the noncommutative chern-simons action and teh siberg-witten map

36
The noncommutative Chern-Simons action and the Seiberg-Witten map Conference on higher dimensional QHE, Chern-Simons theory and noncomutative geometry in condensed matter and field theory ICTP, Trieste 2005 Nicol ´ as E. Grandi Universidad Nacional de La Plata The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 1/

Upload: nicolas-grandi

Post on 30-Nov-2014

317 views

Category:

Technology


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: The noncommutative Chern-Simons action and teh Siberg-Witten map

The noncommutative Chern-Simons actionand the Seiberg-Witten map

Conference on higher dimensional QHE, Chern-Simons theory and noncomutative geometryin condensed matter and field theory

ICTP, Trieste 2005

Nicolas E. Grandi

Universidad Nacional de La Plata

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 1/6

Page 2: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Open strings in a constant Neveu-Schwartz background

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 2/6

Page 3: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Open strings in a constant Neveu-Schwartz background

Pauli-Villars −→ Commutative gauge theory

Aµ → Aµ +DµΛ = Aµ + ∂µΛ +AµΛ− ΛAµ

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 2/6

Page 4: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Open strings in a constant Neveu-Schwartz background

Pauli-Villars −→ Commutative gauge theory

Aµ → Aµ +DµΛ = Aµ + ∂µΛ +AµΛ− ΛAµ

Point-Splitting −→ Noncommutative gauge theory

Aµ → Aµ + DµΛ = Aµ + ∂µΛ + Aµ ∗ Λ− Λ ∗ Aµ

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 2/6

Page 5: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Open strings in a constant Neveu-Schwartz background

Pauli-Villars −→ Commutative gauge theory

Aµ → Aµ +DµΛ = Aµ + ∂µΛ +AµΛ− ΛAµ

Point-Splitting −→ Noncommutative gauge theory

Aµ → Aµ + DµΛ = Aµ + ∂µΛ + Aµ ∗ Λ− Λ ∗ Aµ

Is there some map relating them?

Aµ ←→ Aµ

θµν 6= 0 ←→ θµν = 0

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 2/6

Page 6: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Open strings in a constant Neveu-Schwartz background

Pauli-Villars −→ Commutative gauge theory

Aµ → Aµ +DµΛ = Aµ + ∂µΛ +AµΛ− ΛAµ

Point-Splitting −→ Noncommutative gauge theory

Aµ → Aµ + DµΛ = Aµ + ∂µΛ + Aµ ∗ Λ− Λ ∗ Aµ

Yes!, and it is even more general

Aµ ←→ Aµ

θµν 6= 0 ←→ θ′µν 6= 0

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 2/6

Page 7: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Open strings in a constant Neveu-Schwartz background

Pauli-Villars −→ Commutative gauge theory

Aµ → Aµ +DµΛ = Aµ + ∂µΛ +AµΛ− ΛAµ

Point-Splitting −→ Noncommutative gauge theory

Aµ → Aµ + DµΛ = Aµ + ∂µΛ + Aµ ∗ Λ− Λ ∗ Aµ

Yes!, and it is even more general

Aµ ←→ Aµ

θµν 6= 0 ←→ θ′µν 6= 0

Seiberg-Witten map relates two noncommutative gauge theories

θµν ←→ θ′µν

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 2/6

Page 8: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Explicit form of the map θρσ ←→ θρσ + δθρσ

Aµ ←→ Aµ +1

4δθρσ {Aρ, ∂σAµ + Fσµ}

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 3/6

Page 9: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Explicit form of the map θρσ ←→ θρσ + δθρσ

Aµ ←→ Aµ +1

4δθρσ {Aρ, ∂σAµ + Fσµ}

Fµν ←→ Fµν +1

4δθρσ (−2 {Fµρ, Fνσ}+ {Aρ, DσFµν + ∂σFµν})

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 3/6

Page 10: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Explicit form of the map θρσ ←→ θρσ + δθρσ

