the life computer code fatigue life prediction for vertical axis wind turbine...

71
SANDIA REPORT SAND87-0792 UC-60 Unlimited Release Printed August 1987 The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Components Herbert J. Sutherland, Thomas D. Ashwill, Norman Slack Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Upload: others

Post on 20-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

SANDIA REPORT SAND87-0792 UC-60 Unlimited Release Printed August 1987

The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Components

Herbert J. Sutherland, Thomas D. Ashwill, Norman Slack

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Page 2: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govern- ment nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or pro- cess disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

NTIS price codes Printed copy: A04 Microfiche copy: A01

Page 3: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

Distribution Category UC-60

SAND87-0792 Unlimited Release Printed August 1987

The LIFE Computer Code

Fatigue L i fe Prediction for Vert ical A x l s

Wind Turbine Components*

Herbert J. Sutherland** Thomas D. Ashwill**

and *** Norman Slack

ABSTRACT

The LIFE computer code was originally written by Veers to analyze the fatigue life of a vertical axis wind turbine (VAWT) blade. The basic assumptions built into this analysis tool are: the fatigue life of a blade component is independent of the mean stress; the frequency distribution of the vibratory stresses may be described adequately by a Rayleigh probability density function; and damage accumulates linearly (Miner's Rule). Further, the yearly distribution of wind is assumed to follow a Rayleigh distribution. The original program has been updated to run in an interactive mode on a personal computer with a BASIC interpreter and 256K RAM. Additional capabilities included in this update include: the generalization of the Rayleigh function for the wind speed distribution to a Weibull function; the addition of two constitutive rules for the evaluation of the effects of mean stress on fatigue life; interactive data input: and the inclusion of a stress concentration factor into the analysis.

-This work is supported by the U.S. Department of Energy ygder Contract DE-AC04-76DP00789.

Wind Energy Research Division; Sandia National a oratories.

New Mexico Engineering Research Institute. k*P

Page 4: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792
Page 5: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

. TABLE OF CONTENTS

Paqe

. . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . 2

Introduction 2 Analytical Considerations . . . . . . . . . . . . . . .

Component Stresses . . . . . . . . . . . . . . . . .

Vibrational Stress Distribution . . . . . . . . . Constitutive Equation . . . . . . . . . . . . . . . .

S-N Formulation . . . . . . . . . . . . . . . . . Mean Stress Correction . . . . . . . . . . . . . .

Damage Accumulation . . . . . . . . . . . . . . . . . Service Lifetime . . . . . . . . . . . . . . . . . .

Auxiliary Calculations . . . . . . . . . . . . . . . . . Altitude Correction . . . . . . . . . . . . . . . . . Stress Concentration Factors . . . . . . . . . . . .

Input Parameters . . . . . . . . . . . . . . . . . . . . Limitations Example Problem . . . . . . . . . . . . . . . . . . . .

Wind Regime 4

4

4

6

6

7

8

9

Mean Stress . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 10 Difference Equations 13

13

13

15 . . . . . . . . . . . . . . . . . . . . . . 19

2 0 . . . . . . . . . . . . . . . . . . . . . . . 2 8 References

Appendix A. Printed Output from the Example Problem . . 30

Appendix B. Program Variables . . . . . . . . . . . . . 33

Appendix C. Program Listing f o r the LIFE Computer Code Version 1.2 . . . . . . . . . . . . .

Appendix D. Stress Cycle Integration Limits . . . . . . Appendix E. Endurance Limit . . . . . . . . . . . . . . Appendix F. Automated Data Entry for the LIFE Code . . Appendix G. Program Listing for the LIFEA Computer

Code Version 2.1 . . . . . . . . . . . . .

3 6

4 5

4 6

4 7

4 8

V

Page 6: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

List of Tables Pase

Table I.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

S-N Properties for 6061-T6 Aluminum and 6063-T6 Aluminum . . . . . . . . . . . 21

List of Figures

Rotational Bending S-N Diagram for 6061-T6 and 6063-T6 Aluminum . . . . . . . 21

Axial S-N Diagram for 6061-T6 and 6063-T6 Aluminum. . . . . . . . . . . . . . . . . 22

Vibratory Stresses vs. Wind Speed for the DOE 100 kW Vertical Axis Wind Turbine . . 23

Mean Stress Correction for the 6063-T6 Aluminum S-N Diagram . . . . . . . . . . . 24

Wind Speed and Damage Density Functions for the Example Problem over the Entire Wind Spectrum (0 mph cut-in wind speed and infinite cut-out wind speed) . . . . . 25

Damage Density Functions for the Example Problem (10 mph cut-in wind speed and 45 mph cut-out wind speed) . . . . . . . . 26

Figure D1. Effect of the Internal Variables ML and MV

on the Predicted Service Lifetime for the Example Problem . . . . . . . . . . . . . 45

vi

Page 7: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

INTRODUCTION

. The production of energy using the Darrieus rotor, vertical axis wind turbine (VAWT) has been shown to be a viable option for using wind energy to meet the national energy production requirements utilizing renewable energy resources. However, to compete economically against conventional, fossil fueled systems, the wind turbine must produce energy for many years. As with all wind turbines, the long service lifetime combines with capital investment considerations to dictate a fatigue critical structure.

Current techniques for the prediction of the service lifetime of a wind turbine are subject to significant errors.' This analytical shortcoming has dictated that wind turbine structures be designed with large margins of safety. However, with the loss of the energy credits, the design of wind turbines must become more cost competitive. Highly over designed structures can no longer be tolerated. Moreover, even with large safety margins, the wind turbines located in the high turbulence areas of California have seen fatigue failures. Thus, the inclusion of fatigue analysis into the design of wind turbines has become critical to the wind industry.

For VAWTs, the need for fatigue analysis of critical components has been addressed by Veers, 2-4 Akins, Malcolm,' et al. Veers' research lead to the development of a research computer code, entitled the LIFE program, to evaluate the life of VAWT components under a set of simplifying assumptions. That code has now been adapted into an interactive code that can be run on a personal computer with a BASIC interpreter and 256K RAM. This report describes

5

-1-

Page 8: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

the new code (LIFE, Version 1.2) and the additional capabilities that have been incorporated into it.

The report starts with a review of the analytical and numerical models used in the code. The input parameters to the code are then discussed in detail. An example problem closes the report. from the code for the example problem, a list of the program variables used in the code, and a listing of the code.

Appendices include the printed output

ANALYTICAL CONSIDERATIONS

An analysis of the fatigue characteristics of a VAWT component requires detailed descriptions of the wind regime in which the turbine will be operating, the stresses excited in the component, and an appropriate constitutive equation for the material comprising the component. The following section describes the formulation of the site, machine and material descriptors, and the underlying assumptions that have been incorporated into the analysis to make it tractable.

WIND REGIME

In the initial LIFE code,3r7 the wind regime is assumed to follow a Rayleigh probability distribution function. formulation, the probability density Pv of a wind speed V occurring is given by:

In this

2 R V - R V I

4 v2 exP - 2 v2 pv -

where v is the annual average wind speed at the site under consideration.

-2-

Page 9: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

This formulation is a specialized form of the Weibull distribution:

a-1 pV =(+) (e) exp [ - (+a] '

where a and p are the shape factor and the amplitude factor of the Weibull distribution. Weibull distribution is equivalent to the Rayleigh distribution. speed through the gamma function

For a equal to 2, the

a and p are related to the average wind

For this analysis, the gamma function I' was evaluated using the following expression:"

where G(i), i = 1 to 5, are constants defined to be -0.5748646, 0.9512363, -0.6998588, 0.4245549, and -0.1010678, respectively. is always less than 5E-5 (5~10-~).

This expansion yields an absolute error that

. / "

As suggested by several authors, e.g., see Ref. 9, the Weibull distribution is a better description of the wind speed spectrum than the Rayleigh distribution. have incorporated the Weibull distribution into this new version of the LIFE code.

Therefore, we

Page 10: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

COMPONENT STRESSES

The total stress at in the component under consideration may be divided into two parts: a mean stress Sm and the vibratory stress S. Assuming linearity, these three variables may be related by (here we present only a one-dimensional, scalar, formulation for this problem):

at = sm + s . (5)

MEAN STRESS: two components: a gravity component a and a rotational component or. Again, assuming linearity permits one to write

The mean stress Sm can itself be divided into

4

Here, the gravity component is the stress induced into the component by the body force loading on the structure due to its placement in the earth's gravitational field.

The rotational stress may have several interpretations. Here, we define this component to be the stress induced into the component by rotation of the machine under no wind conditions. For constant speed VAWTs, this stress is a constant at a particular location on the blade component.

VIBRATIONAL STRESS DISTRIBUTION: The above definitions for the various stress components imply that the vibrational stress component S is the stress introduced into the component due to aerodynamic loads on the structure. Based on detailed experimental data from the DOE/ALCOA 17-m

-4-

Page 11: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

Low-Cost VAWT, Veers3 showed that, for this machine, the amplitude of the vibratory stresses S at any given wind speed follows the distribution of peak values of a Gaussian narrow band random process: namely, a Rayleigh distribution. Akins showed similar results for an Indal 6400 VAWT sited in California. This conditional probability density function ps/v of a stress S occurring at a particular wind speed may be written as

2

P s/v = [ 3 = X P [ -s2 OV ] (7)

where uv is the RMS mean value of vibratory stresses. Here, we assume that the mean stress uv is only a function of the wind speed V. Based data taken from the Low-Cost machine,3 a common form chosen for uv is that of a single straight line over the operating range of the machine. general equation for this formulation is:

The

where uo is the zero velocity intercept of the linear approximation of this function over the operating regime under consideration. In this version of the LIFE code, the functional relationship between the wind speed and the mean vibratory stress is not restricted to a single straight line. Rather, the function is input, in tabular form, as a set of ordered pairs of the form [Vi,(uv)i]. For values of V that lie between the tabulated points, linear interpolation is used to determine the value of uv; namely,

- (Jv - mi v + (9)

-5-

Page 12: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

where v. I v c v i+l , 1

and I

CONSTITUTIVE EQUATION

S - N FORMULATION: Several constitutive equations have been proposed for the accumulation of damage under cyclic loading (e.g., see Ref. 11). One of the more popular damage rules is called Miner's Rule. l2 the damage accumulation D is independent of the order-of-load application and is the sum of the fraction of the fatigue life exhausted at each stress level. Miner's rule may be written in integral form as

This linear rule simply states that

1:

where n(SmIS) is the number of applied cycles at the stress level defined by the mean stress SmI and the stress amplitude S and N(Sm,S) is the number of stres,s cycles required to fail the material at the same stress state. fatigue life is exhausted when D equals one (1.0).

T.

The

The function N(Sm,S) is a constitutive property of the material under investigation. llS-N1l curve at a specific mean stress. For this analysis, the S-N curve is input in tabular form as a set of ordered

It is usually formulated as an

-6-

Page 13: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

pairs of the form (Si,Ni) at a mean stress of S,. values of S that lie between the tabulated points, exponential interpolation is used to determine the value of N. Namely,

For

where

and

MEAN STRESS CORRECTION: If the input S-N Curve is for a zero mean stress, it may be corrected by the LIFE code for mean stress. Two rules have been incorporated into the code for this analysis. The first , the Goodman rule, characterizes the effect of mean stress on an S-N material characterization as

whe e S is the stress amplitude of the cyclic stress on the component (i.e., the component stress described in E q s . 5, 7, etc.), a, is the effective cyclic stress amplitude on the component at zero mean stress, and ou is the ultimate strength of the material.

f

-7-

Page 14: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

The second formulation, postulated by Falkenberg for aluminum, l3 is

S = 0.6 oe - 0.2 Sm * (19)

These formulations have been incorporated directly into the LIFE code and offer the user two formulations for the correction of the mean stress.

