the organic–inorganic hybrid material 1-cyclohexylpiperazine-1,4-diium tetrachloridozincate

8
The organic–inorganic hybrid material 1-cyclohexylpiperazine-1,4-diium tetrachloridozincate Sarra Soudani, a Emmanuel Aubert, b Christian Jelsch b and Cherif Ben Nasr a * a Laboratoire de Chimie des Mate ´riaux, Faculte ´ des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and b Cristallographie, Re ´sonance Magne ´tique et Mode ´lisations (CRM2), UMR CNRS–UHP 7036, Institut Jean Barriol, Universite ´ de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France Correspondence e-mail: [email protected] Received 18 July 2013 Accepted 23 September 2013 In the crystal structure of the title organic–inorganic hybrid material, (C 10 H 22 N 2 )[ZnCl 4 ], the tetrachloridozincate anions and 1-cyclohexylpiperazine-1,4-diium dications are inter- connected via N—HCl and C—HCl hydrogen bonds to form layers parallel to the (001) plane. The cyclohexyl groups from adjacent chains interdigitate, thus building the three- dimensional structure. The piperazinium and cyclohexyl rings exhibit regular spatial chair conformations. The title salt was also characterized by FT–IR and Raman spectroscopic analyses. Keywords: crystal structure; organic–inorganic hybrid materials; organic–inorganic salts; tetrachloridozincate anions; 1-cyclohexylpiperazine-1,4-diium cations. 1. Introduction Organic–inorganic hybrid materials have received extensive attention in recent years owing to their great fundamental and practical interest, such as second-order nonlinear optical (NLO) responses, magnetism, luminescence and drug delivery (Mitzi, 1999; Qin et al., 1999; Ogawa & Kuroda, 1995; Pecaut et al., 1993; Lacroix, 2001; Bringley & Rajeswaran, 2006). The energetics of N—HCl—M (M = metal) hydrogen bonds and their possible role in supramolecular chemistry have been recently described in detail (Brammer et al., 2002). It is therefore vital to design and synthesize novel organic– inorganic hybrid compounds to explore their various proper- ties. The present work is devoted to determining the detailed structure of the title organic–inorganic salt, 1-cyclohexyl- piperazine-1,4-diium tetrachloridozincate, (I). The character- ization of this material by FT–IR and Raman spectroscopic analyses is also described. 2. Experimental 2.1. Synthesis and crystallization 1-Cyclohexylpiperazine (0.37 g, 3 mmol; Aldrich, purity 97%) and ZnCl 2 (0.41 g, 3 mmol; Aldrich, purity 98%) were dissolved in aqueous HCl (2 M, 20 ml). The resulting solution was evaporated slowly at room temperature over a period of several days, leading to the formation of transparent colour- less prismatic crystals with suitable dimensions for single- crystal structural analysis (yield 73%). The crystals are stable for months under normal conditions of temperature and humidity. The IR spectrum was recorded on a Nicolet FT–IR NEXUS spectrophotometer and the Raman spectrum on a LabRAM HR (Horiba Jobin Yvon) spectrophotometer. 2.2. Refinement Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were located in difference Fourier maps. The final structure was constructed using riding models for C—H bonds, with interatomic distances fixed at 0.99 A ˚ and U iso (H) = 1.2U eq (C). H atoms bonded to N atoms were refined freely, with isotropic displa- cement parameters. 3. Results and discussion The asymmetric unit of (I) comprises one 1-cyclohexyl- piperazine-1,4-diium dication and one [ZnCl 4 ] 2 anion (Fig. 1). The crystal structure consists of a network of the different constituents connected by N—HCl and C—HCl hydrogen bonds (Table 2) and van der Waals contacts. These hydrogen bonds hold the tetrachloridozincate anions and piperazine-1,4-diium dications together in layers parallel to the (001) plane (Fig. 2). Fig. 3 shows that two such layers cross the unit cell at z n/2 (where n is an integer), and the bodies of the organic entities from adjacent layers, the cyclohexyl groups, interdigitate. The organic entities exhibit a regular spatial conformation (chair conformation for both piperazine and cyclohexyl rings) with normal distances and angles. The Zn—Cl bond lengths vary between 2.2467 (4) and 2.3318 (4) A ˚ , and the Cl—Zn—Cl angles range from 103.327 (14) to 116.146 (15) . Owing to these differences in the geometric parameters, the [ZnCl 4 ] 2 anion has a slightly distorted tetrahedral stereochemistry. It is worth noting that, metal-organic compounds 1304 # 2013 International Union of Crystallography doi:10.1107/S0108270113026267 Acta Cryst. (2013). C69, 1304–1306 Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Upload: cherif