Aµ ←→ Aµ +1

4δθρσ {Aρ, ∂σAµ + Fσµ}

Fµν ←→ Fµν +1

4δθρσ (−2 {Fµρ, Fνσ}+ {Aρ, DσFµν + ∂σFµν})

For a general action, the dynamics is not invariant

Sθ[Aµ] ←→ Sθ+δθ[Aµ] + δS[Aµ]

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 3/6

Page 11: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Explicit form of the map θρσ ←→ θρσ + δθρσ

Aµ ←→ Aµ +1

4δθρσ {Aρ, ∂σAµ + Fσµ}

Fµν ←→ Fµν +1

4δθρσ (−2 {Fµρ, Fνσ}+ {Aρ, DσFµν + ∂σFµν})

For a general action, the dynamics is not invariant

Sθ[Aµ] ←→ Sθ+δθ[Aµ] + δS[Aµ]

For example, for the Yang-Mills action

δSY M =1

2δθρσ

M

(

FµνFµρF

νσ −

1

4Fµν {Aρ, DσF

µν + ∂σFµν}

)

6= 0

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 3/6

Page 12: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Seiberg-Witten map

Explicit form of the map θρσ ←→ θρσ + δθρσ

Aµ ←→ Aµ +1

4δθρσ {Aρ, ∂σAµ + Fσµ}

Fµν ←→ Fµν +1

4δθρσ (−2 {Fµρ, Fνσ}+ {Aρ, DσFµν + ∂σFµν})

For a general action, the dynamics is not invariant

Sθ[Aµ] ←→ Sθ+δθ[Aµ] + δS[Aµ]

But, for the Chern-Simons action we have

δSCS =

M

∂µfµ

Then, in a manifold without boundary, the CS action is invariant

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 3/6

Page 13: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Noncommutative CS action

The noncommutative Chern-Simons action is

SθCS [Aµ] =

κ

4πTr

M

ǫµνρ

(

Aµ ∗ ∂νAρ +2

3Aµ ∗ Aν ∗ Aρ

)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 4/6

Page 14: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Noncommutative CS action

The noncommutative Chern-Simons action is

SθCS [Aµ] =

κ

4πTr

M

ǫµνρ

(

Aµ ∗ ∂νAρ +2

3Aµ ∗ Aν ∗ Aρ

)

What should we expect?

Fµν = 0 ←→ Fµν = 0

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 4/6

Page 15: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Noncommutative CS action

The noncommutative Chern-Simons action is

SθCS [Aµ] =

κ

4πTr

M

ǫµνρ

(

Aµ ∗ ∂νAρ +2

3Aµ ∗ Aν ∗ Aρ

)

What should we expect?

Fµν = 0 ←→ Fµν = 0

l l

SθCS [A] Sθ′

CS [A]

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 4/6

Page 16: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Noncommutative CS action

The noncommutative Chern-Simons action is

SθCS [Aµ] =

κ

4πTr

M

ǫµνρ

(

Aµ ∗ ∂νAρ +2

3Aµ ∗ Aν ∗ Aρ

)

What should we expect?

Fµν = 0 ←→ Fµν = 0

l l

SθCS [A] Sθ′

CS [A]

SθWZW [g] ←→ Sθ′

WZW [g]

Sθ[ψ] ≡ Sθ′

[ψ]

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 4/6

Page 17: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Noncommutative CS action

The noncommutative Chern-Simons action is

SθCS [Aµ] =

κ

4πTr

M

ǫµνρ

(

Aµ ∗ ∂νAρ +2

3Aµ ∗ Aν ∗ Aρ

)

What should we expect?

Fµν = 0 ←→ Fµν = 0

l l

SθCS [A] Sθ′

CS [A]

l l

SθWZW [g] ←→ Sθ′

WZW [g]

Sθ[ψ] ≡ Sθ′

[ψ]

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 4/6

Page 18: The noncommutative Chern-Simons action and teh Siberg-Witten map

The Noncommutative CS action

The noncommutative Chern-Simons action is

SθCS [Aµ] =

κ

4πTr

M

ǫµνρ

(

Aµ ∗ ∂νAρ +2

3Aµ ∗ Aν ∗ Aρ

)

What should we expect?