Thus, the functions n(Sm,S) and N(Sm,S) are reduced to a function of oe alone; i.e.,

Rewriting the limits of integration to encompass the range of stresses encountered in the component yields:

= /Omax( )doe I

Omin

where omin is the minimum stress encountered and omax is

the maximum. Here, omin is taken to be the Ilendurance limitts of the material under consideration, i.e., the stress level below which material damage is assumed to be negligible.

DAMAGE ACCUMULATION

Combining the results of the above three sections permits the determination of the damage in the VAWT component. with Eq. 21, the total damage Dt accumulated over the entire wind regime is given by

Starting

-8 -

Page 15: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

AS this formulation is only for the operating stresses, integral on wind speed may be reduced to cover only the operating range of the turbine.

the

Thus,

where Vst is the cut-in wind speed (starting speed) and is the cut-out wind speed (stopping speed). vSP

SERVICE LIFETIME

To determine the service lifetime of the component under consideration requires that time be incorporated into the damage function Dt (Eq. 23). at what time in the service lifetime of the component we expect failure (i.e., when does Dt equal one).

Namely, we have to determine

Veers’ assumes that damage is accumulated, on the average, at a rate equal to the dominant frequency of blade vibration fo, then the time rate of damage is given by

where t is the total time the VAWT has been operating. The service lifetime Tf occurs at Dt equal to one; i.e.,

-9-

Page 16: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

1

Tf Vst min fo/vsp( pv pSlv ) /.""( )doe dV .

DIFFERENCE EQUATIONS

To use the above formulation in a numerical computer require's that the above equations be written in discrete form. we will compute the value of an integral by dividing it up to a finite-series of intervals, evaluating the kernel at each interval, and then summing the results, using Simpson's rule,14 over all intervals.

Here,

,

Let us define the start of the ith interval of the wind regime to be Vi and its end to be Vi+l. AV is given by:

Thus, its width

In this version of the LIFE code, AV is taken to be a constant and equal to one. The mean velocity in this interval is defined to be

z ?

(Vm)i Vi + AV/2

Let the total interval between starting and stopping wind speed be divided into I intervals such that

-10-

Page 17: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

and ,

vi = (i - 1) AV + Vst (29)

In similar fashion, let the jth interval of the effective stress ue in the ith interval of the wind speed start at (ae)i, j and end at ( ~ ~ ) i , j + ~ . (assumed to be a constant here) is given by

Thus, its width Aa

and the mean stress in this interval is defined to be

Let the total interval on the effective stress integration be divided into J intervals such that

and

Then Eq. 23 may be written as:

. ^ I J

where,

-11-

Page 18: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

and,

-12-

Page 19: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

AUXILIARY CALCULATIONS

The format chosen for input to this code has been designed to minimize input parameters. This approach has one significant drawback: the program's formulations perform only a limited number of internal correction to the input parameters. Thus, specialized corrections must be performed by the user outside the LIFE code. As a guide, some typical corrections are listed below.

ALTITUDE CORRECTION

As the stress amplitude S and the mean RMS vibratory stress oV are directly related to the aerodynamic loads on the machine, they are a function of elevation. be multiplied by the air density correction factor T~ to correct for elevation changes. The correction is given by15

S and crV must

T~ = 1 + 0.25[(Ho - H)/6100], (39)

where H is the height of the machine under consideration and Ho is the height of the machine used to determine S (Note: Eq. 39 assumes that the dimensions of H are in feet).

STRESS CONCENTRATION FACTORS

The analysis performed in the LIFE code assumes that the input stress levels are the stresses in the most highly stressed section of the component; i.e., the stress level at

-13-

Page 20: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

the highest stress concentration (stress riser). If the analysis and/or the experimental data used to evaluate the stress level are away from the stress concentration, the analysis will predict a service lifetime that is nonconsewative. To insure that the LIFE code is analyzing the correct stress state, the operator must determine the magnitude of the stress concentration factor. This term is incorporated numerically into the calculations through a stress concentration factor Kt that is defined here to be

U mx I - Onom Kt -

where anOm is nominal stress in the component and amx is the maximum localized high stress.

Typically, the total stress concentration factor Kt is divided into its contributing factors through the relation16

* K2 * ... * Kn . Each Kn factor is the stress concentration factor due to a particular phenomenon. that should be considered for VAWT applications include the type of loading, size effects, surface roughness, surface treatment, penetrations, and notch sensitivity. A description of various stress concentration factors is given in Refs. 16 and 17.

Typical stress concentration factors

-14-

Page 21: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

INPUT PARAMETERS

To determine the service life of a VAWT component, the following information must be entered into the LIFE code in response to program queries. The program is run using a BASIC interpreter. Each data entry is concluded with the Return (ENTER) button. To document a computational session, selected input and output parameters are automatically printed by the program.

1. TITLE. A title for the calculation may be entered at the first prompt for identification. The title may be up to 34 characters in length. The date of the calculations is automatically added to the printed output.

2 . S-N CURVE. The material properties for the analysis are input via a tabular representation of the S-N fatigue curve. The curve is based on standard laboratory tests and may be obtained from several reference books (e.g., see Refs. 18, 19 and 20). The first variable input is the number (integer) of points on the S-N curve you will be entering. 20 points is allowed. for each S-N data point. The stress level is entered first and then the corresponding cycles to failure are entered. The values must be entered in ascending order of stress level to obtain correct predictions of service lifetime.

A maximum of The program then queries the operator

3 . STRESS CONCENTRATION FACTOR. The stress concentration factor for the section under analysis is the next entry. discussed earlier, this number is based on the geometry of the component and must be calculated outside of this code.

As

A s noted on the display, the Falkenberg equation (see 4 below) for the mean stress adjustment already contains a

-15-

Page 22: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

stress concentration factor of 1.67 in its formulation.

A value of 1 disables this feature of the program.

4 . MEAN STRESS CORRECTION. Three options for correcting the S-N data for mean stress are available. The choices are

1. The Goodman Rule (see Eq. 18) 2. The Falkenberg Equation (see Eq. 19) 3 . No Mean Stress Correction

Options 1-2 will query the operator for the value of the mean stress (see Eq. 6). Additionally, the Goodman rule option will query the operator for the ultimate strength of the material being analyzed. Option 3 disables this feature of the program.

Upon completion of the input, the program automatically prints the adjusted S-N curve. the S-N curve has been adjusted for both the stress concentration factor and the mean stress.

This tabular formulation of

5. VIBRATORY STRESS DISTRIBUTION. The mean RMS vibratory stress amplitude, S, is the next input variable (see Eq. 7). As discussed earlier, the stress amplitude is assumed to be a function of the wind speed (Eq. 9). The function is input in tabular form. The query is for the number (integer) of points on the Wind Speed vs. RMS-Stress curve you will be entering. A maximum of 20 is allowed. The program then queries the operator for each point on the curve. The wind

-16-

Page 23: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

speed is entered first and then the corresponding stress level is entered. The values must be entered in ascending order of wind speed to obtain correct predictions of service lifetime .

The value of S input to the code must contain the machine elevation correction factor - T ~ described in Eq. 39.

6 . VIBRATIONAL STRESS CYCLE RATE. The next query is for the stress cycle rate in Hz (see Eq. 2 4 ) . The value chosen for this variable may be obtained using one of several techniques. The first two techniques use experimental data to determine the fundamental (dominant) frequency of vibration. If one frequency clearly dominates the experimental data, then its frequency should be chosen for this variable. If there is no one dominant frequency, the zero crossing rate should be used to determine the cyclic frequency.

If experimental data are not available, then the fundamental blade modes may be used to estimate this variable. For VAWT blade components in spanwise (flatwise) bending, the dominant frequency is of the order of twice the rotational frequency (for two bladed VAWTs). For chordwise (lead-lag) bending, the blade's dominant frequency is of the order of three times the rotational frequency.

Note that the variable must have the units of Hz (cycles per second).

7 . OPERATION REGIME. The next set of queries defines the wind regime for the machine. The queries are

-17-

Page 24: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

Cut-In Wind Speed - Wind speed at which the machine starts operation (Eq. 23).

stops operation in high winds (Eq. 2 3 ) .

Cut-Out Wind Speed - Wind speed at which the machine

Average Wind Speed - Average wind speed at the wind site (see Eq. 2 ) .

Weibull Shape Factor - The shape factor in the Weibull distribution of wind speed (Eq. 2 )

Note that a value of 2 for the Weibull shape factor , a , yields a Rayleigh distribution. Values of the last two parameters have been summarized in Ref. 9 for a variety of wind sites.

At this point, the program goes into the main computation loop. After completion, the results of the calculations are printed automatically. The absolute damage (for a time of l/fo second) the wind speed density (Eq. 1) vs. wind speed table, a short summary of the input data and the predicted service lifetime are included in the output.

8. DATA DUMP OPTION. After completion of the calculations, the operator is queried for a "data dump." If this option is accessed, the operator will be asked for a file name (with the appropriate extension) for a dump of the numbers calculated during the course of this calculational session. The data are put into an ASCII file with appropriate headings. In this form, the data calculated by the code are available for archiving and for manipulation by other software.

-18-

Page 25: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

9. RESTART OPTION. At the termination of the program, the operator has the following options:

1. Exit to the BASIC interpreter 2. Exit to DOS 3 . Restart the LIFE code from the beginning 4 . Restart the LIFE code at step 7 above (different

wind regime)

LIMITATIONS

As discussed by several authors (e.g., see Refs. 5 and 6), the prediction of the service lifetime for a VAWT component by the LIFE code is subject to several limitations. All predictions should be evaluated in light of these limitations. The limitations include:

1. Miner's rule is a linear rule that is known to over-predict fatigue lifetime by as much as four times.

2. Fatigue damage due to stops, starts, and buffeting while parked is neglected. The importance of these contributions to the the fatigue life depends on the control system used for the machine under study and the site on which it is located.

3 . The fatigue life is sensitive to the chosen wind distribution. The choice of a Weibull distribution may or may not be adequate for the particular site under evaluation.

4 . The fatigue life is sensitive to the RMS stress distribution chosen. The Rayleigh distribution may or may not be adequate for the particular stress level and wind regime under consideration.

-19-

Page 26: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

5. The LIFE code assumes that damage is accumulated at a constant rate that is proportional to the frequencey fo, see Eq. 2 4 . This formulation may or may not be adequate.

6. If the VAWT structure contains an internal flaw (crack), the LIFE code does not analyze its growth.

EXAMPLE PROBLEM

To illustrate the use of this code, we will compute the service lifetime of a VAWT blade joint. The blade will be assumed to be constructed from 6063 aluminum and is to be analyzed using Goodman's rule for correcting the S-N curve for mean stress.