Post on 27-Jan-2017

216 views

Category:

Documents


0 download

TRANSCRIPT

The organic–inorganic hybrid material1-cyclohexylpiperazine-1,4-diiumtetrachloridozincate

Sarra Soudani,a Emmanuel Aubert,b Christian Jelschb and

Cherif Ben Nasra*

aLaboratoire de Chimie des Materiaux, Faculte des Sciences de Bizerte, 7021

Zarzouna, Tunisia, and bCristallographie, Resonance Magnetique et Modelisations

(CRM2), UMR CNRS–UHP 7036, Institut Jean Barriol, Universite de Lorraine, BP

70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France

Correspondence e-mail: [email protected]

Received 18 July 2013

Accepted 23 September 2013

In the crystal structure of the title organic–inorganic hybrid

material, (C10H22N2)[ZnCl4], the tetrachloridozincate anions

and 1-cyclohexylpiperazine-1,4-diium dications are inter-

connected via N—H� � �Cl and C—H� � �Cl hydrogen bonds to

form layers parallel to the (001) plane. The cyclohexyl groups

from adjacent chains interdigitate, thus building the three-

dimensional structure. The piperazinium and cyclohexyl rings

exhibit regular spatial chair conformations. The title salt was

also characterized by FT–IR and Raman spectroscopic

analyses.

Keywords: crystal structure; organic–inorganic hybrid materials;organic–inorganic salts; tetrachloridozincate anions;1-cyclohexylpiperazine-1,4-diium cations.

1. Introduction

Organic–inorganic hybrid materials have received extensive

attention in recent years owing to their great fundamental and

practical interest, such as second-order nonlinear optical

(NLO) responses, magnetism, luminescence and drug delivery

(Mitzi, 1999; Qin et al., 1999; Ogawa & Kuroda, 1995; Pecaut et

al., 1993; Lacroix, 2001; Bringley & Rajeswaran, 2006). The

energetics of N—H� � �Cl—M (M = metal) hydrogen bonds and

their possible role in supramolecular chemistry have been

recently described in detail (Brammer et al., 2002). It is

therefore vital to design and synthesize novel organic–

inorganic hybrid compounds to explore their various proper-

ties. The present work is devoted to determining the detailed

structure of the title organic–inorganic salt, 1-cyclohexyl-

piperazine-1,4-diium tetrachloridozincate, (I). The character-

ization of this material by FT–IR and Raman spectroscopic

analyses is also described.

2. Experimental

2.1. Synthesis and crystallization

1-Cyclohexylpiperazine (0.37 g, 3 mmol; Aldrich, purity

97%) and ZnCl2 (0.41 g, 3 mmol; Aldrich, purity 98%) were

dissolved in aqueous HCl (2 M, 20 ml). The resulting solution

was evaporated slowly at room temperature over a period of

several days, leading to the formation of transparent colour-

less prismatic crystals with suitable dimensions for single-

crystal structural analysis (yield 73%). The crystals are stable

for months under normal conditions of temperature and

humidity. The IR spectrum was recorded on a Nicolet FT–IR

NEXUS spectrophotometer and the Raman spectrum on a

LabRAM HR (Horiba Jobin Yvon) spectrophotometer.

2.2. Refinement

Crystal data, data collection and structure refinement

details are summarized in Table 1. H atoms were located in

difference Fourier maps. The final structure was constructed

using riding models for C—H bonds, with interatomic

distances fixed at 0.99 A and Uiso(H) = 1.2Ueq(C). H atoms

bonded to N atoms were refined freely, with isotropic displa-

cement parameters.

3. Results and discussion

The asymmetric unit of (I) comprises one 1-cyclohexyl-

piperazine-1,4-diium dication and one [ZnCl4]2� anion (Fig. 1).