Fµν = 0 ←→ Fµν = 0

l l

SθCS [A] ⇐⇒ Sθ′

CS [A]

l l

SθWZW [g] ←→ Sθ′

WZW [g]

Sθ[ψ] ≡ Sθ′

[ψ]

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 4/6

Page 19: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 ∗ Fij − Ai ∗˙Aj +B

(1)ij

)

where the boundary term is

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 20: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai ∗˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 21: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai ∗˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)

A0 enforces the constraint Fij = 0 then Ai = g−1∂ig

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 22: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai ∗˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)

A0 enforces the constraint Fij = 0 then Ai = g−1∂ig

−κ

∂M

~ti(g−1∗∂ig)∗(g

−1∗∂tg)+

M

ǫij(g−1∗∂ig)∗(g−1∗∂tg)∗(g

−1∗∂j g)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 23: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai ∗˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)

A0 enforces the constraint Fij = 0 then Ai = g−1∂ig

−κ

∂M

~ti(g−1∗∂ig)∗(g

−1∗∂tg)+

M

ǫij(g−1∗∂ig)∗(g−1∗∂tg)∗(g

−1∗∂j g)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 24: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai ∗˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)

A0 enforces the constraint Fij = 0 then Ai = g−1∂ig

−κ

∂M

~ti(g−1∗∂ig)∗(g

−1∗∂tg)+

M

ǫij(g−1∗∂ig)∗(g−1∗∂tg)∗(g

−1∗∂j g)

A0 also enforces on the boundary an infinite set of nonlinearconstraints involving Ai and all its derivatives

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 25: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai ∗˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 26: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)− (Ai ∗

˙Aj − Aj

˙Ai)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 27: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)− (Ai ∗

˙Aj − Aj

˙Ai)

Applying the Seiberg-Witten map we get

δSθCS =

κ

4πTr

M

ǫij(

δA0Fij + A0δFij − 2δAi˙Aj + δB

(1)ij +δB

(2)ij

)

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 28: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)− (Ai ∗

˙Aj − Aj

˙Ai)

Applying the Seiberg-Witten map we get

δSθCS =

κ

4πTr

M

∂µfµ

Then in a boudaryless manifold, the CS action is invariant underthe Seiberg-Witten map

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 29: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)− (Ai ∗

˙Aj − Aj

˙Ai)

Applying the Seiberg-Witten map we get

δSθCS =

κ

4πTr

M

ǫij(

δθkl∂i

(

2Aj∂kAlA0 + AjAkAl

)

+ δB(1)ij + δB

(2)ij

)

Then in a boudaryless manifold, the CS action is invariant underthe Seiberg-Witten map

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 30: The noncommutative Chern-Simons action and teh Siberg-Witten map

Explicit calculation

Writing the CS action as

SθCS [A0, Ai] =

κ

4πTr

M

ǫij(

A0 Fij − Ai˙Aj +B

(1)ij +B

(2)ij

)

where the boundary terms are

B(1)ij = ∂i(Aj ∗ A0) + [∂iAj + 2

3 Ai ∗ Aj , A0]−23

[

Ai ∗ A0 , Aj

]

B(2)ij = (A0 ∗ Fij − A0Fij)− (Ai ∗

˙Aj − Aj

˙Ai)

Applying the Seiberg-Witten map we get

δSθCS =

κ

4πTr

M

ǫij(

δθkl∂i

(

2Aj∂kAlA0 + AjAkAl

)

+ δB(1)ij + δB

(2)ij

)

Then in a boudaryless manifold, the CS action is invariant underthe Seiberg-Witten map

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 5/6

Page 31: The noncommutative Chern-Simons action and teh Siberg-Witten map

Closing remarks

In a boundaryless manifold, the noncommutative Chern-Simonsaction is invariant under the Seiberg-Witten map, this meaning(N.E.G and G.A. Silva hep-th/0310113)

SθCS ←→ Sθ′

CS

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 6/6

Page 32: The noncommutative Chern-Simons action and teh Siberg-Witten map

Closing remarks

In a boundaryless manifold, the noncommutative Chern-Simonsaction is invariant under the Seiberg-Witten map, this meaning(N.E.G and G.A. Silva hep-th/0310113)

SθCS ←→ Sθ′

CS

In a manifold with boundary, we need to impose a infinite set ofnonlinear relations involving all the derivatives of the gauge fieldas boundary conditions (A.R. Lugo hep-th/0111064).