The ultimate strength of the 6063 aluminum is taken to be 35,000 psi. 2o To the authors' knowledge, the only known point on the S-N curve for 6063 aluminum subjected to axial loading is 10 ksi at 5E8 cycles. 2o Therefore, the total S-N curve had to be deduced from other data. In particular, the S-N curve for rotational bending for 6061-T6 aluminum and 6063-T6 aluminum was obtained from Ref. 21 (see Fig. 1 and Table I). As shown in Fig. 1 and tabulated in Table I, the curve for the 6063 aluminum can be inferred from the data for the 6061 aluminum by derating the 6061 curve by the ratio of their ultimate strengths: namely,

- - (OU) 6063 6063 (OU) 6061 s(n) I6061

Here, we have taken the ratio to be 0.7540. Applying this technique to axial loading, the S-N curve for 6061 aluminum20 may be used to determine the S-N curve for 6063

-20-

Page 27: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

TABLE I. S-N Properties for 6061-T6 Aluminum and 6063-T6

40 - I 1 1 I 1 I

- L-CS 6061-16 ALUMINUM Q) (measured) - 6063-16 ALUMINUM Y

6 (measured) cn - W -+a 6063-16 ALUMINUM U (calculated) I= 20 - cn 0

- 30 -

-

- - g 10 - - 0

I I I I 1 I 0 -

Jycles to Failure

1E4

1E5

1E6

1E7

1E8

5E8

Aluminum.

cyclic Stress, ksi

Rotational Bending

5061-T6

Yeasured

- 31.0

23.0

17.0

14.5

13.5

5063-T6

3easured

- 23.5

16.5

13.5

11

9.5

6063-T6

Calculated

23.5

17.4

12.9

11.0

10.2

Axial Loading

5061-T6

deasured

32.6

24.2

19.0

14.1

-

13.5

60 6 3 -T6

Jalculated

24.7

18.3

14.4

10.7

- 10.0

Figure 1. Rotational Bending S-N Diagram for 6061-T6 and 6063-T6 Aluminum

-21-

Page 28: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

aluminum. The results of this calculation are shown in Fig. 2 and tabulated in Table I. The known data point of 10 ksi at 5E8 cycles cited above is used in this S-N curve.

40 I I I I I I -

- - 606 1-16 ALUMINUM cn (measured) 30 - -+- 6063-T6 ALUMINUM cn” (calculated)

v) - W a I- 2 0 - v)

0 - - II

-

-

a a g 10 - -m-------* - 0 - -

I I I I I I 0

Figure 2. Axial S-N Diagram for 6061-T6 and 6063-T6 Aluminum

The stress state analyzed here will correspond to the lower joint in the DOE/ALCOA Low-Cost VAWT. The mean stress at the joint has a 4000 psi component due to rotation22 and a gravity component of 3000 psi23 7000 psi. The vibratory stresses were measured as a function of wind speed in Ref. 24 and are shown in Fig. 3.

for a total mean stress of

-22-

Page 29: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

2.6

2.4 2.2

2.0 v) Y 1.0

1.6 v) w 1.4 a + 1.2

v) z 0.0

0.6 a

v, 1.0

:::y, , , , , , , 1 0.0 10 2 0 30 40 50 0

I I I I 1 I I I 1 - - - - - - - - - -

WIND SPEED, mph

Figure 3 . Vibratory Stresses vs.Wind Speed for the DOE 100

kW Vertical Axis Wind Turbine

Assuming that we are analyzing a series of widely spaced holes, the stress concentration factor is 3.016. The data in Fig. 3 were taken at an estimated stress concentration factor of 1.1to 1.5. We will assume the data have a 1.1 stress concentration factor. Thus, using Eq. 41, the stress

-23-

Page 30: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

concentration factor entered into the code is 2.73; i.e., 3.0/1.1.

concentration factor and the 7000 psi mean stress are shown in Fig. 4.

The l'adjustedll S-N curve for this stress

40

..II on * 30

a W

cn"

a c 20 cn

i,

I I I 1 I I I 5 6 7 0 9 10

LOG10 (CYCLES TO FAILURE) 3 4

Figure 4. Mean Stress Correction for the 6063-T6 Aluminum S-N Diagram

The wind regime is assumed to have a Rayleigh distribution with a mean velocity of 14 mph. density distribution function, Eq. 2, for this wind distribution is shown in Fig. 5.

The entire probability

The primary vibratory stress cycle rate is taken to be 1.6 Hz (the first blade flatwise mode).

-24-

Page 31: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

The damage density function is the fraction of the damage that occurs in a particular wind speed interval. For an operating range of 0 mph cut-in wind speed and infinite cut-out wind speed, this function takes the form shown in Fig. 5. For an operation regime with a 10 mph cut-in wind speed and a 45 mph high wind speed cut-out velocity, the damage density distribution function becomes the relation shown in Fig. 6.

0.07

~ 0.06 I-

0.05 I)

W

+ 0.04 c- $ 0.03 4

U P

n

I

m 0 0.02

0.0 1

0

I 1 I 1 I 1 I I 1

\

\

\

I I

- ANNUAL WIND SPEED

---ANNUAL DAMAGE PDF PDF

\ \

0 10 20 30 40 50 60 7 0 80 90 100 WIND SPEED, mph

Figure 5. Wind Speed and Damage Density Functions for the Example Problem over the Entire Wind Spectrum

-25-

Page 32: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

0.10 I I

0.09 - - GOODMAN RULE

I 1 I

- --- FALKENBERG EQUATION - 0.08 1

tn z 0.07 W a 0.06

’\ \

i * 4

U

0.05

0.04

0.03

E 0.02

WIND SPEED, mPh

Figure 6. Damage Density Functions for the Example Problem

The prediction of the service lifetime for the component with the operating wind regime between 10 mph and 45 mph is 15.2 years (Fig. 6). Reducing the cut-out velocity to 40 mph increases the service lifetime to 20.6 years. For the 0 mph to infinite wind speed operating regime its life is reduced to 12.6 years (Fig. 5).

A similar calculation using the Falkenberg equation was also conducted. Adjusting the stress concentration factor to 1.63 (tlie total stress concentration factor of 3.0 must be divided by 1.1 for the input RMS stresses and by 1.67 for the stress concentration factor included in the Falkenberg equation)

-26-

Page 33: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

yields the S-N curve and the damage density function shown in Figs. 4 and 6, respectively.

The printed output from the computational session using the Goodman rule and a wind regime of 10 to 45 mph is shown in Appendix A. The graphs presented here were obtained using the "Data Dump" files from the LIFE code in coordination with other software.

SUMMARY

This report presents a description of the LIFE computer code. The code is designed to predict the service lifetime of a VAWT component based on a set of assumptions that have been outlined in the report. Within the restrictions placed on the analysis by these assumptions, the LIFE code may be used to predict the service lifetime of a VAWT component using a personal computer with 256K RAM and a BASIC interpreter.

Page 34: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

REFERENCES

1. D. E. Berg, !!Wind Turbine Fatigue Considerationsv1 (IEA Fatigue Experts! Meeting, Stuttgart, November 1985).

2. P. S. Veers, An Approach the Fatisue Analysis of Vertical Axis Wind Turbine Blades, SAND81-2130 (Albuquerque: Sandia National Laboratories, September 1981).

3. P. S. Veers, '!Blade Fatigue Life Assessment With Application to VAWTS,~' J. Solar Enersv Ensineerinq 104:106, May 1982.

4. P. S. Veers, A General Method for Fatisue Analysis of Vertical -- Axis Wind Turbine Blades, SAND82-2543 (Albuquerque: Sandia National Laboratories, October 1983).

5. R. E. Akins, IgInitial Analysis of Structural Data. DAF 6400 Rotor, Revised Configuration," prepared for Southern California Edison Ltd. (Lexington: Washington and Lee University, June 1985).

6. D. J. Malcom, Fatisue Life Assessment of VAWT Components (Mississauga: Indal Technologies, December 1985).

7. T. D. Ashwill and N. Slack, !'Fatigue Life Predeiction for Vertical Axis Wind Turbine Blades Using the LIFE Computer Program" (Albuquerque: Sandia National Laboratories, 1986). Internal memorandum.

8. P. Wirsching, ItReliability Methods in Mechanical and Structural Design," Aerospace and Mechanical Enqineerinq (Tucson: The University of Arizona, 1983).

9. W. R. Barchet, !'Wind Energy Data Base," Proceedinss of the Fifth Biennial Wind Energy Conference and Workshop II:661-671, ed. I. Vas, SERI/CP-635-1340 (Golden: Solar Energy Research Institute, 1981).

10. M. Abramowitz and L. A. Stegun, Handbook of Mathematical Functions, NBS Applied Math Series, No. 55 (Washington: US Government Printing Office, 1964).

11. C. C. Osgood, Fatisue Desiqn, 2nd Edition (Oxford: Pergamon Press, 1982).

12. A. A. Miner, IICumulative Damage in Fatigue,!' Trans. ASME 67:A159, 1945.

13. R. J. Falkenberg, IIOperating Stresses in EWEB ALVAWT 1238229-500 (Alcoa Center: Alcoa Technical Center, March 1981). Memorandum.

-28-

Page 35: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

14. C. Froberg, Introduction &Q Numerical Analysis (Reading: Addison-Wesley, 1965) . 15. A. C. Hansen, Adjustment of SWECS Power Curves for Air Density Variations (Golden: Rockwell International Corp., March 1982).

16. R. E. Peterson, Stress Concentration Factors, Charts, and Relations Useful in Makina Strensth Calculations for Machine Parts - and Structural Elements (New York: John Wiley and Sons, 1974).

17. H. 0. Fuchs and R. I. Stephens, Metal Fatisue in Enaineerinq (New York: John Wiley and Sons, 1980).

18. U . S . Department of Defense, Military Standardization Handbook-= Metallic Materials and Elements for Aerospace Vehicle Structures (Philadelphia: Naval Publications and Forms Center, 1978).

19. T. Baumeister, ed., Mark's Standard Handbook for Mechanical Ensineers 8th edition, (New York: McGraw-Hill, 1978).

20. H. E. Boyer and T. L. Gall, eds., Metals Handbook, Desk Edition 8th edition (Metals Park: American Society for Metals, 1985).

21. Military Handbook, MIL-HDBK-694A(MR), December 1966.

22. T. D. Ashwill and T. M. Leonard, Developments in Blade Shape Desisn for a Darrieus Vertical Axis Wind Turbine, SAND86-1085 (Albuquerque: Sandia National Laboratories, September 1986).

23. T. D. Ashwill, design calculations at Sandia National Laboratories, Albuqueruqe, NM.

24. D. W. Lobitz and W. N. Sullivan, A Comparison of Finite Element Predictions and Experimental Data for the Forced Response --- of the DOE 100-kW Vertical Axis Wind Turbine, SAND82-2534 (Albuquerque: Sandia National Laboratories, February 1984).

-29-

Page 36: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDIX A.