The crystal structure consists of a network of the different

constituents connected by N—H� � �Cl and C—H� � �Cl

hydrogen bonds (Table 2) and van der Waals contacts. These

hydrogen bonds hold the tetrachloridozincate anions and

piperazine-1,4-diium dications together in layers parallel to

the (001) plane (Fig. 2). Fig. 3 shows that two such layers cross

the unit cell at z � n/2 (where n is an integer), and the bodies

of the organic entities from adjacent layers, the cyclohexyl

groups, interdigitate. The organic entities exhibit a regular

spatial conformation (chair conformation for both piperazine

and cyclohexyl rings) with normal distances and angles. The

Zn—Cl bond lengths vary between 2.2467 (4) and

2.3318 (4) A, and the Cl—Zn—Cl angles range from

103.327 (14) to 116.146 (15)�. Owing to these differences in

the geometric parameters, the [ZnCl4]2� anion has a slightly

distorted tetrahedral stereochemistry. It is worth noting that,

metal-organic compounds

1304 # 2013 International Union of Crystallography doi:10.1107/S0108270113026267 Acta Cryst. (2013). C69, 1304–1306

Acta Crystallographica Section C

Crystal StructureCommunications

ISSN 0108-2701

among all the hydrogen bonds, one is a three-centred inter-

action, viz.N4—H4B� � �(Cl1iii,Cl4iii) (for details and symmetry

code, see Table 2).

IR spectroscopy is one of the major physical methods for

the investigation of molecular structures. The IR spectrum of

crystalline (I) is shown in Fig. 4. To assign the IR bands to

vibrational modes, we examined the modes and frequencies

observed in similar compounds (Calve et al., 1989; Navak,

1990). In the high-frequency region, broad bands between

metal-organic compounds

Acta Cryst. (2013). C69, 1304–1306 Soudani et al. � (C10H22N2)[ZnCl4] 1305

Table 1Experimental details.

Crystal dataChemical formula (C10H22N2)[ZnCl4]Mr 377.47Crystal system, space group Orthorhombic, PbcaTemperature (K) 110a, b, c (A) 11.3673 (2), 9.5997 (2), 28.6571 (5)V (A3) 3127.14 (10)Z 8Radiation type Cu K�� (mm�1) 8.30Crystal size (mm) 0.26 � 0.22 � 0.15

Data collectionDiffractometer Agilent SuperNova Dual diffract-

ometer (Cu at zero) with an Atlasdetector

Absorption correction Analytical [CrysAlis PRO (Agilent,2012); analytical absorptioncorrection using a multifacetedcrystal model based on expressionsderived by Clark & Reid (1995)]

Tmin, Tmax 0.201, 0.425No. of measured, independent and

observed [I > 2�(I)] reflections17184, 3263, 3154

Rint 0.030(sin �/�)max (A�1) 0.630

RefinementR[F 2 > 2�(F 2)], wR(F 2), S 0.022, 0.056, 1.08No. of reflections 3263No. of parameters 166H-atom treatment H atoms treated by a mixture of

independent and constrainedrefinement

��max, ��min (e A�3) 0.32, �0.27

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1994),DIAMOND (Brandenburg, 1998) and SHELXL97 (Sheldrick, 2008).

Figure 1A view of the contents of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50%probability level.

Table 2Hydrogen-bond geometry (A, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N1—H1� � �Cl1 0.90 (2) 2.42 (2) 3.2441 (13) 152 (2)N4—H4A� � �Cl3i 0.90 (2) 2.46 (2) 3.3050 (12) 158 (2)C5—H5A� � �Cl1ii 0.99 2.75 3.6125 (15) 146N4—H4B� � �Cl1iii 0.89 (2) 2.50 (2) 3.2153 (12) 138 (2)N4—H4B� � �Cl4iii 0.89 (2) 2.66 (2) 3.2561 (12) 125 (2)C5—H5B� � �Cl1 0.99 2.79 3.5573 (15) 135

Symmetry codes: (i) x; y � 1; z; (ii) �xþ 12; y� 1

2; z; (iii) �xþ 1;�y þ 1;�z.

Figure 2A projection, along the c axis, of the layers in the structure of (I).Hydrogen bonds are shown as dashed lines. Generic labels show the atomtypes.

Figure 3A packing diagram of (I), viewed down the a axis. Hydrogen bonds areshown as dashed lines. Generic labels show the atom types.

3300 and 2700 cm�1 are attributed to the stretching vibrations

of N—H and C—H groups (Smirani et al., 2004). The bands

between 1650 and 1200 cm�1 are assigned to the deformation

vibration of N—H groups and to the stretching modes of C—C

and C—N groups (Kaabi et al., 2003). The vibration bands

between 1000 and 500 cm�1 are attributed to out-of-plane

bending modes for C—H, C—C and C—N (Oueslati et al.,

2005).