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 6/6

Page 33: The noncommutative Chern-Simons action and teh Siberg-Witten map

Closing remarks

In a boundaryless manifold, the noncommutative Chern-Simonsaction is invariant under the Seiberg-Witten map, this meaning(N.E.G and G.A. Silva hep-th/0310113)

SθCS ←→ Sθ′

CS

In a manifold with boundary, we need to impose a infinite set ofnonlinear relations involving all the derivatives of the gauge fieldas boundary conditions (A.R. Lugo hep-th/0111064).

The "boundary theory" is not a NC chiral Wess-Zumino-Wittenmodel. In fact it is not a boundary theory at all because it involvesinfinite derivatives of the fields in the directions of the bulk.

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 6/6

Page 34: The noncommutative Chern-Simons action and teh Siberg-Witten map

Closing remarks

In a boundaryless manifold, the noncommutative Chern-Simonsaction is invariant under the Seiberg-Witten map, this meaning(N.E.G and G.A. Silva hep-th/0310113)

SθCS ←→ Sθ′

CS

In a manifold with boundary, we need to impose a infinite set ofnonlinear relations involving all the derivatives of the gauge fieldas boundary conditions (A.R. Lugo hep-th/0111064).

The "boundary theory" is not a NC chiral Wess-Zumino-Wittenmodel. In fact it is not a boundary theory at all because it involvesinfinite derivatives of the fields in the directions of the bulk.

The stated equivalence holds at the classical level. The quantumresult would require the study of the of the behavior of themeasure DAµ under the map (Kaminsky, Okawa, Oogurihep-th/0101133, Kaminsky hep-th/0310011).

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 6/6

Page 35: The noncommutative Chern-Simons action and teh Siberg-Witten map

Closing remarks

In a boundaryless manifold, the noncommutative Chern-Simonsaction is invariant under the Seiberg-Witten map, this meaning(N.E.G and G.A. Silva hep-th/0310113)

SθCS ←→ Sθ′

CS

In a manifold with boundary, we need to impose a infinite set ofnonlinear relations involving all the derivatives of the gauge fieldas boundary conditions (A.R. Lugo hep-th/0111064).

The "boundary theory" is not a NC chiral Wess-Zumino-Wittenmodel. In fact it is not a boundary theory at all because it involvesinfinite derivatives of the fields in the directions of the bulk.

The stated equivalence holds at the classical level. The quantumresult would require the study of the of the behavior of themeasure DAµ under the map (Kaminsky, Okawa, Oogurihep-th/0101133, Kaminsky hep-th/0310011).

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 6/6

Page 36: The noncommutative Chern-Simons action and teh Siberg-Witten map

Closing remarks

In a boundaryless manifold, the noncommutative Chern-Simonsaction is invariant under the Seiberg-Witten map, this meaning(N.E.G and G.A. Silva hep-th/0310113)

SθCS ←→ Sθ′

CS

In a manifold with boundary, we need to impose a infinite set ofnonlinear relations involving all the derivatives of the gauge fieldas boundary conditions (A.R. Lugo hep-th/0111064).

The "boundary theory" is not a NC chiral Wess-Zumino-Wittenmodel. In fact it is not a boundary theory at all because it involvesinfinite derivatives of the fields in the directions of the bulk.

The stated equivalence holds at the classical level. The quantumresult would require the study of the of the behavior of themeasure DAµ under the map (Kaminsky, Okawa, Oogurihep-th/0101133, Kaminsky hep-th/0310011).

The noncommutative Chern-Simons action and the Seiberg-Witten map – p. 6/6