PRINTED OUTPUT FROM THE EXAMPLE PROBLEM

FATIGUE LIFE PROGRAM, VERSION 1.2

****** Low Cost 6063-T6 Example Calc ******

Calculations Performed on : 03-25-1987

THE NUMBER OF INPUT POINTS ON THE SN CURVE IS = 5

THE INPUT S-N DATA ARE: STRESS LEVEL CYCLES TO FAILURE

10000 5.00000E+08 10700 1.00000E+07 14400 1.00000E+06 18300 1.00000E+05 24700 1.00000E+04

The Stress Concentration of Factor = 2.73

THE MEAN STRESS AT RATED ROTOR SPEED WITHOUT WIND = 7000

THE GOODMAN RULE FOR MEAN STRESS CORRECTION HAS BEEN SELECTED THE ULTIMATE STRENGTH = 35000

THE ADJUSTED S-N DATA ARE : STRESS LEVEL CYCLES TO FAILURE

2930 5.00000E+08 3136 1.00000E+07 4220 1.00000E+06 5363 1.00000E+05 7238 1.00000E+04

THE NUMBER OF RMS VS WIND SPEED DATA POINTS = 4

THE WIND SPEED AND RMS DATA ARE: WIND SPEED RMS STRESS LEVEL

0 0.00 10 320.00 20 700.00 40 1560.00

-30-

Page 37: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

THE STRESS CYCLE RATE IN HZ = 1.6

THE INTEGER WIND SPEEDS FOR CUT-IN AND CUT-OUT ARE:

CUT-IN WIND SPEED = 10 CUT-OUT WIND SPEED = 45

THE YEARLY AVERAGE WIND SPEED = 14 THE SHAPE FACTOR ON THE WIND DISTRIBUTION = 2

Note: 2.0 implies a Rayleigh Distribution

THE CHOSEN ENDURANCE LIMIT (STRESS) = 2782

The Wind Speed Interval = 1.0

CENTER OF WIND SPEED INTERVAL

10.50 11.50 12.50 13.50 14.50 15.50 16.50 17.50 18.50 19.50 20.50 21.50 22.50 23.50 24.50 25.50 26.50 27.50 28.50 29.50 30.50 31.50 32.50 33.50 34.50 35.50 36.50 37.50 38.50 39.50

WIND SPEED PDF

5.3987E-02 5.4148E-02 5.3470E-02 5.2044E-02 4.9977E-02 4.73843-02 4.4381E-02 4.1086E-02 3.7610E-02 3.40533-02 3,05073-02 2.70483-02 2.37383-02 2.0627E-02 1.7748E-02 1.5125E-02 1.2766E-02 1.0675E-02 8.8429E-03 7.2582E-03 5.9032E-03 4.7578E-03 3.8003E-03 3.0084E-03 2.3605E-03 1.8358E-03 1.4152E-03 1.08153-03 8.1929E-04 6,15303-04

DAMAGE

4.23474E-25 4,899643-22 5.81351E-20 2.34628E-18 4.46782E-17 4.83642E-16 3.39308E-15 1.695203-14 6.46354E-14 1.98139E-13 5.56846E-13 1.356823-12 2.85610E-12 5.33245E-12 9.01592E-12 1.403503-11 2.03846E-11 2.79200E-11 3.63738E-11 4.53858E-11 5.45394E-11 6.339683-11 7.15321E-11 7.85605E-11 8.41630E-11 8.81057E-11 9.02528E-11 9.05715E-11 8.91288E-11 8.60803E-11

Page 38: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

40.50 41.50 42.50 43.50 44.50

4.58133-04 8.165213-11 3.38183-04 7.61195E-11 2.4750E-04 6.97829E-11 1.7960E-04 6.29457E-11 1.2922E-04 5.589433-11

AVERAGE WIND SPEED = 14 THE SHAPE FACTOR ON THE WIND DISTRIBUTION = 2 CUT-IN WIND SPEED = 10 CUT-OUT WIND SPEED = 45 COMPONENT LIFE EXPECTANCY IS = 132910.4 HOURS. THIS IS EQUIVALENT TO = 15.16204 YEARS.

-32-

Page 39: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDIX B

PROGRAM VARIABLES

The symbols used in this program are defined as follows:

A

A1

ALP

B

BET

B1

C

D

E

El

F

F1

F2

FS

H

Gl-G5

I

I1

J

- Average wind speed. - Internal variable. - The shape factor for the Weibull distribution of the

- Internal plotting variable for stress. - Internal variable for the Weibull distribution. - Internal variable. - The number of data points in the S-N curve, less one. C=N-1.

wind speed spectrum.

- R-1. - Flag for ending or restarting the program. - Stress level at NO cycles. - Incremental damage rate (Miner's Rule) in the stress integration loop.

- Reciprocal of the damage T. - Flag for describing the rule used to adjust the S - N

- Output file name for data dump. - Life in hours. - Constants for determining the Gamma Function for the

curve for mean stress.

Weibull distribution.

- Index. Cut-in wind speed.

current wind speed. - Segment of the RMS stress curve fit chosen for the

-33-

Page 40: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

J1 - Index. K2 - Segment of the S-N curve fit chosen for the current

RMS stress level.

K(1) - The intercept of the ith segment in the log-log curve fit of the S-N data.

LB

LD1

L N 1

LO 1

LS 2

LT1

LT2

LU2

M

ML

Mu

M1

M2

M3

N

NO

- Internal plotting variable for B. - Internal plotting variable for Dl(1). - Internal plotting variable for Nl(1). - Internal plotting variable for Ol(1). - Internal plotting variable for S2. - Internal plotting variable for Tl(1). - Internal plotting variable for T2(I). - Internal plotting variable for U2(I). - Medium RMS stress level.

- Sets M1. - Sets X1. - Lower bound for integration on the RMS stress. - Integer value of El. - Mean stress for the S-N curve adjustment. - Number of data points in the S-N curve. - Log of the number of cycles to the endurance limit for the S-N curve.

NPI - Number;bf wind speed intervals. Nl(1)

N2 - Incremental stress for the RMS stress integration. P - Probability density function for the Rayleigh

- The ith component of the cycles in the S-N curve.

distribution at the current RMS stress.

-34 -

Page 41: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

PLDl - Damage density function of the wind speed. a - Equal to S. Q1

42

- Number of cycles in the RMS stress integration loop. - Probability distribution for the wind speed distribution at the current wind speed.

R - Number of data points in the RMS stress vs wind speed curve.

R ( 1 )

S

- The ith component of the RMS stress.

- Stepped wind speed in the wind speed integration loop.

S C F - Stress concentration factor. Sl(1) - The slope of the ith segment in the log-log curve

fit of the S-N data.

52 - Stepped RMS stress level: from M1 to X1. T - Total accumulated damage. Tl(1) - The ith component of the stress in the S-N curve. U - Ultimate strength of the material. Used to adjust

the S-N curve for mean stress using the Goodman Rule (see Eq. 18).

u1 - Stress integral summation U2 (I)

density function. - The ith component of wind speed probability

V1 - Cut-out wind speed. v2 - V1 minus 1. W ( 1 ) - The ith component of the wind speed. x1 - Upper bound for integration on the RMS stress. Y - Stress cycle rate in Hertz. YS - Title of the calculation. Y1 - Life in years.

Page 42: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDM c.

PROGRAM LS-G FOR 'IHE LIFE EMEVJXR ODE

VERSION 1.2

100 110 12 0 13 0 140 150 160 17 0 180 19 0 200 2 10 220 230 240 250 2 60 270 280 290 300 3 10 320 330 340 350 360 370 380 3 90 400 4 10 420 430 440 450 460 470 480 490

REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM DIM DIM CLS REM REM REM REM

'IHE LIFE (XIDE

VERSION 1.2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THIS PRCGRAM WAS As A PAHT OF WORK SPONSORED BY AN AGENCY OF THE U. S. -. NEITHER THE U.S. GOVERNMENT NOR ANY AGENCY THESEXIF, NOR ANY OF THEIR EMrm3yEFs, NOR ANY OF THEIR CONTRACrORS, -mRS, OR ?HEIR EMpLL>yEEs, MAKES ANY -, ExpfiEsS OR IMPLED, OR AS$WES ANY LEGAL IilABIm OR R E S F O N S I B I ~ FOR THE ACCURACY, m, OR USEFUI-NESS OF THIS FEOGRAM, OR REPRESENTS THAT OPINIONS EXPRESSED HEREZN D3 NOT NECESSARILY STA" OR REZ'IXcT THOSE OF THE U.S. GCNERNNEKT, ANY AGENCY THEREOF OR ANY OF THEIR ClXCRAC!IWS OR -CIDRS.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SEX' UP ?HE DIMENSIONS FOR THE PRDGFWI Tl(20) ,T2(20) ,S1(20) ,Rl(20) ,Wl(20) ,N1(20) ,KL(20) U2 (100) , D l ( 1 0 0 ) ,01(100)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mmLIFE-

USE THIS AREA TO I N I T I A U Z E PROGRAM PARAME;TERs PI=3.14159265# REM set up ~arametexs for amm ma Function G1=-.5748646 G2= ,9512363 G3=-.6998588 G4= .4245549 G5=-.1010678 REM Set other Parametem u1=0 so=o REM USE THTS AREA 933 SET UP PROGFWI C D N S m

-36-

Page 43: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

500 RFM Define the cycles cQllllt a t the Rxhmnce Limit

the Limits of Integration on the 520 REM Set constants for Determmrq 530 REM FU'4S Stress 540 &-2

510 NO==( l O " 1 0 ) . .

550 MV== 560 REM Set canstant that Determines the Size on the Stress Inteqntion 570 REM Interval 580 Q1=50 590 REM Set mnstant for the Number of Intervals in the &ita Ixmrp of the 600 REM S-N Curve 610 -50 620 RFM FVT IN PRINlZR CONI'ROL HERE TO INITIXJZE YOUR PRINTER

-37-

Page 44: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

-38-

Page 45: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

1500 'I LEVEL CYCLES TO FAILURE" 1510 FOR 1=1 TO N 1520 REM Correct the Stress State for the stress Concentration Factor 1530 T1 (I) 42 (I)/S(IF 1540 REM Make sum that the Adjusted stress Remains W i t i v e 1550 IF Tl(1) <.1 ?HEN Tl(I)=I*5 1560 €" USING ###### ##. #####^^^^ II. I Tl(1); N1(I) 1570 LeRINT USING It ###### ##. #####^^^^ 'I; T1 (I) : N1 (I) 1580 NEXT I 1590 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600 REM 1610 PlUNT: LEl?INT 1620 PRINT tl- THE CXlRvE FITS FWR THE S-N DATA" 1630 REM LpRINT 1640 PRINT I' IMEECWT SLI3pE" 1650 REM LeEuNT It ll?EFam SIDPEY

THIS FRCGRAM USES A LCIG-LOG FTT TO THE S-N CURVE CURSE

THE CALLXTLATED CURSE FITS FOR THE S-N DATA ARE:"

1660 FDR 1=1 TO C 1670 S1 (I) =LM; (N1 (I)/Nl (I+1) )/LOG (T1 (I)/Tl (I+1) ) 1680 K l (I)=-Sl (I) *LOG(Tl (I) )+LOG(Nl (I) ) 1690 PRINT USING #####.#### 1700 REM LPfUNl' USING It #####.#### #####.####": n(I) i =(I)

##### ####" ;K1 (I) ; s1 (I)

1710 NEXT I 1720 PFUNT: REM LPRINT 1730 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1740 REM SET UP THE RMS VERSUS WIND SPEED DATA 1750 PRINT WEXT: INPUT THE DATA 'IHAT DESCRIBES THE WIND REGINIP 1760 PRINT t'INHJT ?HE NUMBER OF RMS VS WIND SPEED DATA POIN'I'S It

1770 PRINT 1780 INPUT R 1790 PRINT: LPFUNT 1800 IPiUNT THE NUMBER OF FUG VS WIND SPEED DATA POINIS = It; R 1810 WR-1 1820 PRINT "INPUT THE WIND SPEED VS RIVE !X'RESS IN ASCENDING ORDER," 1830 PRINT "D WITH THE UWEST WIND SPEED." 1840 PRINT: LPRINT 1850 ISRINT THE WIND SPEED AND RMS DATA ARE2 It

1860 L9R7NT SFC(4) "WIND SPEED" SFC(9) " R E SrzzESs LEVEL" 1870 FDR 1=1 TO R 1880 PEUNT I' WIND SPEED" SFC(14) I SFC(12) RE/zs SIPIBS" 1890 INHJT Wl(1) : PRINT SFC(43) CHR$(30); : INPUT Rl(1)

T h e Maximum Mmrber is 20."