Raman spectroscopy shows that the bands corresponding to

the internal vibrational modes of the [ZnCl4]2� anion, i.e. �1,

�2, �3 and �4 , appear in the spectroscopic region below

350 cm�1. Fig. 5 shows this Raman region related to (I). The

weak band at 306 cm�1 is attributed to the �1(ZnCl4) mode

(Carter, 2002). The bands observed at 297 and 251 cm�1 are

assigned to the �3(ZnCl4) mode (Guo et al., 2007). The intense

band at 117 cm�1 is likely due to the �4(ZnCl4) mode (Carter,

2000). Finally, the band appearing at 102 cm�1 is likely related

to the �2(ZnCl4) mode (Ben Rhaiem et al., 2007).

4. Conclusions

Compound (I) was prepared as single crystals at room

temperature and characterized by physicochemical methods.

On the structural level, the atomic arrangement of this

material consists of a network of the tetrachloridozincate

anions and 1-cyclohexylpiperazine-1,4-diium dications inter-

connected via N—H� � �Cl and C—H� � �Cl hydrogen bonds to

form layers parallel to the (001) plane. The cyclohexyl groups

from adjacent chains interdigitate, thus completing the three-

dimensional structure. The bands corresponding to the

vibrational modes of the organic group were assigned by IR

spectroscopy, while those of the inorganic entity, [ZnCl4]2�,

were attributed using Raman spectroscopy.

The authors acknowledge the support provided by the

Secretary of State for Scientific Research and Technology of

Tunisia.

Supplementary data for this paper are available from the IUCr electronicarchives (Reference: CU3034). Services for accessing these data aredescribed at the back of the journal.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire,England.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C.,Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Ben Rhaiem, A., Helel, F., Guidara, K. & Gargouri, M. (2007). Spectrochim.Acta Part A, 66, 1107–1109.

Brammer, L. J., Swearingen, K., Bruton, E. A. & Sherwood, P. (2002). Proc.Natl Acad. Sci. USA, 99, 4956–4961.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.Calve, N. L., Romain, F., Limage, M. H. & Novak, A. (1989). J. Mol. Struct.

200, 131–147.Carter, R. L. (2000). Spectrochim. Acta Part A, 56, 2351–2363.Carter, R. L. (2002). Spectrochim. Acta Part A, 58, 3185–3195.Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.Kaabi, K., Rayes, A., Ben Nasr, C., Rzaigui, M. & Lefebvre, F. (2003). Mater.

Res. Bull. 38, 741–747.Lacroix, P. G. (2001). Chem. Mater. 13, 3495–3506.Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1–121.Navak, A. (1990). J. Mol. Struct. 217, 35–49.Ogawa, M. & Kuroda, K. (1995). Chem. Rev. 95, 399–438.Oueslati, A., Ben Nasr, C., Durif, A. & Lefebvre, F. (2005). Mater. Res. Bull.

40, 970–980.Pecaut, J., Le Fur, Y., Levy, J. & Masse, R. (1993). J. Mater. Chem. 3, 333–338.Qin, J., Dai, C., Liu, D., Chen, C., Wu, B., Yang, C. & Zhan, C. (1999). Coord.

Chem. Rev. 188, 23–34.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Smirani, W., Ben Nasr, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1103–

1111.

metal-organic compounds

1306 Soudani et al. � (C10H22N2)[ZnCl4] Acta Cryst. (2013). C69, 1304–1306

Figure 4The IR spectrum of (I).

Figure 5The Raman spectrum of (I).

supplementary materials

sup-1Acta Cryst. (2013). C69, 1304-1306

supplementary materials

Acta Cryst. (2013). C69, 1304-1306 [doi:10.1107/S0108270113026267]

The organic–inorganic hybrid material 1-cyclohexylpiperazine-1,4-diium

tetrachloridozincate

Sarra Soudani, Emmanuel Aubert, Christian Jelsch and Cherif Ben Nasr

Computing details

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis

PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine

structure: SHELXL97 (Sheldrick, 2008).

