the mechanism of the vdw-to-covalent well transitions

32
The Mechanism of the vdW-to-Covalent Well Transitions We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super- collision events: t = 40000 a.u. 2 4 6 8 10 12 14 16 18 20 22 1.5 2.5 3.5 2 4 6 8 10 12 14 16 18 20 22 1.5 2.5 3.5 2 4 6 8 10 12 14 16 18 20 22 1.5 2.5 3.5 2 4 6 8 10 12 14 16 18 20 22 1.5 2.5 3.5 2 1 rot , R R V 2 1 coll , R R V 2 1 , R R 2 1 tot , R R V

Upload: gloria-barber

Post on 31-Dec-2015

32 views

Category:

Documents


0 download

DESCRIPTION

The Mechanism of the vdW-to-Covalent Well Transitions. We found that a small group of trajectories ( ~10% of the sample ) make the dominant contribution to the stabilization ( ~65% of the cross section ). They describe the super-collision events:. t = 40000 a.u. - PowerPoint PPT Presentation

TRANSCRIPT

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 40000 a.u.

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 42000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 44000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 46000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 48000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 50000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 51000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 52000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 53000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 54000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 55000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 56000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 57000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 58000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 60000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 62000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 64000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 66000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 68000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 70000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 72000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 73000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 74000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 75000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 76000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 78000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 80000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 82000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 84000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 86000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 88000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

The Mechanism of the vdW-to-Covalent Well Transitions

We found that a small group of trajectories (~10% of the sample) make the dominant contribution to the stabilization (~65% of the cross section). They describe the super-collision events:

t = 90000 a.u.

21rot ,RRV

21coll ,RRV

21,RR

21tot ,RRV2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2

2 4 6 8 10 12 14 16 18 20 22

1.5

2.5

3.5

r1

r2