1900 Wl(1) = ABS (wl(1)) : Rl(1) = ABS (Rl(1)) 1910 LPFuNr USING ##### #####.##": W(1) : =(I) 1911 REM Error Check for Ascedmg ' order of Input Data 1912 IF 1=1 THEN Gc/17c) 1920 1913 IF Wl(1) > Wl(1-1) THEN GUIO 1920 1914 PRINT "INHIT DATA IS NUT IN PROPID ORDER!" 1915 PRINT "PL;EASE ENTEE3 DATA AGAIN" 1916 GO TO 1820 1920 NEXT I 1930 PRINT: LPRINT 1940 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1950 REM SET UP THE OPERATING OONDITImS 1960 PRINT WEXT: THE OPERATING P- FOR THE TURBINEt1

-39-

Page 46: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

II . 1970 PRlN": ISRINT 1980 PRINT "INATT ?HE' SIRES CYCLE RATE IN HZ 1990 INRTT Y 2000 ISRINT "'IHE STRE93 CYCLE RATE IN Hz = ";Y 2010 PRINT: LPRINT 2020 PRINT WGUT 'IHE DJIEGER WIND SPEED FOR mIN I!;

2030 INPvT I1 2040 "IN" 'IHE INIEGER WIND SPEED FOR arr-CWr"; 2050 INWT Vl 2060 LPRINT THE?, INIXEER WIND SFEEIX FDR CUI'-IN AND arr-ovT ARE:" 2070 IPRIN! 2080 LpRlfJT tt CZTP-IN h'XND SPEED - , I1 2090 WRJNl! CUIWUl? WIND SPEED # V l 2100 PRINT: LPRINT 2110 PRINT lwHAT IS ?HE YEARLY AVERAGE WIND SPEED @I;

2120 IN" A 2130 PRINT rrIN" ?HE SHAPE FACIOR FOR A WEIBWLL DISTRIBIFION 2140 PRINT 2150 INRTT ALP 2160 -1/ALP 2 170 GAEI=liGl*ALRIG2 *ALR" 2-3 *AIR"3+G4 *ATRA4+G5*ATRA5 2180 REI=A/GAPl

2200 LF!RINT "THl3 !SHAPE FACIDR ON THE WIND DISTRIBUI'ION 2210 LPIUNT Note: 2.0 inplies a Rayleigh Distribution" 2220 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2230 REM WIND SPEED -ON IDOP 2240 REM Set up Constants in Integration limp 2250 'Tto 2260 W=Vl-l 2270 NPl=INT (V2-11) +1 2280 FOR I=IlTO Vl 2290 Ol(I)=I 2300 Dl(I)=O 2310 MMT I , 2320 REM Detadne the Stress Level at the 2330 REM This calculation is always based on the f h t interval 2340 REM in the curve fit. 2350 El==( (NO-Kl(1) )/S1(1) ) 2360 REM Only U s e Integex Values of Stress 2370 M2=INT(El) 2380 PRINT: LRNC

2400 F" lWIE CwOsEN ENEURANCE ILIMIT (STRESS) = , M2 2410 PRINT: LPRlNC 2420 PRINT: LpRINT 2430 PRINT "THE FATIGCE LIFE cAI%uLATION HAS BM;uN" 2440 PRINT "PLEASE WAIT' FOR THE CAIlXTlATIoN TO BE CY34PLETED" 2450 F" 2460 REM Only U s e Integer Values of Velocity 2470 FOR SI1 "0 Vl 2480 Q S 2490 I F S = ( I N ? ( N P l * . l ) + I l ) THEN ERINI' *Talculation 5 % Completedl'

- 11 . = II .

Note: Input 2.0 for a Rayleigh Distribution It

2190 IPRIN! "THE YEARLY AVERAGE WIND SPEED = 1l;A

= ";ALP

Iihit

2390 LPRINT CHOSEN ENDURANCE LIMIT (STRESS) = r M 2

-40-

Page 47: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

-41-

Page 48: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

3000 REM Rayleigh Stress Distribution 3010 =2/MA2*EXP(-S2*S2/ (2*M*M) ) 3020 BEXP(Sl(K2) *rrX;(S2)+Kl(K2)) 3030 REM Miner's Rule Calculation 3040 PP/B 3050 REM Corrected Summation for E d Points 3060 IF J1=1 THEN %F/2 3070 IF J1=N2 THEN %F/2 3080 Ul=Ul+F*Ql 3090 3100 3110 3120 3130 3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410

NEXT J1 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REM END STFESs -ON UXlP REM Calculate the Wind speed PDF REM Weibull Wind Distribution

Bl=ALP/EET Q2=B1* (Al" (-1) ) *EXP (-Al"ALP) REM FUF THE CXCULMTONS INID A MATRIX FOR SUMMATION

Al= (CY=)

01 (S) s u2 (SI -2 D1 (S) =Ul NEXTS

REM END WIND SPEED -ON UXlP REM Print the Damage vs Wird speed In- Function

LPRINT LPRINT 8'CEWI'ER OF WIND" SpC(5) "WIND SPEED" SpC(8) "IYLMAGE" LPRINT "SPEED INERWiL1l SpC(5) PDF" REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REM USE THE END PDINT TD GET AVERAGE IN THE MIDDLE OF THE WIND REMllnERmL PRINT glcdlculation 95 % cmpletdl FOR I=I1 TD V2 REM Calculate the Average Values mer the flmrmation Intervdl REMandDetemme ' the Damage Function 01 (I) = (01 (I) +01 (I+1) ) /2 u2 (I) = (U2 (I) w 2 (I+1) ) /2 D1 (I) = (D1 (I) +D1 (I+1) )/2 * U2 (I) REM Calculate the Total Damge "+Dl (I)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LPRINT Tb wind speed Interval = 1.0"

LPRINT'USING l1 ####.## # # ####^^^^ U2(I) : Dl(1) 3420 NEXT I 3430 F1=1/T 3440 H=F1/ (Y*3600) 3450 Yl=H/(24*365.25) 3460 PRINT "-IONS ARE NOW (XMPUEE" 3470 PRINT: LPRINT: LPRIW: LPRINT: LPRmr 3480 PRINT A SUMMARY OF RlSUEIS ARE: It

3490 PRINT

##. : Ol(1);

-42-

Page 49: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792
Page 50: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

4000 lX2= (T2 (I) ) 4010 JNl=(Nl(I)) 4020 €RU"#l, USING l l##.######AAAA

4030 NEXT I 4040 REM 4050 PRINT#l, USING "###### 4060 DEIS = (LOG( Tl(N)) - W( Tl(1))) / ( P l )

I t ; W ; m1; LN1

a P l o t of the Calculated S-N Curve 1 1 . Np

4070 -#1, I' !3I'RE% CYCLES rn It

4080 €RU"#l, " FAIIIJRE" 4090 FOR J =1 'Io NP 4100 S2=EXP( (J-1) *-+L(X;(Tl(l))) 4110 REM INTERFOIATE 'IHE S-N CURVE 4120 K2=1 4130 FDR 1=1 'Io C 4140 IF S2<Tl(I) TIEN 4200 4150 K2=I 4160 NEXT I 4170 B(Sl(K2)*L(X;(SZ)+n(I(2)) 4180 EEXP(B) 4190 PRlNI'#1, USING "##.######"""" 4200 NEXT J 4210 CLOSE #1 4220 PIUNT 4230 PRINT 11 select froan the following options:11 4240 PRINT 4250 PRINT 4260 PRINT I' o - to Basictt 4270 PRINT 4280 PFZNT It 1 - MIT pw3GRAM Des" 4290 PRINT 4300 PRINT 11

4310 PRINT It @ the Material Functiontt 4320 PRINT 4330 PRINT 4340 PRINT 4350 INWT E 4360 IF E H THEN 4440 4370 ON E W I O 4430,340,2020 4380 GQlD 4270 4390 CLS: SYSTl3l 4400 CIS

"; S2; B

2 - start the program from the ~ e g i m . t h g

- Continue program w i t h a Different Wind spectrum I t 3

-44-

Page 51: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDIX D.

I I I I I I I I I

- - -

-.<)- MV WITH CONSTANT ML - - -Q- ML WITH CONSTANT MV -

- - - - - - - - - -

c * A " " v " A A A v . -

I I I 1 I I I 1 I

STRESS CYCLE INTEGRATION LIMITS

0

The upper and lower limits of the stress cycle integration (Eq. 21) are set via the ML and the MV parameters (lines 540 and 550 in the code shown in Appendix C). determined by

The limits of integration are

To minimize computational time, ML and MV should be set as small as possible. However, if their value is chosen too small, the prediction of the service lifetime will be too large. In Fig. D1, the influence of ML and MV on the predicted lifetime of a VAWT component (the example problem) is shown. In this figure, the predicted service lifetime is normalized to the predicted lifetime for large values of ML and MV.

As seen in the figures, values of 2 and 8 for ML and MV, respectively, yield consistent predictions, and based on this and other analyses, represent the minimum values of these variables that yield correct results. These values are included in the current LIFE code. However, the operator may want to examine a range of values for these variables to determine if the integration interval is sized properly for the particular problem of interest.

10 W

c z 9

!k

5

n 4

7 4 W

O 6

6 5

y 3

s 2 g 1 = o

tn W

Figure D.l Effect of the Internal Variables ML and MV on the Predicted Service Lifetime for the Example Problem.

-45-

Page 52: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDIX E.

ENDURANCE LIMIT

Again to minimize computational time, the stress integration loop is limited to values above the "endurance limit" as determined by the S-N diagram input into the code.

Here we have defined the endurance limit to be the stress level at which 1E10 cycles will not produce failure in the material. This parameter is set in with the NO variable (line 510 in the code shown in Appendix C). The program automatically determines the stress level corresponding to this number of cycles (via the adjusted S-N diagram) and outputs its value in the summary printout.

Other values for this variable may be chosen by the operator by editing this line in the program.

-46-

Page 53: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDIX F.

AUTOMATED DATA ENTRY FOR THE LIFE CODE

As the process for data input is somewhat cumbersome when parameter studies are being conducted, the LIFEA (automatic data entry) version of the LIFE code is also available (see Appendix G ) . been tlremarkedtt out of the process statements and replaced by data entries. The version of LIFEA listed here is set up to do the example problem shown in Appendix A.