1-cyclohexylpiperazine-1,4-diium tetrachloridozincate

Crystal data

(C10H22N2)[ZnCl4]Mr = 377.47Orthorhombic, PbcaHall symbol: -P 2ac 2aba = 11.3673 (2) Åb = 9.5997 (2) Åc = 28.6571 (5) ÅV = 3127.14 (10) Å3

Z = 8

F(000) = 1552Dx = 1.604 Mg m−3

Cu Kα radiation, λ = 1.54184 ÅCell parameters from 9435 reflectionsθ = 3.1–76.4°µ = 8.30 mm−1

T = 110 KPrism, colourless0.26 × 0.22 × 0.15 mm

Data collection

Agilent SuperNova Dual diffractometer (Cu at zero) with Atlas detector

Radiation source: SuperNova (Cu) X-ray Source

Mirror monochromatorDetector resolution: 10.4508 pixels mm-1

ω scans

Absorption correction: analytical [CrysAlis PRO (Agilent, 2012); analytical numerical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]

Tmin = 0.201, Tmax = 0.42517184 measured reflections3263 independent reflections3154 reflections with I > 2σ(I)Rint = 0.030θmax = 76.2°, θmin = 3.1°h = −14→10k = −11→12l = −36→35

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.022wR(F2) = 0.056S = 1.08

3263 reflections166 parameters0 restraintsPrimary atom site location: structure-invariant

direct methods

supplementary materials

sup-2Acta Cryst. (2013). C69, 1304-1306

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier mapH atoms treated by a mixture of independent

and constrained refinement

w = 1/[σ2(Fo2) + (0.0273P)2 + 2.021P]

where P = (Fo2 + 2Fc

2)/3(Δ/σ)max = 0.001Δρmax = 0.32 e Å−3

Δρmin = −0.27 e Å−3

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.552127 (17) 0.837964 (19) 0.089690 (6) 0.01164 (7)Cl3 0.44251 (3) 0.99531 (4) 0.130948 (12) 0.01701 (9)Cl2 0.66233 (3) 0.69395 (4) 0.133374 (12) 0.01658 (8)Cl1 0.41865 (3) 0.68822 (3) 0.053615 (12) 0.01533 (8)Cl4 0.64732 (3) 0.95295 (3) 0.031959 (12) 0.01565 (8)N1 0.46089 (11) 0.42781 (13) 0.12379 (4) 0.0116 (2)N4 0.48467 (11) 0.22977 (13) 0.04818 (4) 0.0136 (2)C7 0.44402 (12) 0.46430 (15) 0.17543 (5) 0.0129 (3)H7 0.5235 0.4855 0.1885 0.015*C3 0.59015 (13) 0.30339 (16) 0.06715 (5) 0.0150 (3)H3B 0.6052 0.3888 0.0487 0.018*H3A 0.6600 0.2423 0.0645 0.018*C6 0.35583 (13) 0.35838 (15) 0.10184 (5) 0.0141 (3)H6B 0.2873 0.4218 0.1036 0.017*H6A 0.3364 0.2728 0.1195 0.017*C2 0.57029 (13) 0.34155 (15) 0.11769 (5) 0.0142 (3)H2A 0.5633 0.2554 0.1365 0.017*H2B 0.6390 0.3945 0.1294 0.017*C12 0.39402 (15) 0.34274 (16) 0.20329 (5) 0.0186 (3)H12B 0.4429 0.2587 0.1983 0.022*H12A 0.3130 0.3219 0.1926 0.022*C9 0.36831 (15) 0.63142 (17) 0.23370 (5) 0.0202 (3)H9B 0.4494 0.6538 0.2438 0.024*H9A 0.3192 0.7153 0.2386 0.024*C5 0.37872 (13) 0.32076 (15) 0.05119 (5) 0.0145 (3)H5A 0.3097 0.2714 0.0382 0.017*H5B 0.3915 0.4066 0.0327 0.017*C8 0.36894 (13) 0.59428 (16) 0.18160 (5) 0.0164 (3)H8A 0.2877 0.5765 0.1706 0.020*

