityPace Global Energy ServicesIntermountain Power Service Corp.Env. DefenseClean Energy Systems Inc.AEP-SCR Eng'rTetra Tech EM Inc.OREC/Buckeye Power, Inc.Inst. of Energy - EC/JRCEnv. & Renewable Energy SystemsCinergy Power Gen. Services, LLCABB Lummus Global, Inc.

Terra Humana Clean Tech. Eng'r Ltd.Ontario Power Gen.Inst. of Applied Energy (IAE)ENSR, Inc.Chinese Academy of Sci.Tennessee Valley Authority (TVA)NTPC LimitedInstitut TeknologiBandung (ITB)Energy Res. Centre of the NetherlandsChalmers University

World BankTampa Electric Co.NTNU/StatoilINERCOEnergy & Env. StrategiesCarnegie Mellon UniversityWolk Integrated Technical ServicesSyncrudeNRDC Natural Res. DefenceCouncilIndustries LimitedEnergy & Env. Res. Corp.Canadian Clean Power CoalitionWisconsin Public Service Corp.Superior Adsorbents, Inc.Nova Scotia Power, Inc.Indian Inst. of Tech.Energy & Env. Res. Center (EERC)Canada Natural ResourcesWisconsin Dept. of Natural Res.Steven Coons ConsultingNorwegian University of Sci. and Tech.Imperial CollegeEnergi E2Canada Env.WheelabratorAir Poll. Control Inc.StatoilNorth Carolina State UniversityIllinois Inst. of Tech.Energetics, Inc.BP SunburyWashington PowerSouthern Co. Services, Inc.Norsk Hydro ASA, Oil & Energy Res.Illinois Dept. of Natural ResourcesAmerenUEBP Power Ltd.W.L. Gore & Associates, Inc.Southern Co. Gen.Norsk Hydro ASAIllinois Clean Coal Inst.EnelBP Int'l LimitedVattenfallUtveckling ABSNC LavalinNorman Plaks ConsultingIFPEmera Inc.BPVattenfallABSintef Energy Res.Niro A/SIEA Greenhouse Gas R&DElectricitede France (EDF)Boiler Systems Eng'r, E.S.O.URS CorpSierra Pacific Power Co.NIPSCOIEA Env. Projects, Ltd.Electric Power Res. Inst. (EPRI)BOC GasesUniversity of WaterlooSiemensNiksa Energy AssociatesIEA Clean Coal CentreElectric Power Gen. Assoc.Black & Veatch Corp.University of TwenteShell Global Solutions Int'lNicholson & Hall Corp.Holland Board of Public WorksElectric Energy, Inc. (EEI)Bechtel Power Corp.University of TorontoShell Chemical Co.New Energy & Ind. Tech. Org. (NEDO)Hatch AcresEdison Mission EnergyBattelle NorthwestUniversity of TexasSFA Pacific, Inc.NESCAUMHarvard UniversityE.ON EnergieAGBattelleUniversity of StuttgartScientechNeill and GunterHamonRes. Cottrell, Inc.E. On UKBasin Electric Power Coop.University of South WalesSci. Applications Int'l. Corp. (SAIC)National Power Plc.H&W Mgmt. Sci. ConsultantsDynegy Midwest Gen.Balcke-Durr GmbHUniversity of Salvador UNIFACSSavvy Eng'r, LLCNational Energy Tech. Lab. (NETL)GyeongsangNational UniversityDoosan Babcock Energy Ltd.ATCO PowerUniversity of ReginaSaskPowerNanyangTechnological UniversityGreat River EnergyDont Inc.Argonne National Lab.University of QueenslandSargent & LundyMinnkotaPower Coop., Inc.GM R&D CenterDONG Energy Gen.ARCADISUniversity of PittsburghSalt River Project (SRP)Midwest Gen. EME, LLCGenerators for Clean Air (GCA)DMCR/Dutch Ministry of Env. (VROM)Apogee Scientific, Inc.University of North CarolinaSalt River ProjectMidAmerican Energy Co.General Electric Co.Detroit Edison Co.APATUniversity of NewcastleSAICMichigan State UniversityGE Infra, EnergyDept. of Env. Services - NH (DES)Ankara UniversityUniversity of New OrleansRWE Power AGMassachusetts Inst. of Tech. (MIT)GE Global Res.Dept. of Env. Quality - VA (DEQ)American Transmission Co.University of Manchester Inst. Sci. Tech.RMB Consulting & Res., Inc.MacQuarieUniversityGassnovaDept. of Env. Protection - PA (DEP)American Electric PowerUniversity of MaineRes. Triangle Inst.Lower Colorado River AuthorityGas Tech. Inst. (GTI)Dept. of Env. Protection - NJ (DEP)Alstom Power Plant Lab.University of LecceRes. Inst. of Innovative Tech. EarthLincoln Electric SystemFuel Tech, Inc.Dept. of Env. and Natural Res. - NCAlstom Power Inc.University of EdinburghReaction Eng'r Int'lLehigh UniversityFriedman, Billings, Ramsey & Co.Dept. of Energy, Institutode CarboquimicaALSTOM Power CentralesUniversity of CaliforniaReaction Eng'r Inst.LAB SAFoster Wheeler EnergiaOyDept. of Energy (DOE)Alstom Power Boiler GmbHUniversity of CalgaryPrinceton UniversityKorea Western Power Co.Fossil Energy Res. Corp.CSEnergyAlstom (Switzerland)University of BathPraxair Inc.Korea Inst. of Energy Res.Fortum Power and Heat OyCroll-ReynoldsAlliant EnergyUniversity of AberdeenPrairie Adaptation Res. Coll.Korea Electric Power Corp.FordCQ, Inc.Allegheny Energy SupplyTXU ElectricPPL Gen., LLCKinectricsFluor Daniel Canada, Inc.COORETECALCOA Power Gen., Inc.Twenty-First Strategies, LLCPowergenPower Tech.Kennecott EnergyFluent, Inc.Coop. Res. Centre for Greenhouse GasAlberta Res. CouncilTU DresdenPowerGenKEMA Nederland B.V.FLS Miljo A/SConsumers EnergyAlberta Env.TransAltaPIRA Energy GroupKansas City Power & Light Co.Florida Power & Light Co.CONSOL Energy, Inc.Alberta Economic Dev.Toshiba Corp.Pinnacle West EnergyKanazawa UniversityFirstEnergy Corp.Columbia UniversityAkzo Nobel Functional ChemTNO Env., Energy and Process InnovPembina Inst.Japan Petroleum Exploration Co.First Energy Corp.CogentrixEnergy, Inc.Airborne Clean EnergyTMommerConsultantsPacific Northwest National Lab. (PNNL)Jack R. McDonald, Inc.Env. Protection Agency (EPA)Coaltek LLC / Jupiter Oxygen Corp.Air Products plcTexas Municipal Power AgencyPacific Corp.Ishikawajima-Harima Heavy IndustryEnv. Protection Agency - IL (EPA)Coal in Sustainable Dev., Tech TransferAir LiquideTexas A&M UniversityPace Global Energy ServicesIntermountain Power Service Corp.Env. DefenseClean Energy Systems Inc.AEP-SCR Eng'rTetra Tech EM Inc.OREC/Buckeye Power, Inc.Inst. of Energy - EC/JRCEnv. & Renewable Energy SystemsCinergy Power Gen. Services, LLCABB Lummus Global, Inc.