In this form all of the keyboard inputs have

For operation LIFEA is simply executed by running it using a BASIC interpreter. Although the operator is queried by the program, no inputs are required.

To run a parameter study with this version of the code, the operator should edit all of the data inputs to the particular problem of interest. Note that all of the statements requiring editing have been marked with a t t * - t t pattern remark statement. As the input statements for data entry have not been deleted, keyboard entry for any particular variable (or sets of variables) can be reactivated by removing the ttREM1t at the beginning of each line of data input.

Page 54: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

APPENDIX G.

PROGR?MUsIwGFORTHE IJFEA CODE

VERSION 1.2

-48-

Page 55: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

500 RFM Define the cycles cumt a t the

the Limits of Integration on the 520 RFM Set constants for De-

Limit . I

510 No=LoG (10"lo)

530 RFM €WS - 540 -2 550 W8 560 REM Set (3onstant that Determines the Size on the Stress Integration 570 REM InterVal. 580 Q1=50 590 RFM set constant for the Number of Intervals in the Data Ixrmp of the 600 RFM S-N w e 610 -50 620 REM FUI? IN PRINTER CIXlROL SWEMENE HERE To -ZE YOUR I'RIXWR 630 REM 640 PRINT - TITIE FDR THIS -ON OF FATIGUE LIFE (NO -)I' 650 PRINT 'I I I 660 REM ............................................................. 670 Y + W ~ cost 6063- Example C!alc1I

680 REM INH?I' Y$ 690 LplsuNT "FATI- LIFE PRCGRAM, VERSION 1.2" 700 HUNT: LPRINT 710 PRINT: LPRINT 720 *I****** 11; y$; 11 ******II

730 JXtNT: LeRINT 740 LAPRINT 750 Talculations Ferfornred on : 1) ; DATE$ 760 PRINT: LPRINT 770 PRINT: LpRIfJT

790REM S E T U P T H E S N a U R v E 800 RFM 810 PRINT VIRSI" IN" THE S-N FATI(TUE IYiTA FOR l T E BIADE M A T E E W U I I 820 PRINT "INHR: THE NUMBER OF WLTA POINIS ON THE SN CURVE" 830 HUNT 'I

850 5 860 REM INFVT N 870 PRINT: LeRINT 880 LPRINT I I T H E NUMBER OF INWT pOIN'I!S ON THE SN aURvE IS = ";N 890 PRINT: LpR7NT 900 c=N-1 910 REpI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 T1(1)= 10000 : N1( 1) =5E+08 930 T1(2)= 10700 :N1(2)=lE+07 940 T1(3)= 14400 :N1(3) =1000000! 950 T1(4)= 18300 :N1(4) =100000! 960 T1(5)= 24700 :N1(5)=10000! 970 PRINT "INRlT IN THE DATA IN ASCENDING ORDER," 980 HUNT "D WITH ?HE IDWEST STRESS." 990 LPRINT THE IN€UI' S-N IYiTA ARE:"

780 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ihe Maximum Number is 20." 840 ...............................................................

-4 9-

Page 56: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

1000 1010 1020 1030 1040 1041 1042 104 3 1044 1045 1046 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 DATA 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 14 10 1420 1430 1440 1450 1460

Ln?Im" sI!RB!3LEvEL CYCLES TD FAILURE" FOR 1=1 '170 N PRINT STRESS LEVEL" SFC(12) I SFC(12) CYCZES TD FAIUTRE" REM DEVI' T l (1 ) : PRINT SpC(43) CHR$(30) : : INPUT N l ( 1 )

REM Error check for A s c e t h g * order of ~nput mta LeRINT USING ###### ## #####^^^^ T l ( 1 ) ; N l ( 1 )

I F 1=1 THEN Go 1050 I F T l ( 1 ) > Tl(1-1) THEN Go 1050 PRINT "rn nATA IS Nur I N mPER ORDER!" PRINT "PLEASE ENIpl IXTA AGAIN" GO To 970

NEXT1 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REM ADJUST THE STRESS LEVELS FOR !STRESS CW-ONS PRINT "ADJUST THE S-N IXTA FOR STRESS CONCXKtWUIONS" PRINT "IN" THE STRESS WCEMIRATIW FACTOR" PRINT I* U s e 1 i f no correction is ~ e s i r e d ~ * XDTC Note: -IS EQUATION for the Mean Stress PRINT PRINT It of 1.67 INCLUDED in its Foxmulation. m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s m 2 . 7 3 REM rNFur SCF PRINT:LpRINT

REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REM FOR MEAN SIRES" PRINT g'SELFCL' THE FORM OF 'IHE OORRECI'ION TEEFil DESIRED" PRINT 1 FDR COOCMAN RUIE ON THE IJXTMUT PRINT 2 FOR F-'S EQUATION" PRINT 3 FOR NO ADJUSTMEWIS"

F2=1 REMmn ON F 2 Go 1320,1320,1400 WID 1230 PRINT "a THE MEAN STRESS AT RATED R O R SPEED WITHOUT WIND '' REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M3=7000

PRINT: m LpRINT *I THE MEAN STRESS AT RATED R O R SPEED WITHOUT WIND = "iM3 LPRmr ON F2 GUlD 1460,1590 PRINT: Lmmr PRINT "NO A D J U S m FOR MEAN STRESS WERE MADEt1 LeRINT NO ADJLJS- FOR MEAN STRESS WERE M7DE" GUIO 1640

REM DO THE GOOIXAN €?ULE ADXTSTMENT ON MEAN STRESS PRINT VHJ3 GCOIXAN RULE FOR MEAN STRESS CORRECTION HAS BEEN SELGmD"

T2 (I) -1 ( I )

correction has a Stress conoentration Factor

LpRINT The stress Concentration of Factor = 1 1 ; s p

ADJUST THE STRESS LEVELS EX MEAN STRESS 1220 XDTC "ADJUST THE S-N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R E M I N p v T M 3 : m M 3 = A B s (M3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-50-

Page 57: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

1470 LgRINT 18 THE GOODMAN FOR SIRES oOFG?E%XToN HAS BEEN S m m " 1480 €SlNF "INWT ?HE I' 1490 REM +-*-*-*-*-*-+-+-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* 1500 U=35000! 1510 REM IN?UT U 1520 IZRIM? THE = ";u 1530 FOR 1=1 To N 1540 Tl(1) = Tl(1) - (M3 * Tl(1)) / U 1550 NEXT I 1560 GUlD 1640 1570 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1580 REM USE -0fJ NXUST MEAN STRF,Ss 1590 PRINT "F-vS -ON FDR MEAN STRESS aXREKTION HAS BEEN SELECTED" 1600 IZRIM? FAMENBEX'S FOR MEAN STRESS CO-ON HAS BEEN SELECCED" 1610 FOR 1=1 To N 1620 Tl(1) = .6 * Tl(1) - .2 * M3 1630 NE)(T I

1650 PRINT "THE ADJUSTED S-N WI!A ARE : I t

1660 LPRINT THE ADXBIED S-N INTA ARE :'I

1670 PRINT It SmEsSLEvEL CYCLES To FAILURE" 1680 LPRINT SCFESS LEVEL CYCLES To FAILURE" 1690 FOR 1=1 To N 1700 REM Correct the Stress S t a t e for the Stress Concentration Factor 1710 T1 (I) e l (I) /SCF 1720 REM Mah Sure that the Adjusted Stress Remains Positive 1730 IF Tl(1) <.l THEN Tl(I)=I*5 1740 PRINT USING It ###### ##.#####^^^^ ,I; Tl(1) ; N l ( 1 ) 1750 LPRlNT USING It ###### ## #####^^^^ ; Tl(1); Nl(1)

1640 PRINT: IJRJHl'

1760 NEXT I

1780 REM THIS USES A L[x;-LIx F" To THE S-N CURVE CURVE

1800 PF!INT THE CURVE FITS FOR THE S-N DATA" 1810 REM IXRIKC 'I 'IHE cALL;uLATED UJRVl3 F'ITS FOR THE S-N DATA ARE:" 1820 PRINT *I l N E K E P T SLI3pE" 1830 REM ITRIM' II IfJTERcEpT SUPE" 1840 FOR 1=1 To C 1850 S1 (I) =UX(Nl (I)/Nl (I+1) )/L(X(Tl (I)/Tl (I+1) ) 1860 Kl (I)=-Sl (I) *I.CG(Tl (I) ) +L(X(Nl (I) )

1770 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1790 PRINT: IJRJHl'

1870 PRINT USING 'I #####.#### 1880 REM LPXN" USING #####.#### #####.####I1; Kl(1) ; =(I)

##### # # # # I 8 ;Kl (I) ; s1 (I)

1890 NEXT I 1900 PRINT: REM LsRINT 1910 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1920 REM 1930 pRI[NT WEXT: INHJT THE DATA THAT DESCRIBES THE WIND Rw;IMEii 1940 PRINT "IN" THE NUMEER OF FtMS VS WIND SPEED DATA Po- 1950 PRINT If The Maxirmrm Number is 20."

1970 FWI 1980 REM INRIT R 1990 FJRINr: ImIm

SET UP TI-E RMS VERSUS WIND SPEED IlATA

'I

1960 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-51-

~. . .. . - . . .. .- , . . . sl - __ ~.

Page 58: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

-52-

Page 59: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

2470 PRINT w Nate: Inprt 2.0 for a Rayleigh Distribution 2480 = ............................................................... 2490 -2 2500 REM IN" Z&P 2510 AI&l/ALp 2520 ~1-tG1*ALENG2*ALR"2ffi3*ALR"3+G4*ALR"4+G5*ALR^5 2530 BFI'-A/GAM 2540 LPFUNT "'IHE YEARLY AvERAI3E WIND SPEED 2550 LmIMT YIFB SHAPE FACIOR ON THE WIND DISTRIEUTION 2560 LPFUNT 2570 REM **+*****f*************************************************** 2580 REM WIND SPEED -m m p 2590 IMuI Set up constants in Integration Lmp 2600 P O 2610 V2=Vl-1 2620 NPl=INT (V2-11) +1 2630 FOR I=I1 110 Vl 2640 Ol(I)=I 2650 Dl(I)=O 2660 NEXT I 2670 REM D e w the stress -el a t the EnAmmce Limit 2680 EiEM T h i s cdlculation is always based on the first interval 2690 €?EN in the curve f i t .