supplementary materials

sup-3Acta Cryst. (2013). C69, 1304-1306

H8B 0.4021 0.6722 0.1632 0.020*C11 0.39285 (16) 0.38115 (18) 0.25525 (5) 0.0232 (3)H11A 0.3588 0.3033 0.2735 0.028*H11B 0.4745 0.3963 0.2662 0.028*C10 0.32078 (16) 0.51264 (18) 0.26348 (6) 0.0244 (3)H10B 0.3246 0.5388 0.2969 0.029*H10A 0.2374 0.4950 0.2554 0.029*H4B 0.4965 (18) 0.205 (2) 0.0185 (8) 0.021 (5)*H1 0.4747 (17) 0.508 (2) 0.1084 (7) 0.016 (5)*H4A 0.4746 (19) 0.150 (2) 0.0639 (8) 0.022 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.01350 (11) 0.00970 (11) 0.01171 (11) 0.00094 (7) 0.00004 (7) 0.00002 (6)Cl3 0.01859 (18) 0.01404 (17) 0.01840 (17) 0.00101 (13) 0.00349 (12) −0.00108 (12)Cl2 0.01603 (17) 0.01697 (16) 0.01674 (17) −0.00007 (13) −0.00065 (12) 0.00320 (12)Cl1 0.01766 (17) 0.01406 (16) 0.01426 (16) −0.00266 (13) −0.00250 (12) 0.00128 (11)Cl4 0.01613 (16) 0.01425 (16) 0.01657 (16) 0.00047 (12) 0.00054 (12) 0.00002 (12)N1 0.0128 (6) 0.0115 (5) 0.0106 (5) 0.0003 (5) 0.0005 (4) −0.0002 (4)N4 0.0149 (6) 0.0134 (6) 0.0126 (6) 0.0000 (5) 0.0003 (5) −0.0024 (5)C7 0.0149 (7) 0.0140 (7) 0.0097 (6) 0.0006 (5) −0.0007 (5) −0.0022 (5)C3 0.0117 (7) 0.0169 (7) 0.0164 (7) −0.0016 (6) 0.0021 (5) −0.0024 (5)C6 0.0117 (6) 0.0160 (7) 0.0147 (7) 0.0002 (5) −0.0013 (5) −0.0018 (5)C2 0.0126 (7) 0.0144 (7) 0.0154 (7) 0.0021 (5) −0.0007 (5) −0.0023 (5)C12 0.0274 (8) 0.0165 (7) 0.0119 (7) −0.0010 (6) 0.0014 (6) 0.0007 (5)C9 0.0237 (8) 0.0202 (7) 0.0168 (7) 0.0049 (6) −0.0013 (6) −0.0059 (6)C5 0.0138 (7) 0.0159 (7) 0.0137 (7) 0.0015 (6) −0.0017 (5) −0.0014 (5)C8 0.0191 (7) 0.0156 (7) 0.0146 (7) 0.0022 (6) 0.0000 (5) −0.0009 (5)C11 0.0345 (9) 0.0237 (8) 0.0116 (7) −0.0002 (7) 0.0019 (6) 0.0013 (6)C10 0.0277 (8) 0.0319 (9) 0.0134 (7) 0.0028 (7) 0.0042 (6) −0.0037 (6)

Geometric parameters (Å, º)

Zn1—Cl2 2.2467 (4) C6—H6A 0.9900Zn1—Cl4 2.2641 (4) C2—H2A 0.9900Zn1—Cl3 2.2874 (4) C2—H2B 0.9900Zn1—Cl1 2.3318 (4) C12—C11 1.534 (2)N1—C2 1.5043 (18) C12—H12B 0.9900N1—C6 1.5052 (18) C12—H12A 0.9900N1—C7 1.5328 (17) C9—C10 1.523 (2)N1—H1 0.90 (2) C9—C8 1.535 (2)N4—C5 1.4902 (19) C9—H9B 0.9900N4—C3 1.4942 (18) C9—H9A 0.9900N4—H4B 0.89 (2) C5—H5A 0.9900N4—H4A 0.90 (2) C5—H5B 0.9900C7—C8 1.522 (2) C8—H8A 0.9900C7—C12 1.524 (2) C8—H8B 0.9900C7—H7 1.0000 C11—C10 1.523 (2)C3—C2 1.511 (2) C11—H11A 0.9900