E.S. Rubin, Carnegie Mellon

Profile of IECM UsersProfile of IECM Users13%

37%33%

11%

6%

Utility Company

Other Company 

University+NGOs

Government

Unknown 

21%

9%

2%10%

58%

US+Canada

Europe

Asia+Pacific

Other 

Unknown

Organization Type

GeographicRegion

n >2200 individuals >800 organizations> 50 countries Distributions as of 2011

E.S. Rubin, Carnegie Mellon

Model ApplicationsModel Applications

• Process design

• Technology evaluation

• Cost estimation

• R&D management

• Risk analysis

• Environmental compliance

• Marketing studies

• Strategic planning

E.S. Rubin, Carnegie Mellon

Feedback from IECM UsersFeedback from IECM Users

“We've recently started using your IECM website to guide us in developing preliminary cost estimates. ..The information .. is extremely helpful. I just wanted to send along a note of thanks for making this model available and the technical support behind it.We appreciate your work very much.”- Carbon Dioxide Group, ConocoPhillips

“We have been using the IECM model for a few months here at Siemens and it is really useful for our research.”- Corporate Research, Siemens Corporation

Two recent examples from industrial users:

15

E.S. Rubin, Carnegie Mellon

July 2012 WorkshopsJuly 2012 Workshops

• At the request of NETL, we offered two IECM tutorial workshops at the recent NETL CO2Capture Technology Meeting

• 60 people from 44 organizations attended one or both sessions

E.S. Rubin, Carnegie Mellon

IECM Workshops, July 2012IECM Workshops, July 2012

ADA-ESADMAir LiquideAlstom PowerAmerenARPA-EAspen AerogelsB&WBattelle/PNNLBooz Allen Hamilton

GTIICFIEA GHG R&D ProgrammeInnoSepra LLCLindeMHIAMTRNETLNexantNorth American CoalNovozymes

Carbon Capture ScientificClarkson UniversityCO2 SolutionsColumbia UniversityDresser-RandEnergy & Environ Res CenterEPAFoster WheelerFuel Cell Energy IncGE EnergyGreen Technology

Penn State UniversityRice UniversityShenhua Group, ChinaSiemensTIERTrimericTuskegee UniversityUniversity of MississippiURSWestern Kentucky UniversityWorley Parsons

EXTREMELYPOSITIVEFEEDBACK !

E.S. Rubin, Carnegie Mellon

Future Plans Include Future Plans Include ……

• Advanced capture technologies

• Life cycle analysis capability

• Enhanced storage/utilization cost models

• Case studies and applications

• User training and outreach

Thank YouThank You

[email protected]@cmu.edu