- - ";A = ";ALP

Note: 2.0 i n p l i e s a Rayleigh Distributionlv

2700 El==( (NO-Kl(l))/Sl(l)) 2710 REM Only U s e Integer V a l u e s O f 2720 M2=IN"(El) 2730 PRINT: "T 2740 LPRTNT THE CHOSEN ENlxTRANcE L;IMIT (STRESS) = , M2

2760 PRINT: LPEUNT 2770 PRINT: LPEUNT 2780 PRINT "THE FATIGUE LIFE CWLWATION HAS BFGUN" 2790 PRIXl' "PIEASE WAIT FOR THE -ON TO PJ3 2800 PRINT 2810 REM Only U s e Integer V a l u e s of Velocity 2820 FDR S I 1 TO Vl 2830 Q S 2840 IF S =(INT(NPl*.l)+Il) THEN PRINT Talculation 5 % cCXnpleted'* 2850 IF S =(INT(NP1*.2)+11) THEN PRINT Talculation 15 % Ccapleted1I 2860 IF S =(D?T(NP1*.3)+11) THEN PRINT Valculation 25 % Ccunpletedtl 2870 IF S =(INT(NP1*.4)+11) THEN PRINT Valculation 35 % Campleted1I 2880 IF S =(INT(NPl*.5)+11) THEN PFUNT tlcalculation 45 % CCanpletednl 2890 IF S =(INT(NP1*.6)+11) THEN PRINT calculation 55 % Ccnnpleted8I 2900 IF S =(INT(NP1*.7)+11) THEN PRlMT Valculation 65 % Ccnnp1etedl1 2910 IF S =(INT(NPl*.8)+11) THEN PRINT Valculation 75 % Ccapleted'l 2920 IF S =(INT(NP1*.9)+11) THEN PRINT Valculation 85 % CCanpleted1l 2930 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2940 REM CAUXLXE THE RMS STRES!S (L7NE31R INTERWIATION) 2950 J=l 2960 REM Chose Segment of FGE-Wind Sped Curve Fit 2970 FOR 1=1 110 D 2980 IF Q< Wl(1) THEN 3000 2990 J=I

2750 PRINT T3-E CHOSEN ENDURANCE L;IMIT (STRESS) = r M 2

-53-

Page 60: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

-54-

Page 61: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

-55-

Page 62: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

4000 m : L p R I N T 4010 PRlXC:LeRINT 4020 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4030 REM MJMP IlATA TD A FILE FOR FTMTING - USING ZWUI'HEB PROQiAM 4040 PFUNI' "Do YCXJ WWT A IXCA IXJMP FOR FLMTING THESE FEXJLTS" 4050 PJXNI' 1 - Yes11

4060 PRINT 'I 2 - NO" 4070 PFUNT 4080 INWT P1 4090 ON P1 Gcrco 4110,4570 4100 Gcrro 4040 4110 PRIER: 'WHAT FTLE DO YOTJ WANT FOR 'ME I X I l UUMP?" 4120 IN" F$ 4130 PRINT Ilq?ening the Data F i l e II 4140 OFEN F$ FDR (XTFUI' AS #1 4150 PRJ3I'#1, Y$ 4160 PFUNT#l, Valculations performed on : ; DA!I'E$ 4170 REM O U I W T THE WIND SPEED DISTRIEJTION AND IXMZGZ FUNCTION 4180 REM calculate the Number of Points and Print 4190 F"#1, USING "###### 4200 PRINT#l, "CENTER OF WIND WIND SPEED IXMZGZ PEEICENT" 4210 PRIER:#l, "SPEED IXIERWL PDF INMAGEY

'I; NP1

4220 FOR I=I1 TD V2 4230 IDl=(Ol(I) ) 4240 LU2=(U2 (I) ) 4250 IDl=(Dl(I)) 4260 PIDl=Dl(I)/T 4270 PRINT#l,USING"##.######"""" 'I; U1; Tu2; LD1; m O l 4280 NEXT I 4290 REM Output the Original and Mcdified S-N Data 4300 €"#I, USING 'I######

4320 PRINT#l, (I SIRES STRESS FAILURE 4330 FOR I=lTO N 4340 ETl=(Tl(I)) 4350 IT2=(T2 (I) ) 4360 LNl=(Nl(I)) 4370 F"#1, USING pl##.######"""" 4380 NEXT I 4390 REM Output a Plot of the Calculated S-N Curve

4410 DEIS = (uX;( Tl(N)) - uX;( Tl(1))) / ( P I )

'I; N 4310 PRINT#l, INHJT IKIDIFIED CYCLES TD"

'I; m; m1; m1

4400 PRINT#l, USING It######

4420 F'RINT#l, STRESS CYCLE TD 4430 €"#1, FAILURE"

11; NP

4440 FOR J =1 'ID NP 4450 S2=Exp( (J-l)*DnS+IE(Tl(l))) 4460 REM INTERFoLATE THE S-N CURVE 4470 K2=1 4480 FOR 1=1 TD C 4490 IF S2<Tl(I) THEN 4510

-56-

Page 63: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

4500 4510 NEXC I 4520 B=(Sl(IQ)*LM;(S2)+K1(KZ))

4550 N" J 4560 cIL)sE #I 4570 PRINT 4580 'I f 3 d d 4590 PRINT 4600 PRINT

4620 PRINT 4610 PRINT 'I 0 -

4630 4640 4650 4660 4670 4680 4690 4700 4710 4720 4730 4740 4750

1

f m the follcwbq uptions:vl

IF lG=o ?HEN 4750 ON E 0 4740,340,2290 ccm> 4580 CLS: S Y m CLS

-57-

Page 64: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792
Page 65: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

D I S T R I ~ O N :

A l c x x Ted-lniCdl center (5) Aluminum ccglrpany of America Alcoa Center, PA 15069 Attn: D. K.

J. T. Huang J. R. Jcanbock M. KLhgenSnith J. L.

Alternative Sciurces of Energy Milaca, MN 56353 Attn: L. Stoiaken

Amarillo College Amarillo, TX 79100 Attn: E. Gilmore

&nerican Wind Association 1017 Street Alexandria, VI4 22314

Arizona S t a t e University University Library Tempe, AZ 85281 Attn: M. E. mer

Dr. A. S . Barker Trinity Western 7600 Glcnrer Road Langley, CXNAlYl V3A 4R2

Battelle-Pacific Northwest Laboratory P.O. Box 999 Fkhland, WA 99352 Attn: L. Wendell

B e c h t e l G m u p , Inc. P.O. Box 3965 San Francisco, CA 94119 Attn: B. Lessley

Dr. George Bergeles

National Technical University 42, Patission Street Athens, GREECE

Dept. of mchanl 'cal Engineering

Bomille Acbninistration P.O. Box 3621 Portland, OR 97208 Attn: N. wltler

wlrns & Roe, Inc. 800 Kinderkamack Road Oradell, W 07649 Attn: G. A. Fontana

Canadian standards Association 178 Rexdale Blvd. -dale, Ontario, M ~ W IlU CANADA Attn: T. Watson

Monique carpentier Eneqy,MinesandResources National Hesearch Council of Canada

Montreal Fbad Ottawa, Ontario CANAaA KIA OR6

Professor V. A. L. chasteau

University of Auckland Private Bag Auckland, NEWZEALAND

School of Engineering

Colorado S t a t e University Bpt. of Civil Engineering Fort Collins, 03 80521 Attn: R. N. Memney

Ccrrmnonwealth Electric Co. Box 368 Vineyarrl Haven, MA 02568 Attn: D. W. Ixlnham

Gale B. Curtis Curtis Associates 3089 O m Blanc0 Drive Colorado Springs, CO 80917

M. M. Curvin 11169 Road Scddy Daisy, TN 37379

Page 66: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

f)epartment of Econarm ‘c Planning

Barrett Building and Develapnent

Cheyenne, WY 82002 A t t n : G. N. Monsson

otm de Vries National Aerospace Laboratory Anthony Fokkerweg 2 A-nrsterdam 1017 THENEIHERLANIls

DOE/W Albuquerque, NM 87115 A t t n : G. P. Tknnyson

WE/AI-D E h q y Technology Liaison Office NGD Albuquerque, NM 87115 A t t n : Capt. J. L. Hanson, USAF

DOE Head- (20) W i n d / O c e a n s Technologies Division 1000 Independem;e Avenue Washington, DC 20585 A t t n : L. J. Rogers

P. R. Goldman

J. B. Dragt N e d e r l a n d s Ebeqy Research Foundation (E.C.N.) physics -t

THE- w e s t e l ? A l i m q 3 petten (nh)

~ynergy systms corporation

Us Banes, CA 93635 A t t n : C. F’agundes

821 W e s t L Street .

E l e c t r i c Rwer F!eeanh Institute 3412 Hillview Avenue Palo A l t o , CA 94304 A t t n : E. Demeo

F. Gocdman

Dr. Norman E. F’mb 10705 Pmvidence Drive Villa Park, CA 92667

AlcFr de Faro Orlardo Pontif icia Universidade Q t o l i c a - F U C / q

R. Marques de S. V i c e n t e 225 Rio de JaneirO, BRAZIL

Mechanical Engineering Department

Fayette M a c t u r i n g Corporation P.O. Box 1149

A t t n : W. ?hcmpson -cy, CA 95378-1149

FloWind Corporation ( 2 ) 1183 Quarry Lane PleaSonton, CA 94566 A t t n : L. S c h i e n b e h

B. Im

A. D. Garrad Garrad Hasson 10 Northampton Square b n d n EClM 5PA UNITED KINGKPI

G a t e s Learjet Mid-Conthent Airport P.O. Box 7707 W i c h i t a , KS 67277 A t t n : G. D. Park

H. Gerardin M e c h a n i c a l Engheerhg Department Faculty of Sciences and l3qheerh-q U n i v e r s i t e Laval-Quelxc, G l K 7P4 (2ANAnA

Dr. I. J. Graham Southern University Department of M e c h a n i c a l Ehgheerhg P.O. Box 9445 Baton Rouge, LA 70813-9445

R. T. Griffiths U n i v e r s i t y College of Swansea Dept. of Mechanical l3qineerh-q Singleton Park Swansea, SA2 8PP UNITED K I N G m

Helion, Inc. Box 445 Ewmnsville, CA 95919 A t t n : J. Park, President

D-2

Page 67: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

. Iridal Technologies, Inc. (2) 3570 Hawkestone Road Mississauga, Ontario CxNAlx L5c 2v8 A t t n : D. Malcolm

c. wood

Institut de Recfierche d'Hydro-Webec 1800, r&m% -die Varennes, Quebec, JOL 2P.O. CxNAlx A t t n : BernardMasse

Ian State U n i v e r s i t y A g r i c u l t u r a l Ehgineering, Room 213 Ames, IA 50010 A t t n : L. H. Soderholm

K. Jackson w e s t W i n a Industries P.O. Box 1705 mvis, CA 95617

M. Jackson McAllester Financial 1816 wt W. Lafayette, I N 47906

miser Aluminum and chemical

14200 Cottage G w e Avenue Dolton, IL 60419 A t t n : A. A. Hagman

sales, Inc.

Kaiser Aluminum and Ctmnid.

6177 Sun01 Blvd. P.O. Box 877 Pleasonton, CA 94566 A t t n : D. D. Doerr

sales, Inc.