supplementary materials

sup-4Acta Cryst. (2013). C69, 1304-1306

C3—H3B 0.9900 C11—H11B 0.9900C3—H3A 0.9900 C10—H10B 0.9900C6—C5 1.5183 (19) C10—H10A 0.9900C6—H6B 0.9900

Cl2—Zn1—Cl4 116.146 (15) N1—C2—H2B 109.3Cl2—Zn1—Cl3 114.966 (15) C3—C2—H2B 109.3Cl4—Zn1—Cl3 108.429 (14) H2A—C2—H2B 108.0Cl2—Zn1—Cl1 103.327 (14) C7—C12—C11 109.13 (13)Cl4—Zn1—Cl1 106.711 (14) C7—C12—H12B 109.9Cl3—Zn1—Cl1 106.366 (15) C11—C12—H12B 109.9C2—N1—C6 111.32 (11) C7—C12—H12A 109.9C2—N1—C7 109.96 (11) C11—C12—H12A 109.9C6—N1—C7 113.91 (11) H12B—C12—H12A 108.3C2—N1—H1 105.6 (13) C10—C9—C8 111.88 (13)C6—N1—H1 108.1 (13) C10—C9—H9B 109.2C7—N1—H1 107.5 (12) C8—C9—H9B 109.2C5—N4—C3 110.50 (11) C10—C9—H9A 109.2C5—N4—H4B 109.3 (13) C8—C9—H9A 109.2C3—N4—H4B 110.5 (13) H9B—C9—H9A 107.9C5—N4—H4A 111.6 (14) N4—C5—C6 109.47 (11)C3—N4—H4A 108.9 (14) N4—C5—H5A 109.8H4B—N4—H4A 105.9 (18) C6—C5—H5A 109.8C8—C7—C12 110.96 (12) N4—C5—H5B 109.8C8—C7—N1 111.70 (11) C6—C5—H5B 109.8C12—C7—N1 112.18 (12) H5A—C5—H5B 108.2C8—C7—H7 107.2 C7—C8—C9 107.83 (12)C12—C7—H7 107.2 C7—C8—H8A 110.1N1—C7—H7 107.2 C9—C8—H8A 110.1N4—C3—C2 110.09 (12) C7—C8—H8B 110.1N4—C3—H3B 109.6 C9—C8—H8B 110.1C2—C3—H3B 109.6 H8A—C8—H8B 108.5N4—C3—H3A 109.6 C10—C11—C12 110.74 (13)C2—C3—H3A 109.6 C10—C11—H11A 109.5H3B—C3—H3A 108.2 C12—C11—H11A 109.5N1—C6—C5 111.64 (12) C10—C11—H11B 109.5N1—C6—H6B 109.3 C12—C11—H11B 109.5C5—C6—H6B 109.3 H11A—C11—H11B 108.1N1—C6—H6A 109.3 C11—C10—C9 110.05 (13)C5—C6—H6A 109.3 C11—C10—H10B 109.7H6B—C6—H6A 108.0 C9—C10—H10B 109.7N1—C2—C3 111.61 (12) C11—C10—H10A 109.7N1—C2—H2A 109.3 C9—C10—H10A 109.7C3—C2—H2A 109.3 H10B—C10—H10A 108.2

C2—N1—C7—C8 156.71 (12) C8—C7—C12—C11 −60.68 (17)C6—N1—C7—C8 −77.55 (15) N1—C7—C12—C11 173.60 (12)C2—N1—C7—C12 −77.98 (14) C3—N4—C5—C6 −60.15 (15)C6—N1—C7—C12 47.76 (16) N1—C6—C5—N4 56.76 (15)

supplementary materials

sup-5Acta Cryst. (2013). C69, 1304-1306

C5—N4—C3—C2 60.08 (15) C12—C7—C8—C9 60.11 (16)C2—N1—C6—C5 −53.28 (15) N1—C7—C8—C9 −173.91 (12)C7—N1—C6—C5 −178.30 (11) C10—C9—C8—C7 −58.33 (17)C6—N1—C2—C3 52.84 (15) C7—C12—C11—C10 57.94 (18)C7—N1—C2—C3 −179.96 (11) C12—C11—C10—C9 −56.23 (18)N4—C3—C2—N1 −56.07 (16) C8—C9—C10—C11 57.11 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···Cl1 0.90 (2) 2.42 (2) 3.2441 (13) 152 (2)N4—H4A···Cl3i 0.90 (2) 2.46 (2) 3.3050 (12) 158 (2)C5—H5A···Cl1ii 0.99 2.75 3.6125 (15) 146N4—H4B···Cl1iii 0.89 (2) 2.50 (2) 3.2153 (12) 138 (2)N4—H4B···Cl4iii 0.89 (2) 2.66 (2) 3.2561 (12) 125 (2)C5—H5B···Cl1 0.99 2.79 3.5573 (15) 135

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, z; (iii) −x+1, −y+1, −z.