State U n i v e r s i t y E l e c t r i c a l mineering -t Manhattan, KS 66506 A t t n : Dr. G. L. Johnson

R. E. Wland The College of Trades and Technology P.O. Box 1693 prince Rrilip Drive St . John's, Newfaudland, AlC 5p7 CArwY4

Kw control Systems, Inc. m#4, Box 914C South Plank Road Middletclwn, NY 10940 A t t n : R. H. Mein

Kalman N a g y Ltdmciky C o r t Adelers GT. 30 Oslo 2, NorwAY

L. K. Lilje.EJren 1260 S.E. #5 Tustb, CA 92680

L. Liljidahl Building 005, 304 =-West Beltsville, MD 20705

O l l e L j u n g s t r m E A , me A m n a u t i c a l Research Institute Box 11021 S-16111 Bramma, SWEDEN

Robert Lynet* R. L p e t t e & Assoc., Inc. 15042 NE 40th Street Suite 206 Rettmond, WA 98052

Massachusetts Institute of Technolcq 77 Massachusetts Avenue Cambridge, MA 02139 A t t n : Professor N. D. Ham

W. L. Harris, A e r o / A s t r o Dept.

H. S. M a w composite Materials Laboratory Pioneering R&D Laboratories Toray Industries, Inc. Sonoyama, Otsu , Shiga, JAPAN 520

G. M. McNerney us w i n d mer 160 Wheeler Road Burlington, MA 01803

Michigan State university D i v i s i o n of Ehgine@rN Research East lansing, M I 48825 A t t n : 0. Krauss

Page 68: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

N a p i e r College of Camerce and

Tutor Librarian, Technology Faculty Colhton Road

ENGLAND

-logy

Eahbuqh, EHlo 5 m

N a t i o n a l Rural Electric

1800 Massachusetts Avenue, NW Washiqton, Dc 20036 A t t n : Wilson Prichett, I11

cooperative Assn

N a t u r a l Dmer, Inc. New Boston, NH 03070 A t t n : M e r N i c h o l s

N o r t h w e s t e r n Wniversity Dept. of C i v i l Engineering Evanston, I L 60201 A t t n : R. A. Parmalee

Ohio State U n i v e r s i t y A e r o M u t i e a l and Astronautical Dept. 2070 N e i l Avenue C o l ~ , OH 43210 A t t n : Professor G. G r e g ~ r e k

O k l a h o m State University

Stillwater, OK 76074 A t t n : D. K. McLaughlin

Mechanicdl E n g i n e r i n g De@.

Oregon State University

Corvallis, OR 97331 A t t n : R. E. Wilson

Mechanical Ehgineering De@.

Pacific G a s & E l e c t r i c Co. 3400 Cmw Canyon Road San Ramon, CA 94583 A t t n : T. Hillesland

Ion Paras&n ‘voiu

-le polytw=nique 8 6079 Suecursale A Montreal H3C 3A7 CANmA

Department of Mechanl ‘cal Engineering

Jacques Plante Hyrlro Q u e Place w s Ile etage 855 est rue ste-catherh Montreal, Quebec c7ANmA H2L 4P5

? h e m c o m p a n y , mc. P.O. Box 221 Genesee Dew, WI 53217 A t t n : A. A. Nedd

P n W e r T e c h n o l o g i e s , znc. P.O. Box 1058

A t t n : Eric N. Hinrichsen schenectady, NY 12301-1058

Public Sewice Co. of New Hampshire 1000 Elm S t r ee t Manchester, NH 03105 A t t n : D. L. C. F’rderick

Public Service ccanpany of New M e x i c o P.O. Box 2267 Albuqueque, NM 87103 A t t n : M. Iecber

RANN, znc. 260 Sheridan Ave. , Suite 414 PdlO Alto, CA 94306 A t t n : A. J. mers, Jr.

Dr. R. Ganesh Rajagopalan, Asst. prof.

Iuwa state university 404 l b w n Engineering Bldg. Ames, IA 50011

Aerospace Engineering D e m t

The - w9ency Deparbnent of W a t e r Resources

P.O. Box 388 Sacramento, CA 95802 A t t n : R. G. F e r r e h

Enerqr D i v i s i o n

Reynolds Metals cconpany M i l l products D i v i s i o n 6601 W e s t Broad Street Richmond, VA 23261 A t t n : G. E. Lennox

D-4

Page 69: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

R. G. Rid'ELdS A t l a n t i c W h 3 Test S i t e P.O. Box 189 Tignish P . E . I . , COB 2lB c 3 N A m

Rise N a t i o n a l Laboratory postbox 49 DK-4000 Roskilde DENPIARK A t t n : -1s F Y i i s Mersen

Helge Fetersen

A. R&b Memoria l University of Newfoundland Faculty of Engineering and Applied Sciences St. John's Newfaundland, AlC 5S7 c m I A I x

m. ~ng. ~ a n s m e w e n mtitut fur Leichbau Technische Hochschule Aachen wullnerstrasse 7 FEDERAL RERTBI;TC OF GERMANY

Beatrice de Saint Lrrwent Establissement d'Etudes et de Recherches

77 Rue de Serves 92106 Boulogne-Billancourt Cedex FRANCE

Meteorologigues

Gwen schreiner Librarian National A M c Museum Albuquerque, NM 87185

Arnan !3eginer Professor of A e r d y m m 'cs W o n - I s r a e l Institute of Technology Department of AeroMutical Ebgineering Haifa ISRAELI

m. -1 smith Seiler, Editor Win3 Energy News Service P.O. Box 4008 St. JohnSbUy, VT 05819

David Sha.rpe ~ e p t . of Aeronautical Engineering meen Mary College Mile Bd Road Liondon, E l 4NS UNITED IuxGm

Kent smith Institub Technolcgico costa Rim Apartado 159 Cartago 03SllA RICA

Solar l3ex-g~ &search Institute 1617 Cole Bmlevard Golden, 03 80401 A t t n : R. W. Thresher

Bent Sorenson Roskilde U n i v e r s i t y Center Eneryy Group, Bldg. 17.2 IMRJFA P.O. Box 260 DK-400 Roskilde DENMARK

Feter south ADECON 32 Rivalda Road Weston, Ontario, M9M 2M3 CANAM

Southern California Edison F&seamh & Developrent Dept., Room 497 P.O. Box 800 Rosemead, CA 91770 A t t n : R. L. Scheffler

G. Stacey The University of Reading Depa33ment of Erqineering whiteknighb, Reading, EZG6 2AY ENGLAND

Stanfox3 U n i v e r s i t y Dept. of Aeronautics and

Stanford, CA 94305 A t t n : Holt Ashley

AstroMutics Mecham 'cal Engineering

Page 70: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

Dr. Derek Taylor Alternative Energy Group Walton Hall Open University Milton Keynes, M K ~ ~ A A UNITED KmGm

R. J. T e m p l h (3)

NRC-National Aeronautical Establishment Montreal Road O t t a w a , Ontario, K1A OR6 (2ANAIx

-speedAerodyMrm 'cs Laboratory

Texas Tech University (2)

P.O. Box 4289 Lubbock, TX 79409 Attn: J. W. Oler

Mechanicdl mgineering Dept.

K. J. Moriah Research 6 2 0 0 Plateau Dr . Englewocd, CO 80111

Wane University

New Orleans, LA 70018 Attn: R. G. Watts

Dept. of Mechanl 'Cal Engineering

TumacIndustries, Inc. 650 Ford Street C o l o r a d o Springs, CO 80915 Attn: J. R. M c c o M e l l

J. M. ?'urner Terrestrial Eneq-y Technology Program Office

Ehergy Conversion Branch Aerospace Power Division/

Aero m-opulsion Lab & Force Systems cammand (AFSC) Wright-Patterson AFB, OH 45433

united Eflgineers ard mnstITxztors, Inc. P.O. Box 8223 Philadelphia, PA 19101 Ate: A. J. Karalis

universal Data systems 5000 Bradford Drive Huntsville, AL 35805 Attn: C. W. Dodd

University of California Institute of q y s i c s

and Planetary myc' *lCS Riverside, CA 92521 Attn: Dr. P. J. Barn

University of Colorado Dept. of Aerospace Engineering Sciences Boulder, 0 80309 Attn: J. D. Fock, Jr.

University of Massachusetts Mechanical and Aerospace

Amherst, MA 01003 Attn: Dr. D. E. Crmack

Engineering Wpt.

University of New Mexico New Mexico Engineering

R e s e a r c h Institute Campus P.O. Box 25 Albuquerque, NM 87131 Attn: G. G. Leigh

University of oklahoma Aero Engineering Department Norman, OK 73069 Attn: K. E3eryey

University of Sherbmoke Faculty of Applied Science Sherbmke, Quebec, J l K 2Rl cANAJY4 Attn: A. Laneville

P. Uittecq

?he University of Tennessee Dept. of Electrical Engineering Knoxville, TN 37916 Attn: T. W. Redd&

t

USM, Agricultural Reszuxh Service Southwest Great Plains Research Center Bushland, TX 79012 Attn: Dr. R. N. C l a r k

D- 6

Page 71: The LIFE Computer Code Fatigue Life Prediction for Vertical Axis Wind Turbine Componentsenergy.sandia.gov/wp-content/gallery/uploads/SAND-87... · 2018-07-26 · SANDIA REPORT SAND87-0792

U t a h pcrwer and Light co. 51 East M a i n Street P.O. Box 277 American Fork, VT 84003 At tn : K. R. Ramusen

W. A. Vachan W. A. Vachon & Associates P.O. Box 149 Manchester, MA 01944

D i r k Vandenberghe state univ. of G h a t St . PieterSniewStraat 4 1 9000 G h a t mLGIuM

Washington and b=e university P.O. Box 735 Lexington, VA 24450 At tn : Dr. R. E. Akins

W- state university ~ept. of Electrid Engineering Pullman, WA 99163 At tn : F. K. Bechtel

west ~ e w s state University Government Depository Library Number 613 Canyon, TX 79015

w e s t mxas State university mparhent of pslysics P.O. Box 248 Canyon, TX 79016 Attn: V. Nelson

west V i r g i n i a university

1062 Avenue Morgantown, WV 26505 Attn: R. W a l t e r S

Dept. of Aero Engineering

D. W e s t l b d central Lincoln People's U t i l i t y D i s t r i c t 2129 N o r t h Coast Highway Newport, Ow 97365-1795

W i c A i t a State University

W i c h i t a , Ks 67208 At tn : M. Snyder

Aero --ins DepartmMt (2)

w. went2

D-7

W b d Fmrer D i g e s t P.O. Box 700 -, Attn: MxhaelEvans

W i s c o n s i n Division of State Enrgy 8th Floor

Madison, WI 53702 A t t n : WindprOgramMaMger

44809

101 south w e b s t e r street

1520 1522 1523 1524 1524 1550 1552 1556 2525 3141 3151 3154-3

3160 3161 6000 6200 6220 6225 6225 6225 6225 6225 6225 6225 6225 6225 6225 6225 6225 6225 6225 7111 7544 7544 7544 8024 9100 9122

c. w. Peterson R. c. ~ u t e r , Jr. J. H. Biff le A. K. M i l l - D. W. Wit2 R. C. Maydew J. H. Strickland G. F. H&CZ R. P. Clark S. A. Lardenberqes w. L. Garner (3) C. H. Dalh (28) For DOE/CSIT (Unlimited w-1 J. E. Mitchell (15) P. S. Wilson D. L. Hartley v. L. Dugan D. G. schueler H. M. Dodd (50) T. D. Ashwill D. E. Berg T. C. Bryant L. R. Gal10

S. D. Nicolaysen D. S. Oscar M. E. Ralph D. C. Reda M. A. Eiumsey L. L. schluter W. A. Stephenson H. J. Sutherland J. W. Reed D. R. Schafer T. G. (3arne J. muff- P. w. Dean R. G. Clem T. M. Leonard

P. c. Klimas